1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/debugfs.h> 28 #include <linux/crash_dump.h> 29 #include <linux/mmzone.h> 30 #include <linux/clk.h> 31 #include <linux/delay.h> 32 #include <asm/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/page.h> 35 #include <asm/elf.h> 36 #include <asm/sections.h> 37 #include <asm/irq.h> 38 #include <asm/setup.h> 39 #include <asm/clock.h> 40 #include <asm/mmu_context.h> 41 42 /* 43 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 44 * This value will be used at the very early stage of serial setup. 45 * The bigger value means no problem. 46 */ 47 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 48 [0] = { 49 .type = CPU_SH_NONE, 50 .loops_per_jiffy = 10000000, 51 }, 52 }; 53 EXPORT_SYMBOL(cpu_data); 54 55 /* 56 * The machine vector. First entry in .machvec.init, or clobbered by 57 * sh_mv= on the command line, prior to .machvec.init teardown. 58 */ 59 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 60 EXPORT_SYMBOL(sh_mv); 61 62 #ifdef CONFIG_VT 63 struct screen_info screen_info; 64 #endif 65 66 extern int root_mountflags; 67 68 #define RAMDISK_IMAGE_START_MASK 0x07FF 69 #define RAMDISK_PROMPT_FLAG 0x8000 70 #define RAMDISK_LOAD_FLAG 0x4000 71 72 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 73 74 static struct resource code_resource = { 75 .name = "Kernel code", 76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 77 }; 78 79 static struct resource data_resource = { 80 .name = "Kernel data", 81 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 82 }; 83 84 static struct resource bss_resource = { 85 .name = "Kernel bss", 86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 87 }; 88 89 unsigned long memory_start; 90 EXPORT_SYMBOL(memory_start); 91 unsigned long memory_end = 0; 92 EXPORT_SYMBOL(memory_end); 93 94 static struct resource mem_resources[MAX_NUMNODES]; 95 96 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 97 98 static int __init early_parse_mem(char *p) 99 { 100 unsigned long size; 101 102 memory_start = (unsigned long)__va(__MEMORY_START); 103 size = memparse(p, &p); 104 105 if (size > __MEMORY_SIZE) { 106 printk(KERN_ERR 107 "Using mem= to increase the size of kernel memory " 108 "is not allowed.\n" 109 " Recompile the kernel with the correct value for " 110 "CONFIG_MEMORY_SIZE.\n"); 111 return 0; 112 } 113 114 memory_end = memory_start + size; 115 116 return 0; 117 } 118 early_param("mem", early_parse_mem); 119 120 /* 121 * Register fully available low RAM pages with the bootmem allocator. 122 */ 123 static void __init register_bootmem_low_pages(void) 124 { 125 unsigned long curr_pfn, last_pfn, pages; 126 127 /* 128 * We are rounding up the start address of usable memory: 129 */ 130 curr_pfn = PFN_UP(__MEMORY_START); 131 132 /* 133 * ... and at the end of the usable range downwards: 134 */ 135 last_pfn = PFN_DOWN(__pa(memory_end)); 136 137 if (last_pfn > max_low_pfn) 138 last_pfn = max_low_pfn; 139 140 pages = last_pfn - curr_pfn; 141 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 142 } 143 144 #ifdef CONFIG_KEXEC 145 static void __init reserve_crashkernel(void) 146 { 147 unsigned long long free_mem; 148 unsigned long long crash_size, crash_base; 149 void *vp; 150 int ret; 151 152 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 153 154 ret = parse_crashkernel(boot_command_line, free_mem, 155 &crash_size, &crash_base); 156 if (ret == 0 && crash_size) { 157 if (crash_base <= 0) { 158 vp = alloc_bootmem_nopanic(crash_size); 159 if (!vp) { 160 printk(KERN_INFO "crashkernel allocation " 161 "failed\n"); 162 return; 163 } 164 crash_base = __pa(vp); 165 } else if (reserve_bootmem(crash_base, crash_size, 166 BOOTMEM_EXCLUSIVE) < 0) { 167 printk(KERN_INFO "crashkernel reservation failed - " 168 "memory is in use\n"); 169 return; 170 } 171 172 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 