1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/debugfs.h> 28 #include <linux/crash_dump.h> 29 #include <linux/mmzone.h> 30 #include <linux/clk.h> 31 #include <linux/delay.h> 32 #include <linux/platform_device.h> 33 #include <linux/lmb.h> 34 #include <asm/uaccess.h> 35 #include <asm/io.h> 36 #include <asm/page.h> 37 #include <asm/elf.h> 38 #include <asm/sections.h> 39 #include <asm/irq.h> 40 #include <asm/setup.h> 41 #include <asm/clock.h> 42 #include <asm/mmu_context.h> 43 44 /* 45 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 46 * This value will be used at the very early stage of serial setup. 47 * The bigger value means no problem. 48 */ 49 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 50 [0] = { 51 .type = CPU_SH_NONE, 52 .family = CPU_FAMILY_UNKNOWN, 53 .loops_per_jiffy = 10000000, 54 }, 55 }; 56 EXPORT_SYMBOL(cpu_data); 57 58 /* 59 * The machine vector. First entry in .machvec.init, or clobbered by 60 * sh_mv= on the command line, prior to .machvec.init teardown. 61 */ 62 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 63 EXPORT_SYMBOL(sh_mv); 64 65 #ifdef CONFIG_VT 66 struct screen_info screen_info; 67 #endif 68 69 extern int root_mountflags; 70 71 #define RAMDISK_IMAGE_START_MASK 0x07FF 72 #define RAMDISK_PROMPT_FLAG 0x8000 73 #define RAMDISK_LOAD_FLAG 0x4000 74 75 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 76 77 static struct resource code_resource = { 78 .name = "Kernel code", 79 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 80 }; 81 82 static struct resource data_resource = { 83 .name = "Kernel data", 84 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 85 }; 86 87 static struct resource bss_resource = { 88 .name = "Kernel bss", 89 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 90 }; 91 92 unsigned long memory_start; 93 EXPORT_SYMBOL(memory_start); 94 unsigned long memory_end = 0; 95 EXPORT_SYMBOL(memory_end); 96 97 static struct resource mem_resources[MAX_NUMNODES]; 98 99 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 100 101 static int __init early_parse_mem(char *p) 102 { 103 unsigned long size; 104 105 memory_start = (unsigned long)__va(__MEMORY_START); 106 size = memparse(p, &p); 107 108 if (size > __MEMORY_SIZE) { 109 printk(KERN_ERR 110 "Using mem= to increase the size of kernel memory " 111 "is not allowed.\n" 112 " Recompile the kernel with the correct value for " 113 "CONFIG_MEMORY_SIZE.\n"); 114 return 0; 115 } 116 117 memory_end = memory_start + size; 118 119 return 0; 120 } 121 early_param("mem", early_parse_mem); 122 123 /* 124 * Register fully available low RAM pages with the bootmem allocator. 125 */ 126 static void __init register_bootmem_low_pages(void) 127 { 128 unsigned long curr_pfn, last_pfn, pages; 129 130 /* 131 * We are rounding up the start address of usable memory: 132 */ 133 curr_pfn = PFN_UP(__MEMORY_START); 134 135 /* 136 * ... and at the end of the usable range downwards: 137 */ 138 last_pfn = PFN_DOWN(__pa(memory_end)); 139 140 if (last_pfn > max_low_pfn) 141 last_pfn = max_low_pfn; 142 143 pages = last_pfn - curr_pfn; 144 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 145 } 146 147 #ifdef CONFIG_KEXEC 148 static void __init reserve_crashkernel(void) 149 { 150 unsigned long long free_mem; 151 unsigned long long crash_size, crash_base; 152 void *vp; 153 int ret; 154 155 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 156 157 ret = parse_crashkernel(boot_command_line, free_mem, 158 &crash_size, &crash_base); 159 if (ret == 0 && crash_size) { 160 if (crash_base <= 0) { 161 vp = alloc_bootmem_nopanic(crash_size); 162 if (!vp) { 163 printk(KERN_INFO "crashkernel allocation " 164 "failed\n"); 165 return; 166 } 167 crash_base = __pa(vp); 168 } else if (reserve_bootmem(crash_base, crash_size, 169 BOOTMEM_EXCLUSIVE) < 0) { 170 printk(KERN_INFO "crashkernel reservation failed - " 171 "memory is in use\n"); 172 return; 173 } 174 175 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 176 "for crashkernel (System RAM: %ldMB)\n", 177 (unsigned long)(crash_size >> 20), 178 (unsigned long)(crash_base >> 20), 179 (unsigned long)(free_mem >> 20)); 180 crashk_res.start = crash_base; 181 crashk_res.end = crash_base + crash_size - 1; 182 insert_resource(&iomem_resource, &crashk_res); 183 } 184 } 185 #else 186 static inline void __init reserve_crashkernel(void) 187 {} 188 #endif 189 190 void __cpuinit calibrate_delay(void) 191 { 192 struct clk *clk = clk_get(NULL, "cpu_clk"); 193 194 if (IS_ERR(clk)) 195 panic("Need a sane CPU clock definition!"); 196 197 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; 198 199 printk(KERN_INFO "Calibrating delay loop (skipped)... " 200 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", 201 loops_per_jiffy/(500000/HZ), 202 (loops_per_jiffy/(5000/HZ)) % 100, 203 loops_per_jiffy); 204 } 205 206 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 207 unsigned long end_pfn) 208 { 209 struct resource *res = &mem_resources[nid]; 210 211 WARN_ON(res->name); /* max one active range per node for now */ 212 213 res->name = "System RAM"; 214 res->start = start_pfn << PAGE_SHIFT; 215 res->end = (end_pfn << PAGE_SHIFT) - 1; 216 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 217 if (request_resource(&iomem_resource, res)) { 218 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 219 start_pfn, end_pfn); 220 return; 221 } 222 223 /* 224 * We don't know which RAM region contains kernel data, 225 * so we try it repeatedly and let the resource manager 226 * test it. 227 */ 228 request_resource(res, &code_resource); 229 request_resource(res, &data_resource); 230 request_resource(res, &bss_resource); 231 232 add_active_range(nid, start_pfn, end_pfn); 233 } 234 235 void __init setup_bootmem_allocator(unsigned long free_pfn) 236 { 237 unsigned long bootmap_size; 238 unsigned long bootmap_pages, bootmem_paddr; 239 u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT; 240 int i; 241 242 bootmap_pages = bootmem_bootmap_pages(total_pages); 243 244 bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); 245 246 /* 247 * Find a proper area for the bootmem bitmap. After this 248 * bootstrap step all allocations (until the page allocator 249 * is intact) must be done via bootmem_alloc(). 250 */ 251 bootmap_size = init_bootmem_node(NODE_DATA(0), 252 bootmem_paddr >> PAGE_SHIFT, 253 min_low_pfn, max_low_pfn); 254 255 /* Add active regions with valid PFNs. */ 256 for (i = 0; i < lmb.memory.cnt; i++) { 257 unsigned long start_pfn, end_pfn; 258 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 259 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 260 __add_active_range(0, start_pfn, end_pfn); 261 } 262 263 /* 264 * Add all physical memory to the bootmem map and mark each 265 * area as present. 266 */ 267 register_bootmem_low_pages(); 268 269 /* Reserve the sections we're already using. */ 270 for (i = 0; i < lmb.reserved.cnt; i++) 271 reserve_bootmem(lmb.reserved.region[i].base, 272 lmb_size_bytes(&lmb.reserved, i), 273 BOOTMEM_DEFAULT); 274 275 node_set_online(0); 276 277 sparse_memory_present_with_active_regions(0); 278 279 #ifdef CONFIG_BLK_DEV_INITRD 280 ROOT_DEV = Root_RAM0; 281 282 if (LOADER_TYPE && INITRD_START) { 283 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START; 284 285 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) { 286 reserve_bootmem(initrd_start_phys, INITRD_SIZE, 287 BOOTMEM_DEFAULT); 288 initrd_start = (unsigned long)__va(initrd_start_phys); 289 initrd_end = initrd_start + INITRD_SIZE; 290 } else { 291 printk("initrd extends beyond end of memory " 292 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 293 initrd_start_phys + INITRD_SIZE, 294 (unsigned long)PFN_PHYS(max_low_pfn)); 295 initrd_start = 0; 296 } 297 } 298 #endif 299 300 reserve_crashkernel(); 301 } 302 303 #ifndef CONFIG_NEED_MULTIPLE_NODES 304 static void __init setup_memory(void) 305 { 306 unsigned long start_pfn; 307 u64 base = min_low_pfn << PAGE_SHIFT; 308 u64 size = (max_low_pfn << PAGE_SHIFT) - base; 309 310 /* 311 * Partially used pages are not usable - thus 312 * we are rounding upwards: 313 */ 314 start_pfn = PFN_UP(__pa(_end)); 315 316 lmb_add(base, size); 317 318 /* 319 * Reserve the kernel text and 320 * Reserve the bootmem bitmap. We do this in two steps (first step 321 * was init_bootmem()), because this catches the (definitely buggy) 322 * case of us accidentally initializing the bootmem allocator with 323 * an invalid RAM area. 324 */ 325 lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, 326 (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) - 327 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET)); 328 329 /* 330 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET. 331 */ 332 if (CONFIG_ZERO_PAGE_OFFSET != 0) 333 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET); 334 335 lmb_analyze(); 336 lmb_dump_all(); 337 338 setup_bootmem_allocator(start_pfn); 339 } 340 #else 341 extern void __init setup_memory(void); 342 #endif 343 344 /* 345 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by 346 * is_kdump_kernel() to determine if we are booting after a panic. Hence 347 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. 