xref: /openbmc/linux/arch/sh/kernel/setup.c (revision c21b37f6)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <asm/uaccess.h>
26 #include <asm/io.h>
27 #include <asm/page.h>
28 #include <asm/sections.h>
29 #include <asm/irq.h>
30 #include <asm/setup.h>
31 #include <asm/clock.h>
32 #include <asm/mmu_context.h>
33 
34 extern void * __rd_start, * __rd_end;
35 
36 /*
37  * Machine setup..
38  */
39 
40 /*
41  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
42  * This value will be used at the very early stage of serial setup.
43  * The bigger value means no problem.
44  */
45 struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
46 
47 /*
48  * The machine vector. First entry in .machvec.init, or clobbered by
49  * sh_mv= on the command line, prior to .machvec.init teardown.
50  */
51 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
52 
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56 
57 extern int root_mountflags;
58 
59 /*
60  * This is set up by the setup-routine at boot-time
61  */
62 #define PARAM	((unsigned char *)empty_zero_page)
63 
64 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
65 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
66 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
67 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
68 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
69 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
70 /* ... */
71 #define COMMAND_LINE ((char *) (PARAM+0x100))
72 
73 #define RAMDISK_IMAGE_START_MASK	0x07FF
74 #define RAMDISK_PROMPT_FLAG		0x8000
75 #define RAMDISK_LOAD_FLAG		0x4000
76 
77 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
78 
79 static struct resource code_resource = { .name = "Kernel code", };
80 static struct resource data_resource = { .name = "Kernel data", };
81 
82 unsigned long memory_start;
83 EXPORT_SYMBOL(memory_start);
84 
85 unsigned long memory_end;
86 EXPORT_SYMBOL(memory_end);
87 
88 static int __init early_parse_mem(char *p)
89 {
90 	unsigned long size;
91 
92 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
93 	size = memparse(p, &p);
94 	memory_end = memory_start + size;
95 
96 	return 0;
97 }
98 early_param("mem", early_parse_mem);
99 
100 /*
101  * Register fully available low RAM pages with the bootmem allocator.
102  */
103 static void __init register_bootmem_low_pages(void)
104 {
105 	unsigned long curr_pfn, last_pfn, pages;
106 
107 	/*
108 	 * We are rounding up the start address of usable memory:
109 	 */
110 	curr_pfn = PFN_UP(__MEMORY_START);
111 
112 	/*
113 	 * ... and at the end of the usable range downwards:
114 	 */
115 	last_pfn = PFN_DOWN(__pa(memory_end));
116 
117 	if (last_pfn > max_low_pfn)
118 		last_pfn = max_low_pfn;
119 
120 	pages = last_pfn - curr_pfn;
121 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
122 }
123 
124 void __init setup_bootmem_allocator(unsigned long free_pfn)
125 {
126 	unsigned long bootmap_size;
127 
128 	/*
129 	 * Find a proper area for the bootmem bitmap. After this
130 	 * bootstrap step all allocations (until the page allocator
131 	 * is intact) must be done via bootmem_alloc().
132 	 */
133 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
134 					 min_low_pfn, max_low_pfn);
135 
136 	add_active_range(0, min_low_pfn, max_low_pfn);
137 	register_bootmem_low_pages();
138 
139 	node_set_online(0);
140 
141 	/*
142 	 * Reserve the kernel text and
143 	 * Reserve the bootmem bitmap. We do this in two steps (first step
144 	 * was init_bootmem()), because this catches the (definitely buggy)
145 	 * case of us accidentally initializing the bootmem allocator with
146 	 * an invalid RAM area.
147 	 */
148 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
149 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
150 
151 	/*
152 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
153 	 * enabling clean reboots, SMP operation, laptop functions.