173 "for crashkernel (System RAM: %ldMB)\n", 174 (unsigned long)(crash_size >> 20), 175 (unsigned long)(crash_base >> 20), 176 (unsigned long)(free_mem >> 20)); 177 crashk_res.start = crash_base; 178 crashk_res.end = crash_base + crash_size - 1; 179 insert_resource(&iomem_resource, &crashk_res); 180 } 181 } 182 #else 183 static inline void __init reserve_crashkernel(void) 184 {} 185 #endif 186 187 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY 188 void __cpuinit calibrate_delay(void) 189 { 190 struct clk *clk = clk_get(NULL, "cpu_clk"); 191 192 if (IS_ERR(clk)) 193 panic("Need a sane CPU clock definition!"); 194 195 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; 196 197 printk(KERN_INFO "Calibrating delay loop (skipped)... " 198 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", 199 loops_per_jiffy/(500000/HZ), 200 (loops_per_jiffy/(5000/HZ)) % 100, 201 loops_per_jiffy); 202 } 203 #endif 204 205 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 206 unsigned long end_pfn) 207 { 208 struct resource *res = &mem_resources[nid]; 209 210 WARN_ON(res->name); /* max one active range per node for now */ 211 212 res->name = "System RAM"; 213 res->start = start_pfn << PAGE_SHIFT; 214 res->end = (end_pfn << PAGE_SHIFT) - 1; 215 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 216 if (request_resource(&iomem_resource, res)) { 217 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 218 start_pfn, end_pfn); 219 return; 220 } 221 222 /* 223 * We don't know which RAM region contains kernel data, 224 * so we try it repeatedly and let the resource manager 225 * test it. 226 */ 227 request_resource(res, &code_resource); 228 request_resource(res, &data_resource); 229 request_resource(res, &bss_resource); 230 231 add_active_range(nid, start_pfn, end_pfn); 232 } 233 234 void __init setup_bootmem_allocator(unsigned long free_pfn) 235 { 236 unsigned long bootmap_size; 237 238 /* 239 * Find a proper area for the bootmem bitmap. After this 240 * bootstrap step all allocations (until the page allocator 241 * is intact) must be done via bootmem_alloc(). 242 */ 243 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 244 min_low_pfn, max_low_pfn); 245 246 __add_active_range(0, min_low_pfn, max_low_pfn); 247 register_bootmem_low_pages(); 248 249 node_set_online(0); 250 251 /* 252 * Reserve the kernel text and 253 * Reserve the bootmem bitmap. We do this in two steps (first step 254 * was init_bootmem()), because this catches the (definitely buggy) 255 * case of us accidentally initializing the bootmem allocator with 256 * an invalid RAM area. 257 */ 258 reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, 259 (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) - 260 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET), 261 BOOTMEM_DEFAULT); 262 263 /* 264 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET. 265 */ 266 if (CONFIG_ZERO_PAGE_OFFSET != 0) 267 reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET, 268 BOOTMEM_DEFAULT); 269 270 sparse_memory_present_with_active_regions(0); 271 272 #ifdef CONFIG_BLK_DEV_INITRD 273 ROOT_DEV = Root_RAM0; 274 275 if (LOADER_TYPE && INITRD_START) { 276 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START; 277 278 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) { 279 reserve_bootmem(initrd_start_phys, INITRD_SIZE, 280 BOOTMEM_DEFAULT); 281 initrd_start = (unsigned long)__va(initrd_start_phys); 282 initrd_end = initrd_start + INITRD_SIZE; 283 } else { 284 printk("initrd extends beyond end of memory " 285 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 286 initrd_start_phys + INITRD_SIZE, 287 (unsigned long)PFN_PHYS(max_low_pfn)); 288 initrd_start = 0; 289 } 290 } 291 #endif 292 293 reserve_crashkernel(); 294 } 295 296 #ifndef CONFIG_NEED_MULTIPLE_NODES 297 static void __init setup_memory(void) 298 { 299 unsigned long start_pfn; 300 301 /* 302 * Partially used pages are not usable - thus 303 * we are rounding upwards: 304 */ 305 start_pfn = PFN_UP(__pa(_end)); 306 setup_bootmem_allocator(start_pfn); 307 } 308 #else 309 extern void __init setup_memory(void); 310 #endif 311 312 /* 313 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by 314 * is_kdump_kernel() to determine if we are booting after a panic. Hence 315 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. 