348 */ 349 #ifdef CONFIG_CRASH_DUMP 350 /* elfcorehdr= specifies the location of elf core header 351 * stored by the crashed kernel. 352 */ 353 static int __init parse_elfcorehdr(char *arg) 354 { 355 if (!arg) 356 return -EINVAL; 357 elfcorehdr_addr = memparse(arg, &arg); 358 return 0; 359 } 360 early_param("elfcorehdr", parse_elfcorehdr); 361 #endif 362 363 void __init __attribute__ ((weak)) plat_early_device_setup(void) 364 { 365 } 366 367 void __init setup_arch(char **cmdline_p) 368 { 369 enable_mmu(); 370 371 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 372 373 printk(KERN_NOTICE "Boot params:\n" 374 "... MOUNT_ROOT_RDONLY - %08lx\n" 375 "... RAMDISK_FLAGS - %08lx\n" 376 "... ORIG_ROOT_DEV - %08lx\n" 377 "... LOADER_TYPE - %08lx\n" 378 "... INITRD_START - %08lx\n" 379 "... INITRD_SIZE - %08lx\n", 380 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 381 ORIG_ROOT_DEV, LOADER_TYPE, 382 INITRD_START, INITRD_SIZE); 383 384 #ifdef CONFIG_BLK_DEV_RAM 385 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 386 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 387 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 388 #endif 389 390 if (!MOUNT_ROOT_RDONLY) 391 root_mountflags &= ~MS_RDONLY; 392 init_mm.start_code = (unsigned long) _text; 393 init_mm.end_code = (unsigned long) _etext; 394 init_mm.end_data = (unsigned long) _edata; 395 init_mm.brk = (unsigned long) _end; 396 397 code_resource.start = virt_to_phys(_text); 398 code_resource.end = virt_to_phys(_etext)-1; 399 data_resource.start = virt_to_phys(_etext); 400 data_resource.end = virt_to_phys(_edata)-1; 401 bss_resource.start = virt_to_phys(__bss_start); 402 bss_resource.end = virt_to_phys(_ebss)-1; 403 404 memory_start = (unsigned long)__va(__MEMORY_START); 405 if (!memory_end) 406 memory_end = memory_start + __MEMORY_SIZE; 407 408 #ifdef CONFIG_CMDLINE_OVERWRITE 409 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 410 #else 411 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 412 #ifdef CONFIG_CMDLINE_EXTEND 413 strlcat(command_line, " ", sizeof(command_line)); 414 strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line)); 415 #endif 416 #endif 417 418 /* Save unparsed command line copy for /proc/cmdline */ 419 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 420 *cmdline_p = command_line; 421 422 parse_early_param(); 423 424 plat_early_device_setup(); 425 426 sh_mv_setup(); 427 428 /* 429 * Find the highest page frame number we have available 430 */ 431 max_pfn = PFN_DOWN(__pa(memory_end)); 432 433 /* 434 * Determine low and high memory ranges: 435 */ 436 max_low_pfn = max_pfn; 437 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 438 439 nodes_clear(node_online_map); 440 441 /* Setup bootmem with available RAM */ 442 lmb_init(); 443 setup_memory(); 444 sparse_init(); 445 446 #ifdef CONFIG_DUMMY_CONSOLE 447 conswitchp = &dummy_con; 448 #endif 449 450 /* Perform the machine specific initialisation */ 451 if (likely(sh_mv.mv_setup)) 452 sh_mv.mv_setup(cmdline_p); 453 454 paging_init(); 455 456 #ifdef CONFIG_SMP 457 plat_smp_setup(); 458 #endif 459 } 460 461 /* processor boot mode configuration */ 462 int generic_mode_pins(void) 463 { 464 pr_warning("generic_mode_pins(): missing mode pin configuration\n"); 465 return 0; 466 } 467 468 int test_mode_pin(int pin) 469 { 470 return sh_mv.mv_mode_pins() & pin; 471 } 472 473 static const char *cpu_name[] = { 474 [CPU_SH7201] = "SH7201", 475 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 476 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 477 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 478 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 