xref: /openbmc/linux/arch/sh/kernel/smp.c (revision 110e6f26)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <linux/atomic.h>
25 #include <linux/clockchips.h>
26 #include <asm/processor.h>
27 #include <asm/mmu_context.h>
28 #include <asm/smp.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 
33 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
34 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
35 
36 struct plat_smp_ops *mp_ops = NULL;
37 
38 /* State of each CPU */
39 DEFINE_PER_CPU(int, cpu_state) = { 0 };
40 
41 void register_smp_ops(struct plat_smp_ops *ops)
42 {
43 	if (mp_ops)
44 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
45 
46 	mp_ops = ops;
47 }
48 
49 static inline void smp_store_cpu_info(unsigned int cpu)
50 {
51 	struct sh_cpuinfo *c = cpu_data + cpu;
52 
53 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
54 
55 	c->loops_per_jiffy = loops_per_jiffy;
56 }
57 
58 void __init smp_prepare_cpus(unsigned int max_cpus)
59 {
60 	unsigned int cpu = smp_processor_id();
61 
62 	init_new_context(current, &init_mm);
63 	current_thread_info()->cpu = cpu;
64 	mp_ops->prepare_cpus(max_cpus);
65 
66 #ifndef CONFIG_HOTPLUG_CPU
67 	init_cpu_present(cpu_possible_mask);
68 #endif
69 }
70 
71 void __init smp_prepare_boot_cpu(void)
72 {
73 	unsigned int cpu = smp_processor_id();
74 
75 	__cpu_number_map[0] = cpu;
76 	__cpu_logical_map[0] = cpu;
77 
78 	set_cpu_online(cpu, true);
79 	set_cpu_possible(cpu, true);
80 
81 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
82 }
83 
84 #ifdef CONFIG_HOTPLUG_CPU
85 void native_cpu_die(unsigned int cpu)
86 {
87 	unsigned int i;
88 
89 	for (i = 0; i < 10; i++) {
90 		smp_rmb();
91 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
92 			if (system_state == SYSTEM_RUNNING)
93 				pr_info("CPU %u is now offline\n", cpu);
94 
95 			return;
96 		}
97 
98 		msleep(100);
99 	}
100 
101 	pr_err("CPU %u didn't die...\n", cpu);
102 }
103 
104 int native_cpu_disable(unsigned int cpu)
105 {
106 	return cpu == 0 ? -EPERM : 0;
107 }
108 
109 void play_dead_common(void)
110 {
111 	idle_task_exit();
112 	irq_ctx_exit(raw_smp_processor_id());
113 	mb();
114 
115 	__this_cpu_write(cpu_state, CPU_DEAD);
116 	local_irq_disable();
117 }
118 
119 void native_play_dead(void)
120 {
121 	play_dead_common();
122 }
123 
124 int __cpu_disable(void)
125 {
126 	unsigned int cpu = smp_processor_id();
127 	int ret;
128 
129 	ret = mp_ops->cpu_disable(cpu);
130 	if (ret)
131 		return ret;
132 
133 	/*
134 	 * Take this CPU offline.  Once we clear this, we can't return,
135 	 * and we must not schedule until we're ready to give up the cpu.
136 	 */
137 	set_cpu_online(cpu, false);
138 
139 	/*
140 	 * OK - migrate IRQs away from this CPU
141 	 */
142 	migrate_irqs();
143 
144 	/*
145 	 * Flush user cache and TLB mappings, and then remove this CPU
146 	 * from the vm mask set of all processes.
