1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <asm/uaccess.h> 26 #include <asm/io.h> 27 #include <asm/page.h> 28 #include <asm/sections.h> 29 #include <asm/irq.h> 30 #include <asm/setup.h> 31 #include <asm/clock.h> 32 #include <asm/mmu_context.h> 33 34 extern void * __rd_start, * __rd_end; 35 36 /* 37 * Machine setup.. 38 */ 39 40 /* 41 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 42 * This value will be used at the very early stage of serial setup. 43 * The bigger value means no problem. 44 */ 45 struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, }; 46 47 /* 48 * The machine vector. First entry in .machvec.init, or clobbered by 49 * sh_mv= on the command line, prior to .machvec.init teardown. 50 */ 51 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 52 53 #ifdef CONFIG_VT 54 struct screen_info screen_info; 55 #endif 56 57 extern int root_mountflags; 58 59 /* 60 * This is set up by the setup-routine at boot-time 61 */ 62 #define PARAM ((unsigned char *)empty_zero_page) 63 64 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000)) 65 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004)) 66 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008)) 67 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c)) 68 #define INITRD_START (*(unsigned long *) (PARAM+0x010)) 69 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014)) 70 /* ... */ 71 #define COMMAND_LINE ((char *) (PARAM+0x100)) 72 73 #define RAMDISK_IMAGE_START_MASK 0x07FF 74 #define RAMDISK_PROMPT_FLAG 0x8000 75 #define RAMDISK_LOAD_FLAG 0x4000 76 77 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 78 79 static struct resource code_resource = { .name = "Kernel code", }; 80 static struct resource data_resource = { .name = "Kernel data", }; 81 82 unsigned long memory_start; 83 EXPORT_SYMBOL(memory_start); 84 85 unsigned long memory_end; 86 EXPORT_SYMBOL(memory_end); 87 88 static int __init early_parse_mem(char *p) 89 { 90 unsigned long size; 91 92 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; 93 size = memparse(p, &p); 94 memory_end = memory_start + size; 95 96 return 0; 97 } 98 early_param("mem", early_parse_mem); 99 100 /* 101 * Register fully available low RAM pages with the bootmem allocator. 102 */ 103 static void __init register_bootmem_low_pages(void) 104 { 105 unsigned long curr_pfn, last_pfn, pages; 106 107 /* 108 * We are rounding up the start address of usable memory: 109 */ 110 curr_pfn = PFN_UP(__MEMORY_START); 111 112 /* 113 * ... and at the end of the usable range downwards: 114 */ 115 last_pfn = PFN_DOWN(__pa(memory_end)); 116 117 if (last_pfn > max_low_pfn) 118 last_pfn = max_low_pfn; 119 120 pages = last_pfn - curr_pfn; 121 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 122 } 123 124 void __init setup_bootmem_allocator(unsigned long free_pfn) 125 { 126 unsigned long bootmap_size; 127 128 /* 129 * Find a proper area for the bootmem bitmap. After this 130 * bootstrap step all allocations (until the page allocator 131 * is intact) must be done via bootmem_alloc(). 132 */ 133 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 134 min_low_pfn, max_low_pfn); 135 136 add_active_range(0, min_low_pfn, max_low_pfn); 137 register_bootmem_low_pages(); 138 139 node_set_online(0); 140 141 /* 142 * Reserve the kernel text and 143 * Reserve the bootmem bitmap. We do this in two steps (first step 144 * was init_bootmem()), because this catches the (definitely buggy) 145 * case of us accidentally initializing the bootmem allocator with 146 * an invalid RAM area. 147 */ 148 reserve_bootmem(__MEMORY_START+PAGE_SIZE, 149 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START); 150 151 /* 152 * reserve physical page 0 - it's a special BIOS page on many boxes, 153 * enabling clean reboots, SMP operation, laptop functions. 154 */ 155 reserve_bootmem(__MEMORY_START, PAGE_SIZE); 156 157 sparse_memory_present_with_active_regions(0); 158 159 #ifdef CONFIG_BLK_DEV_INITRD 160 ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0); 161 if (&__rd_start != &__rd_end) { 162 LOADER_TYPE = 1; 163 INITRD_START = PHYSADDR((unsigned long)&__rd_start) - 164 __MEMORY_START; 165 INITRD_SIZE = (unsigned long)&__rd_end - 166 (unsigned long)&__rd_start; 167 } 168 169 if (LOADER_TYPE && INITRD_START) { 170 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { 171 reserve_bootmem(INITRD_START + __MEMORY_START, 172 INITRD_SIZE); 173 initrd_start = INITRD_START + PAGE_OFFSET + 174 __MEMORY_START; 175 initrd_end = initrd_start + INITRD_SIZE; 176 } else { 177 printk("initrd extends beyond end of memory " 178 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 179 INITRD_START + INITRD_SIZE, 180 max_low_pfn << PAGE_SHIFT); 181 initrd_start = 0; 182 } 183 } 184 #endif 185 #ifdef CONFIG_KEXEC 186 if (crashk_res.start != crashk_res.end) 187 reserve_bootmem(crashk_res.start, 188 crashk_res.end - crashk_res.start + 1); 189 #endif 190 } 191 192 #ifndef CONFIG_NEED_MULTIPLE_NODES 193 static void __init setup_memory(void) 194 { 195 unsigned long start_pfn; 196 197 /* 198 * Partially used pages are not usable - thus 199 * we are rounding upwards: 200 */ 201 start_pfn = PFN_UP(__pa(_end)); 202 setup_bootmem_allocator(start_pfn); 203 } 204 #else 205 extern void __init setup_memory(void); 206 #endif 207 208 void __init setup_arch(char **cmdline_p) 209 { 210 enable_mmu(); 211 212 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 