1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sh/kernel/smp.c 4 * 5 * SMP support for the SuperH processors. 6 * 7 * Copyright (C) 2002 - 2010 Paul Mundt 8 * Copyright (C) 2006 - 2007 Akio Idehara 9 */ 10 #include <linux/err.h> 11 #include <linux/cache.h> 12 #include <linux/cpumask.h> 13 #include <linux/delay.h> 14 #include <linux/init.h> 15 #include <linux/spinlock.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/cpu.h> 19 #include <linux/interrupt.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/hotplug.h> 22 #include <linux/atomic.h> 23 #include <linux/clockchips.h> 24 #include <asm/processor.h> 25 #include <asm/mmu_context.h> 26 #include <asm/smp.h> 27 #include <asm/cacheflush.h> 28 #include <asm/sections.h> 29 #include <asm/setup.h> 30 31 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 32 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 33 34 struct plat_smp_ops *mp_ops = NULL; 35 36 /* State of each CPU */ 37 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 38 39 void register_smp_ops(struct plat_smp_ops *ops) 40 { 41 if (mp_ops) 42 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 43 44 mp_ops = ops; 45 } 46 47 static inline void smp_store_cpu_info(unsigned int cpu) 48 { 49 struct sh_cpuinfo *c = cpu_data + cpu; 50 51 memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo)); 52 53 c->loops_per_jiffy = loops_per_jiffy; 54 } 55 56 void __init smp_prepare_cpus(unsigned int max_cpus) 57 { 58 unsigned int cpu = smp_processor_id(); 59 60 init_new_context(current, &init_mm); 61 current_thread_info()->cpu = cpu; 62 mp_ops->prepare_cpus(max_cpus); 63 64 #ifndef CONFIG_HOTPLUG_CPU 65 init_cpu_present(cpu_possible_mask); 66 #endif 67 } 68 69 void __init smp_prepare_boot_cpu(void) 70 { 71 unsigned int cpu = smp_processor_id(); 72 73 __cpu_number_map[0] = cpu; 74 __cpu_logical_map[0] = cpu; 75 76 set_cpu_online(cpu, true); 77 set_cpu_possible(cpu, true); 78 79 per_cpu(cpu_state, cpu) = CPU_ONLINE; 80 } 81 82 #ifdef CONFIG_HOTPLUG_CPU 83 void native_cpu_die(unsigned int cpu) 84 { 85 unsigned int i; 86 87 for (i = 0; i < 10; i++) { 88 smp_rmb(); 89 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 90 if (system_state == SYSTEM_RUNNING) 91 pr_info("CPU %u is now offline\n", cpu); 92 93 return; 94 } 95 96 msleep(100); 97 } 98 99 pr_err("CPU %u didn't die...\n", cpu); 100 } 101 102 int native_cpu_disable(unsigned int cpu) 103 { 104 return cpu == 0 ? -EPERM : 0; 105 } 106 107 void play_dead_common(void) 108 { 109 idle_task_exit(); 110 irq_ctx_exit(raw_smp_processor_id()); 111 mb(); 112 113 __this_cpu_write(cpu_state, CPU_DEAD); 114 local_irq_disable(); 115 } 116 117 void native_play_dead(void) 118 { 119 play_dead_common(); 120 } 121 122 int __cpu_disable(void) 123 { 124 unsigned int cpu = smp_processor_id(); 125 int ret; 126 127 ret = mp_ops->cpu_disable(cpu); 128 if (ret) 129 return ret; 130 131 /* 132 * Take this CPU offline. Once we clear this, we can't return, 133 * and we must not schedule until we're ready to give up the cpu. 134 */ 135 set_cpu_online(cpu, false); 136 137 /* 138 * OK - migrate IRQs away from this CPU 139 */ 140 migrate_irqs(); 141 142 /* 143 * Flush user cache and TLB mappings, and then remove this CPU 144 * from the vm mask set of all processes. 