147 	 */
148 	flush_cache_all();
149 #ifdef CONFIG_MMU
150 	local_flush_tlb_all();
151 #endif
152 
153 	clear_tasks_mm_cpumask(cpu);
154 
155 	return 0;
156 }
157 #else /* ... !CONFIG_HOTPLUG_CPU */
158 int native_cpu_disable(unsigned int cpu)
159 {
160 	return -ENOSYS;
161 }
162 
163 void native_cpu_die(unsigned int cpu)
164 {
165 	/* We said "no" in __cpu_disable */
166 	BUG();
167 }
168 
169 void native_play_dead(void)
170 {
171 	BUG();
172 }
173 #endif
174 
175 asmlinkage void start_secondary(void)
176 {
177 	unsigned int cpu = smp_processor_id();
178 	struct mm_struct *mm = &init_mm;
179 
180 	enable_mmu();
181 	atomic_inc(&mm->mm_count);
182 	atomic_inc(&mm->mm_users);
183 	current->active_mm = mm;
184 #ifdef CONFIG_MMU
185 	enter_lazy_tlb(mm, current);
186 	local_flush_tlb_all();
187 #endif
188 
189 	per_cpu_trap_init();
190 
191 	preempt_disable();
192 
193 	notify_cpu_starting(cpu);
194 
195 	local_irq_enable();
196 
197 	calibrate_delay();
198 
199 	smp_store_cpu_info(cpu);
200 
201 	set_cpu_online(cpu, true);
202 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
203 
204 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
205 }
206 
207 extern struct {
208 	unsigned long sp;
209 	unsigned long bss_start;
210 	unsigned long bss_end;
211 	void *start_kernel_fn;
212 	void *cpu_init_fn;
213 	void *thread_info;
214 } stack_start;
215 
216 int __cpu_up(unsigned int cpu, struct task_struct *tsk)
217 {
218 	unsigned long timeout;
219 
220 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
221 
222 	/* Fill in data in head.S for secondary cpus */
223 	stack_start.sp = tsk->thread.sp;
224 	stack_start.thread_info = tsk->stack;
225 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
226 	stack_start.start_kernel_fn = start_secondary;
227 
228 	flush_icache_range((unsigned long)&stack_start,
229 			   (unsigned long)&stack_start + sizeof(stack_start));
230 	wmb();
231 
232 	mp_ops->start_cpu(cpu, (unsigned long)_stext);
233 
234 	timeout = jiffies + HZ;
235 	while (time_before(jiffies, timeout)) {
236 		if (cpu_online(cpu))
237 			break;
238 
239 		udelay(10);
240 		barrier();
241 	}
242 
243 	if (cpu_online(cpu))
244 		return 0;
245 
246 	return -ENOENT;
247 }
248 
249 void __init smp_cpus_done(unsigned int max_cpus)
250 {
251 	unsigned long bogosum = 0;
252 	int cpu;
253 
254 	for_each_online_cpu(cpu)
255 		bogosum += cpu_data[cpu].loops_per_jiffy;
256 
257 	printk(KERN_INFO "SMP: Total of %d processors activated "
258 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
259 	       bogosum / (500000/HZ),
260 	       (bogosum / (5000/HZ)) % 100);
261 }
262 
263 void smp_send_reschedule(int cpu)
264 {
265 	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
266 }
267 
268 void smp_send_stop(void)
269 {
270 	smp_call_function(stop_this_cpu, 0, 0);
271 }
272 
273 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
274 {
275 	int cpu;
276 
277 	for_each_cpu(cpu, mask)
278 		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
279 }
280 
281 void arch_send_call_function_single_ipi(int cpu)
282 {
283 	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
284 }
285 
286 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
287 void tick_broadcast(const struct cpumask *mask)
288 {
289 	int cpu;
290 
291 	for_each_cpu(cpu, mask)
292 		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
293 }
294 
295 static void ipi_timer(void)
296 {
297 	irq_enter();
298 	tick_receive_broadcast();
299 	irq_exit();
300 }
301 #endif
302 
303 void smp_message_recv(unsigned int msg)
304 {
305 	switch (msg) {
306 	case SMP_MSG_FUNCTION:
307 		generic_smp_call_function_interrupt();
308 		break;
309 	case SMP_MSG_RESCHEDULE:
310 		scheduler_ipi();
311 		break;
312 	case SMP_MSG_FUNCTION_SINGLE:
313 		generic_smp_call_function_single_interrupt();
314 		break;
315 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
316 	case SMP_MSG_TIMER:
317 		ipi_timer();
318 		break;
319 #endif
320 	default:
321 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
322 		       smp_processor_id(), __func__, msg);
323 		break;
324 	}
325 }
326 
327 /* Not really SMP stuff ... */
328 int setup_profiling_timer(unsigned int multiplier)
329 {
330 	return 0;
331 }
332 
333 #ifdef CONFIG_MMU
334 
335 static void flush_tlb_all_ipi(void *info)
336 {
337 	local_flush_tlb_all();
338 }
339 
340 void flush_tlb_all(void)
341 {
342 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
343 }
344 
345 static void flush_tlb_mm_ipi(void *mm)
346 {
347 	local_flush_tlb_mm((struct mm_struct *)mm);
348 }
349 
350 /*
351  * The following tlb flush calls are invoked when old translations are
352  * being torn down, or pte attributes are changing. For single threaded
353  * address spaces, a new context is obtained on the current cpu, and tlb
354  * context on other cpus are invalidated to force a new context allocation
355  * at switch_mm time, should the mm ever be used on other cpus. For
356  * multithreaded address spaces, intercpu interrupts have to be sent.