213 214 #ifdef CONFIG_BLK_DEV_RAM 215 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 216 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 217 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 218 #endif 219 220 if (!MOUNT_ROOT_RDONLY) 221 root_mountflags &= ~MS_RDONLY; 222 init_mm.start_code = (unsigned long) _text; 223 init_mm.end_code = (unsigned long) _etext; 224 init_mm.end_data = (unsigned long) _edata; 225 init_mm.brk = (unsigned long) _end; 226 227 code_resource.start = virt_to_phys(_text); 228 code_resource.end = virt_to_phys(_etext)-1; 229 data_resource.start = virt_to_phys(_etext); 230 data_resource.end = virt_to_phys(_edata)-1; 231 232 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; 233 memory_end = memory_start + __MEMORY_SIZE; 234 235 #ifdef CONFIG_CMDLINE_BOOL 236 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 237 #else 238 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 239 #endif 240 241 /* Save unparsed command line copy for /proc/cmdline */ 242 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 243 *cmdline_p = command_line; 244 245 parse_early_param(); 246 247 sh_mv_setup(); 248 249 /* 250 * Find the highest page frame number we have available 251 */ 252 max_pfn = PFN_DOWN(__pa(memory_end)); 253 254 /* 255 * Determine low and high memory ranges: 256 */ 257 max_low_pfn = max_pfn; 258 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 259 260 nodes_clear(node_online_map); 261 262 /* Setup bootmem with available RAM */ 263 setup_memory(); 264 sparse_init(); 265 266 #ifdef CONFIG_DUMMY_CONSOLE 267 conswitchp = &dummy_con; 268 #endif 269 270 /* Perform the machine specific initialisation */ 271 if (likely(sh_mv.mv_setup)) 272 sh_mv.mv_setup(cmdline_p); 273 274 paging_init(); 275 } 276 277 static const char *cpu_name[] = { 278 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 279 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 280 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 281 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 282 [CPU_SH7712] = "SH7712", 283 [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750", 284 [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R", 285 [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R", 286 [CPU_SH7760] = "SH7760", 287 [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1", 288 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 289 [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780", 290 [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343", 291 [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722", 292 [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown" 293 }; 294 295 const char *get_cpu_subtype(struct sh_cpuinfo *c) 296 { 297 return cpu_name[c->type]; 298 } 299 300 #ifdef CONFIG_PROC_FS 301 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 302 static const char *cpu_flags[] = { 303 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 304 "ptea", "llsc", "l2", "op32", NULL 305 }; 306 307 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 308 { 309 unsigned long i; 310 311 seq_printf(m, "cpu flags\t:"); 312 313 if (!c->flags) { 314 seq_printf(m, " %s\n", cpu_flags[0]); 315 return; 316 } 317 318 for (i = 0; cpu_flags[i]; i++) 319 if ((c->flags & (1 << i))) 320 seq_printf(m, " %s", cpu_flags[i+1]); 321 322 seq_printf(m, "\n"); 323 } 324 325 static void show_cacheinfo(struct seq_file *m, const char *type, 326 struct cache_info info) 327 { 328 unsigned int cache_size; 329 330 cache_size = info.ways * info.sets * info.linesz; 331 332 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 333 type, cache_size >> 10, info.ways); 334 } 335 336 /* 337 * Get CPU information for use by the procfs. 338 */ 339 static int show_cpuinfo(struct seq_file *m, void *v) 340 { 341 struct sh_cpuinfo *c = v; 342 unsigned int cpu = c - cpu_data; 343 344 if (!cpu_online(cpu)) 345 return 0; 346 347 if (cpu == 0) 348 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 349 350 seq_printf(m, "processor\t: %d\n", cpu); 351 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 352 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 353 354 show_cpuflags(m, c); 355 356 seq_printf(m, "cache type\t: "); 357 358 /* 359 * Check for what type of cache we have, we support both the 360 * unified cache on the SH-2 and SH-3, as well as the harvard 361 * style cache on the SH-4. 362 */ 363 if (c->icache.flags & SH_CACHE_COMBINED) { 364 seq_printf(m, "unified\n"); 365 show_cacheinfo(m, "cache", c->icache); 366 } else { 367 seq_printf(m, "split (harvard)\n"); 368 show_cacheinfo(m, "icache", c->icache); 369 show_cacheinfo(m, "dcache", c->dcache); 370 } 371 372 /* Optional secondary cache */ 373 if (c->flags & CPU_HAS_L2_CACHE) 374 show_cacheinfo(m, "scache", c->scache); 375 376 seq_printf(m, "bogomips\t: %lu.%02lu\n", 377 c->loops_per_jiffy/(500000/HZ), 378 (c->loops_per_jiffy/(5000/HZ)) % 100); 379 380 return 0; 381 } 382 383 static void *c_start(struct seq_file *m, loff_t *pos) 384 { 385 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 386 } 387 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 388 { 389 ++*pos; 390 return c_start(m, pos); 391 } 392 static void c_stop(struct seq_file *m, void *v) 393 { 394 } 395 struct seq_operations cpuinfo_op = { 396 .start = c_start, 397 .next = c_next, 398 .stop = c_stop, 399 .show = show_cpuinfo, 400 }; 401 #endif /* CONFIG_PROC_FS */ 402