154 	 */
155 	reserve_bootmem(__MEMORY_START, PAGE_SIZE);
156 
157 	sparse_memory_present_with_active_regions(0);
158 
159 #ifdef CONFIG_BLK_DEV_INITRD
160 	ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
161 	if (&__rd_start != &__rd_end) {
162 		LOADER_TYPE = 1;
163 		INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
164 					__MEMORY_START;
165 		INITRD_SIZE = (unsigned long)&__rd_end -
166 			      (unsigned long)&__rd_start;
167 	}
168 
169 	if (LOADER_TYPE && INITRD_START) {
170 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
171 			reserve_bootmem(INITRD_START + __MEMORY_START,
172 					INITRD_SIZE);
173 			initrd_start = INITRD_START + PAGE_OFFSET +
174 					__MEMORY_START;
175 			initrd_end = initrd_start + INITRD_SIZE;
176 		} else {
177 			printk("initrd extends beyond end of memory "
178 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
179 				    INITRD_START + INITRD_SIZE,
180 				    max_low_pfn << PAGE_SHIFT);
181 			initrd_start = 0;
182 		}
183 	}
184 #endif
185 #ifdef CONFIG_KEXEC
186 	if (crashk_res.start != crashk_res.end)
187 		reserve_bootmem(crashk_res.start,
188 			crashk_res.end - crashk_res.start + 1);
189 #endif
190 }
191 
192 #ifndef CONFIG_NEED_MULTIPLE_NODES
193 static void __init setup_memory(void)
194 {
195 	unsigned long start_pfn;
196 
197 	/*
198 	 * Partially used pages are not usable - thus
199 	 * we are rounding upwards:
200 	 */
201 	start_pfn = PFN_UP(__pa(_end));
202 	setup_bootmem_allocator(start_pfn);
203 }
204 #else
205 extern void __init setup_memory(void);
206 #endif
207 
208 void __init setup_arch(char **cmdline_p)
209 {
210 	enable_mmu();
211 
212 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
213 
214 #ifdef CONFIG_BLK_DEV_RAM
215 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
216 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
217 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
218 #endif
219 
220 	if (!MOUNT_ROOT_RDONLY)
221 		root_mountflags &= ~MS_RDONLY;
222 	init_mm.start_code = (unsigned long) _text;
223 	init_mm.end_code = (unsigned long) _etext;
224 	init_mm.end_data = (unsigned long) _edata;
225 	init_mm.brk = (unsigned long) _end;
226 
227 	code_resource.start = virt_to_phys(_text);
228 	code_resource.end = virt_to_phys(_etext)-1;
229 	data_resource.start = virt_to_phys(_etext);
230 	data_resource.end = virt_to_phys(_edata)-1;
231 
232 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
233 	memory_end = memory_start + __MEMORY_SIZE;
234 
235 #ifdef CONFIG_CMDLINE_BOOL
236 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
237 #else
238 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
239 #endif
240 
241 	/* Save unparsed command line copy for /proc/cmdline */
242 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
243 	*cmdline_p = command_line;
244 
245 	parse_early_param();
246 
247 	sh_mv_setup();
248 
249 	/*
250 	 * Find the highest page frame number we have available
251 	 */
252 	max_pfn = PFN_DOWN(__pa(memory_end));
253 
254 	/*
255 	 * Determine low and high memory ranges:
256 	 */
257 	max_low_pfn = max_pfn;
258 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
259 
260 	nodes_clear(node_online_map);
261 
262 	/* Setup bootmem with available RAM */
263 	setup_memory();
264 	sparse_init();
265 
266 #ifdef CONFIG_DUMMY_CONSOLE
267 	conswitchp = &dummy_con;
268 #endif
269 
270 	/* Perform the machine specific initialisation */
271 	if (likely(sh_mv.mv_setup))
272 		sh_mv.mv_setup(cmdline_p);
273 
274 	paging_init();
275 }
276 
277 static const char *cpu_name[] = {
278 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