145 */ 146 flush_cache_all(); 147 #ifdef CONFIG_MMU 148 local_flush_tlb_all(); 149 #endif 150 151 clear_tasks_mm_cpumask(cpu); 152 153 return 0; 154 } 155 #else /* ... !CONFIG_HOTPLUG_CPU */ 156 int native_cpu_disable(unsigned int cpu) 157 { 158 return -ENOSYS; 159 } 160 161 void native_cpu_die(unsigned int cpu) 162 { 163 /* We said "no" in __cpu_disable */ 164 BUG(); 165 } 166 167 void native_play_dead(void) 168 { 169 BUG(); 170 } 171 #endif 172 173 asmlinkage void start_secondary(void) 174 { 175 unsigned int cpu = smp_processor_id(); 176 struct mm_struct *mm = &init_mm; 177 178 enable_mmu(); 179 mmgrab(mm); 180 mmget(mm); 181 current->active_mm = mm; 182 #ifdef CONFIG_MMU 183 enter_lazy_tlb(mm, current); 184 local_flush_tlb_all(); 185 #endif 186 187 per_cpu_trap_init(); 188 189 notify_cpu_starting(cpu); 190 191 local_irq_enable(); 192 193 calibrate_delay(); 194 195 smp_store_cpu_info(cpu); 196 197 set_cpu_online(cpu, true); 198 per_cpu(cpu_state, cpu) = CPU_ONLINE; 199 200 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 201 } 202 203 extern struct { 204 unsigned long sp; 205 unsigned long bss_start; 206 unsigned long bss_end; 207 void *start_kernel_fn; 208 void *cpu_init_fn; 209 void *thread_info; 210 } stack_start; 211 212 int __cpu_up(unsigned int cpu, struct task_struct *tsk) 213 { 214 unsigned long timeout; 215 216 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 217 218 /* Fill in data in head.S for secondary cpus */ 219 stack_start.sp = tsk->thread.sp; 220 stack_start.thread_info = tsk->stack; 221 stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ 222 stack_start.start_kernel_fn = start_secondary; 223 224 flush_icache_range((unsigned long)&stack_start, 225 (unsigned long)&stack_start + sizeof(stack_start)); 226 wmb(); 227 228 mp_ops->start_cpu(cpu, (unsigned long)_stext); 229 230 timeout = jiffies + HZ; 231 while (time_before(jiffies, timeout)) { 232 if (cpu_online(cpu)) 233 break; 234 235 udelay(10); 236 barrier(); 237 } 238 239 if (cpu_online(cpu)) 240 return 0; 241 242 return -ENOENT; 243 } 244 245 void __init smp_cpus_done(unsigned int max_cpus) 246 { 247 unsigned long bogosum = 0; 248 int cpu; 249 250 for_each_online_cpu(cpu) 251 bogosum += cpu_data[cpu].loops_per_jiffy; 252 253 printk(KERN_INFO "SMP: Total of %d processors activated " 254 "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), 255 bogosum / (500000/HZ), 256 (bogosum / (5000/HZ)) % 100); 257 } 258 259 void smp_send_reschedule(int cpu) 260 { 261 mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE); 262 } 263 264 void smp_send_stop(void) 265 { 266 smp_call_function(stop_this_cpu, 0, 0); 267 } 268 269 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 270 { 271 int cpu; 272 273 for_each_cpu(cpu, mask) 274 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION); 275 } 276 277 void arch_send_call_function_single_ipi(int cpu) 278 { 279 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE); 280 } 281 282 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 283 void tick_broadcast(const struct cpumask *mask) 284 { 285 int cpu; 286 287 for_each_cpu(cpu, mask) 288 mp_ops->send_ipi(cpu, SMP_MSG_TIMER); 289 } 290 291 static void ipi_timer(void) 292 { 293 irq_enter(); 294 tick_receive_broadcast(); 295 irq_exit(); 296 } 297 #endif 298 299 void smp_message_recv(unsigned int msg) 300 { 301 switch (msg) { 302 case SMP_MSG_FUNCTION: 303 generic_smp_call_function_interrupt(); 304 break; 305 case SMP_MSG_RESCHEDULE: 306 scheduler_ipi(); 307 break; 308 case SMP_MSG_FUNCTION_SINGLE: 309 generic_smp_call_function_single_interrupt(); 310 break; 311 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 312 case SMP_MSG_TIMER: 313 ipi_timer(); 314 break; 315 #endif 316 default: 317 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n", 318 smp_processor_id(), __func__, msg); 319 break; 320 } 321 } 322 323 /* Not really SMP stuff ... */ 324 int setup_profiling_timer(unsigned int multiplier) 325 { 326 return 0; 327 } 328 329 #ifdef CONFIG_MMU 330 331 static void flush_tlb_all_ipi(void *info) 332 { 333 local_flush_tlb_all(); 334 } 335 336 