316 */ 317 #ifdef CONFIG_CRASH_DUMP 318 /* elfcorehdr= specifies the location of elf core header 319 * stored by the crashed kernel. 320 */ 321 static int __init parse_elfcorehdr(char *arg) 322 { 323 if (!arg) 324 return -EINVAL; 325 elfcorehdr_addr = memparse(arg, &arg); 326 return 0; 327 } 328 early_param("elfcorehdr", parse_elfcorehdr); 329 #endif 330 331 void __init setup_arch(char **cmdline_p) 332 { 333 enable_mmu(); 334 335 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 336 337 printk(KERN_NOTICE "Boot params:\n" 338 "... MOUNT_ROOT_RDONLY - %08lx\n" 339 "... RAMDISK_FLAGS - %08lx\n" 340 "... ORIG_ROOT_DEV - %08lx\n" 341 "... LOADER_TYPE - %08lx\n" 342 "... INITRD_START - %08lx\n" 343 "... INITRD_SIZE - %08lx\n", 344 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 345 ORIG_ROOT_DEV, LOADER_TYPE, 346 INITRD_START, INITRD_SIZE); 347 348 #ifdef CONFIG_BLK_DEV_RAM 349 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 350 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 351 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 352 #endif 353 354 if (!MOUNT_ROOT_RDONLY) 355 root_mountflags &= ~MS_RDONLY; 356 init_mm.start_code = (unsigned long) _text; 357 init_mm.end_code = (unsigned long) _etext; 358 init_mm.end_data = (unsigned long) _edata; 359 init_mm.brk = (unsigned long) _end; 360 361 code_resource.start = virt_to_phys(_text); 362 code_resource.end = virt_to_phys(_etext)-1; 363 data_resource.start = virt_to_phys(_etext); 364 data_resource.end = virt_to_phys(_edata)-1; 365 bss_resource.start = virt_to_phys(__bss_start); 366 bss_resource.end = virt_to_phys(_ebss)-1; 367 368 memory_start = (unsigned long)__va(__MEMORY_START); 369 if (!memory_end) 370 memory_end = memory_start + __MEMORY_SIZE; 371 372 #ifdef CONFIG_CMDLINE_BOOL 373 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 374 #else 375 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 376 #endif 377 378 /* Save unparsed command line copy for /proc/cmdline */ 379 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 380 *cmdline_p = command_line; 381 382 parse_early_param(); 383 384 sh_mv_setup(); 385 386 /* 387 * Find the highest page frame number we have available 388 */ 389 max_pfn = PFN_DOWN(__pa(memory_end)); 390 391 /* 392 * Determine low and high memory ranges: 393 */ 394 max_low_pfn = max_pfn; 395 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 396 397 nodes_clear(node_online_map); 398 399 /* Setup bootmem with available RAM */ 400 setup_memory(); 401 sparse_init(); 402 403 #ifdef CONFIG_DUMMY_CONSOLE 404 conswitchp = &dummy_con; 405 #endif 406 407 /* Perform the machine specific initialisation */ 408 if (likely(sh_mv.mv_setup)) 409 sh_mv.mv_setup(cmdline_p); 410 411 paging_init(); 412 413 #ifdef CONFIG_SMP 414 plat_smp_setup(); 415 #endif 416 } 417 418 static const char *cpu_name[] = { 419 [CPU_SH7201] = "SH7201", 420 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 421 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 422 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 423 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 424 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 425 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 426 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 427 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 428 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 