279 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
280 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
281 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
282 	[CPU_SH7712]	= "SH7712",
283 	[CPU_SH7729]	= "SH7729",	[CPU_SH7750]	= "SH7750",
284 	[CPU_SH7750S]	= "SH7750S",	[CPU_SH7750R]	= "SH7750R",
285 	[CPU_SH7751]	= "SH7751",	[CPU_SH7751R]	= "SH7751R",
286 	[CPU_SH7760]	= "SH7760",
287 	[CPU_ST40RA]	= "ST40RA",	[CPU_ST40GX1]	= "ST40GX1",
288 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
289 	[CPU_SH7770]	= "SH7770",	[CPU_SH7780]	= "SH7780",
290 	[CPU_SH7781]	= "SH7781",	[CPU_SH7343]	= "SH7343",
291 	[CPU_SH7785]	= "SH7785",	[CPU_SH7722]	= "SH7722",
292 	[CPU_SHX3]	= "SH-X3",	[CPU_SH_NONE]	= "Unknown"
293 };
294 
295 const char *get_cpu_subtype(struct sh_cpuinfo *c)
296 {
297 	return cpu_name[c->type];
298 }
299 
300 #ifdef CONFIG_PROC_FS
301 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
302 static const char *cpu_flags[] = {
303 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
304 	"ptea", "llsc", "l2", "op32", NULL
305 };
306 
307 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
308 {
309 	unsigned long i;
310 
311 	seq_printf(m, "cpu flags\t:");
312 
313 	if (!c->flags) {
314 		seq_printf(m, " %s\n", cpu_flags[0]);
315 		return;
316 	}
317 
318 	for (i = 0; cpu_flags[i]; i++)
319 		if ((c->flags & (1 << i)))
320 			seq_printf(m, " %s", cpu_flags[i+1]);
321 
322 	seq_printf(m, "\n");
323 }
324 
325 static void show_cacheinfo(struct seq_file *m, const char *type,
326 			   struct cache_info info)
327 {
328 	unsigned int cache_size;
329 
330 	cache_size = info.ways * info.sets * info.linesz;
331 
332 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
333 		   type, cache_size >> 10, info.ways);
334 }
335 
336 /*
337  *	Get CPU information for use by the procfs.
338  */
339 static int show_cpuinfo(struct seq_file *m, void *v)
340 {
341 	struct sh_cpuinfo *c = v;
342 	unsigned int cpu = c - cpu_data;
343 
344 	if (!cpu_online(cpu))
345 		return 0;
346 
347 	if (cpu == 0)
348 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
349 
350 	seq_printf(m, "processor\t: %d\n", cpu);
351 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
352 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
353 
354 	show_cpuflags(m, c);
355 
356 	seq_printf(m, "cache type\t: ");
357 
358 	/*
359 	 * Check for what type of cache we have, we support both the
360 	 * unified cache on the SH-2 and SH-3, as well as the harvard
361 	 * style cache on the SH-4.
362 	 */
363 	if (c->icache.flags & SH_CACHE_COMBINED) {
364 		seq_printf(m, "unified\n");
365 		show_cacheinfo(m, "cache", c->icache);
366 	} else {
367 		seq_printf(m, "split (harvard)\n");
368 		show_cacheinfo(m, "icache", c->icache);
369 		show_cacheinfo(m, "dcache", c->dcache);
370 	}
371 
372 	/* Optional secondary cache */
373 	if (c->flags & CPU_HAS_L2_CACHE)
374 		show_cacheinfo(m, "scache", c->scache);
375 
376 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
377 		     c->loops_per_jiffy/(500000/HZ),
378 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
379 
380 	return 0;
381 }
382 
383 static void *c_start(struct seq_file *m, loff_t *pos)
384 {
385 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
386 }
387 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
388 {
389 	++*pos;
390 	return c_start(m, pos);
391 }
392 static void c_stop(struct seq_file *m, void *v)
393 {
394 }
395 struct seq_operations cpuinfo_op = {
396 	.start	= c_start,
397 	.next	= c_next,
398 	.stop	= c_stop,
399 	.show	= show_cpuinfo,
400 };
401 #endif /* CONFIG_PROC_FS */
402