void flush_tlb_all(void) 337 { 338 on_each_cpu(flush_tlb_all_ipi, 0, 1); 339 } 340 341 static void flush_tlb_mm_ipi(void *mm) 342 { 343 local_flush_tlb_mm((struct mm_struct *)mm); 344 } 345 346 /* 347 * The following tlb flush calls are invoked when old translations are 348 * being torn down, or pte attributes are changing. For single threaded 349 * address spaces, a new context is obtained on the current cpu, and tlb 350 * context on other cpus are invalidated to force a new context allocation 351 * at switch_mm time, should the mm ever be used on other cpus. For 352 * multithreaded address spaces, intercpu interrupts have to be sent. 353 * Another case where intercpu interrupts are required is when the target 354 * mm might be active on another cpu (eg debuggers doing the flushes on 355 * behalf of debugees, kswapd stealing pages from another process etc). 356 * Kanoj 07/00. 357 */ 358 void flush_tlb_mm(struct mm_struct *mm) 359 { 360 preempt_disable(); 361 362 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 363 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1); 364 } else { 365 int i; 366 for_each_online_cpu(i) 367 if (smp_processor_id() != i) 368 cpu_context(i, mm) = 0; 369 } 370 local_flush_tlb_mm(mm); 371 372 preempt_enable(); 373 } 374 375 struct flush_tlb_data { 376 struct vm_area_struct *vma; 377 unsigned long addr1; 378 unsigned long addr2; 379 }; 380 381 static void flush_tlb_range_ipi(void *info) 382 { 383 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 384 385 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 386 } 387 388 void flush_tlb_range(struct vm_area_struct *vma, 389 unsigned long start, unsigned long end) 390 { 391 struct mm_struct *mm = vma->vm_mm; 392 393 preempt_disable(); 394 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 395 struct flush_tlb_data fd; 396 397 fd.vma = vma; 398 fd.addr1 = start; 399 fd.addr2 = end; 400 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1); 401 } else { 402 int i; 403 for_each_online_cpu(i) 404 if (smp_processor_id() != i) 405 cpu_context(i, mm) = 0; 406 } 407 local_flush_tlb_range(vma, start, end); 408 preempt_enable(); 409 } 410 411 static void flush_tlb_kernel_range_ipi(void *info) 412 { 413 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 414 415 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 416 } 417 418 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 419 { 420 struct flush_tlb_data fd; 421 422 fd.addr1 = start; 423 fd.addr2 = end; 424 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1); 425 } 426 427 static void flush_tlb_page_ipi(void *info) 428 { 429 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 430 431 local_flush_tlb_page(fd->vma, fd->addr1); 432 } 433 434 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 435 { 436 preempt_disable(); 437 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 438 (current->mm != vma->vm_mm)) { 439 struct flush_tlb_data fd; 440 441 fd.vma = vma; 442 fd.addr1 = page; 443 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1); 444 } else { 445 int i; 446 for_each_online_cpu(i) 447 if (smp_processor_id() != i) 448 cpu_context(i, vma->vm_mm) = 0; 449 } 450 local_flush_tlb_page(vma, page); 451 preempt_enable(); 452 } 453 454 static void flush_tlb_one_ipi(void *info) 455 { 456 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 457 local_flush_tlb_one(fd->addr1, fd->addr2); 458 } 459 460 void flush_tlb_one(unsigned long asid, unsigned long vaddr) 461 { 462 struct flush_tlb_data fd; 463 464 fd.addr1 = asid; 465 fd.addr2 = vaddr; 466 467 smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1); 468 local_flush_tlb_one(asid, vaddr); 469 } 470 471 #endif 472