479 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 480 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 481 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 482 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 483 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 484 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 485 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 486 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 487 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 488 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 489 [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757", 490 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 491 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 492 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 493 [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724", 494 [CPU_SH_NONE] = "Unknown" 495 }; 496 497 const char *get_cpu_subtype(struct sh_cpuinfo *c) 498 { 499 return cpu_name[c->type]; 500 } 501 EXPORT_SYMBOL(get_cpu_subtype); 502 503 #ifdef CONFIG_PROC_FS 504 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 505 static const char *cpu_flags[] = { 506 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 507 "ptea", "llsc", "l2", "op32", "pteaex", NULL 508 }; 509 510 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 511 { 512 unsigned long i; 513 514 seq_printf(m, "cpu flags\t:"); 515 516 if (!c->flags) { 517 seq_printf(m, " %s\n", cpu_flags[0]); 518 return; 519 } 520 521 for (i = 0; cpu_flags[i]; i++) 522 if ((c->flags & (1 << i))) 523 seq_printf(m, " %s", cpu_flags[i+1]); 524 525 seq_printf(m, "\n"); 526 } 527 528 static void show_cacheinfo(struct seq_file *m, const char *type, 529 struct cache_info info) 530 { 531 unsigned int cache_size; 532 533 cache_size = info.ways * info.sets * info.linesz; 534 535 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 536 type, cache_size >> 10, info.ways); 537 } 538 539 /* 540 * Get CPU information for use by the procfs. 541 */ 542 static int show_cpuinfo(struct seq_file *m, void *v) 543 { 544 struct sh_cpuinfo *c = v; 545 unsigned int cpu = c - cpu_data; 546 547 if (!cpu_online(cpu)) 548 return 0; 549 550 if (cpu == 0) 551 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 552 553 seq_printf(m, "processor\t: %d\n", cpu); 554 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 555 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 556 if (c->cut_major == -1) 557 seq_printf(m, "cut\t\t: unknown\n"); 558 else if (c->cut_minor == -1) 559 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); 560 else 561 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); 562 563 show_cpuflags(m, c); 564 565 seq_printf(m, "cache type\t: "); 566 567 /* 568 * Check for what type of cache we have, we support both the 569 * unified cache on the SH-2 and SH-3, as well as the harvard 570 * style cache on the SH-4. 571 */ 572 if (c->icache.flags & SH_CACHE_COMBINED) { 573 seq_printf(m, "unified\n"); 574 show_cacheinfo(m, "cache", c->icache); 575 } else { 576 seq_printf(m, "split (harvard)\n"); 577 show_cacheinfo(m, "icache", c->icache); 578 show_cacheinfo(m, "dcache", c->dcache); 579 } 580 581 /* Optional secondary cache */ 582 if (c->flags & CPU_HAS_L2_CACHE) 583 show_cacheinfo(m, "scache", c->scache); 584 585 seq_printf(m, "bogomips\t: %lu.%02lu\n", 586 c->loops_per_jiffy/(500000/HZ), 587 (c->loops_per_jiffy/(5000/HZ)) % 100); 588 589 return 0; 590 } 591 592 static void *c_start(struct seq_file *m, loff_t *pos) 593 { 594 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 595 } 596 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 597 { 598 ++*pos; 599 return c_start(m, pos); 600 } 601 static void c_stop(struct seq_file *m, void *v) 602 { 603 } 604 const struct seq_operations cpuinfo_op = { 605 .start = c_start, 606 .next = c_next, 607 .stop = c_stop, 608 .show = show_cpuinfo, 609 }; 610 #endif /* CONFIG_PROC_FS */ 611 612 struct dentry *sh_debugfs_root; 613 614 static int __init sh_debugfs_init(void) 615 { 616 sh_debugfs_root = debugfs_create_dir("sh", NULL); 617 if (!sh_debugfs_root) 618 return -ENOMEM; 619 if (IS_ERR(sh_debugfs_root)) 620 return PTR_ERR(sh_debugfs_root); 621 622 return 0; 623 } 624 arch_initcall(sh_debugfs_init); 625