357  * Another case where intercpu interrupts are required is when the target
358  * mm might be active on another cpu (eg debuggers doing the flushes on
359  * behalf of debugees, kswapd stealing pages from another process etc).
360  * Kanoj 07/00.
361  */
362 void flush_tlb_mm(struct mm_struct *mm)
363 {
364 	preempt_disable();
365 
366 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
367 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
368 	} else {
369 		int i;
370 		for_each_online_cpu(i)
371 			if (smp_processor_id() != i)
372 				cpu_context(i, mm) = 0;
373 	}
374 	local_flush_tlb_mm(mm);
375 
376 	preempt_enable();
377 }
378 
379 struct flush_tlb_data {
380 	struct vm_area_struct *vma;
381 	unsigned long addr1;
382 	unsigned long addr2;
383 };
384 
385 static void flush_tlb_range_ipi(void *info)
386 {
387 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
388 
389 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
390 }
391 
392 void flush_tlb_range(struct vm_area_struct *vma,
393 		     unsigned long start, unsigned long end)
394 {
395 	struct mm_struct *mm = vma->vm_mm;
396 
397 	preempt_disable();
398 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
399 		struct flush_tlb_data fd;
400 
401 		fd.vma = vma;
402 		fd.addr1 = start;
403 		fd.addr2 = end;
404 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
405 	} else {
406 		int i;
407 		for_each_online_cpu(i)
408 			if (smp_processor_id() != i)
409 				cpu_context(i, mm) = 0;
410 	}
411 	local_flush_tlb_range(vma, start, end);
412 	preempt_enable();
413 }
414 
415 static void flush_tlb_kernel_range_ipi(void *info)
416 {
417 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
418 
419 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
420 }
421 
422 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
423 {
424 	struct flush_tlb_data fd;
425 
426 	fd.addr1 = start;
427 	fd.addr2 = end;
428 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
429 }
430 
431 static void flush_tlb_page_ipi(void *info)
432 {
433 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
434 
435 	local_flush_tlb_page(fd->vma, fd->addr1);
436 }
437 
438 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
439 {
440 	preempt_disable();
441 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
442 	    (current->mm != vma->vm_mm)) {
443 		struct flush_tlb_data fd;
444 
445 		fd.vma = vma;
446 		fd.addr1 = page;
447 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
448 	} else {
449 		int i;
450 		for_each_online_cpu(i)
451 			if (smp_processor_id() != i)
452 				cpu_context(i, vma->vm_mm) = 0;
453 	}
454 	local_flush_tlb_page(vma, page);
455 	preempt_enable();
456 }
457 
458 static void flush_tlb_one_ipi(void *info)
459 {
460 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
461 	local_flush_tlb_one(fd->addr1, fd->addr2);
462 }
463 
464 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
465 {
466 	struct flush_tlb_data fd;
467 
468 	fd.addr1 = asid;
469 	fd.addr2 = vaddr;
470 
471 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
472 	local_flush_tlb_one(asid, vaddr);
473 }
474 
475 #endif
476