429 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 430 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 431 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 432 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 433 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 434 [CPU_SH7786] = "SH7786", 435 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 436 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 437 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 438 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown" 439 }; 440 441 const char *get_cpu_subtype(struct sh_cpuinfo *c) 442 { 443 return cpu_name[c->type]; 444 } 445 EXPORT_SYMBOL(get_cpu_subtype); 446 447 #ifdef CONFIG_PROC_FS 448 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 449 static const char *cpu_flags[] = { 450 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 451 "ptea", "llsc", "l2", "op32", "pteaex", NULL 452 }; 453 454 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 455 { 456 unsigned long i; 457 458 seq_printf(m, "cpu flags\t:"); 459 460 if (!c->flags) { 461 seq_printf(m, " %s\n", cpu_flags[0]); 462 return; 463 } 464 465 for (i = 0; cpu_flags[i]; i++) 466 if ((c->flags & (1 << i))) 467 seq_printf(m, " %s", cpu_flags[i+1]); 468 469 seq_printf(m, "\n"); 470 } 471 472 static void show_cacheinfo(struct seq_file *m, const char *type, 473 struct cache_info info) 474 { 475 unsigned int cache_size; 476 477 cache_size = info.ways * info.sets * info.linesz; 478 479 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 480 type, cache_size >> 10, info.ways); 481 } 482 483 /* 484 * Get CPU information for use by the procfs. 485 */ 486 static int show_cpuinfo(struct seq_file *m, void *v) 487 { 488 struct sh_cpuinfo *c = v; 489 unsigned int cpu = c - cpu_data; 490 491 if (!cpu_online(cpu)) 492 return 0; 493 494 if (cpu == 0) 495 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 496 497 seq_printf(m, "processor\t: %d\n", cpu); 498 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 499 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 500 if (c->cut_major == -1) 501 seq_printf(m, "cut\t\t: unknown\n"); 502 else if (c->cut_minor == -1) 503 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); 504 else 505 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); 506 507 show_cpuflags(m, c); 508 509 seq_printf(m, "cache type\t: "); 510 511 /* 512 * Check for what type of cache we have, we support both the 513 * unified cache on the SH-2 and SH-3, as well as the harvard 514 * style cache on the SH-4. 515 */ 516 if (c->icache.flags & SH_CACHE_COMBINED) { 517 seq_printf(m, "unified\n"); 518 show_cacheinfo(m, "cache", c->icache); 519 } else { 520 seq_printf(m, "split (harvard)\n"); 521 show_cacheinfo(m, "icache", c->icache); 522 show_cacheinfo(m, "dcache", c->dcache); 523 } 524 525 /* Optional secondary cache */ 526 if (c->flags & CPU_HAS_L2_CACHE) 527 show_cacheinfo(m, "scache", c->scache); 528 529 seq_printf(m, "bogomips\t: %lu.%02lu\n", 530 c->loops_per_jiffy/(500000/HZ), 531 (c->loops_per_jiffy/(5000/HZ)) % 100); 532 533 return 0; 534 } 535 536 static void *c_start(struct seq_file *m, loff_t *pos) 537 { 538 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 539 } 540 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 541 { 542 ++*pos; 543 return c_start(m, pos); 544 } 545 static void c_stop(struct seq_file *m, void *v) 546 { 547 } 548 const struct seq_operations cpuinfo_op = { 549 .start = c_start, 550 .next = c_next, 551 .stop = c_stop, 552 .show = show_cpuinfo, 553 }; 554 #endif /* CONFIG_PROC_FS */ 555 556 struct dentry *sh_debugfs_root; 557 558 static int __init sh_debugfs_init(void) 559 { 560 sh_debugfs_root = debugfs_create_dir("sh", NULL); 561 if (!sh_debugfs_root) 562 return -ENOMEM; 563 if (IS_ERR(sh_debugfs_root)) 564 return PTR_ERR(sh_debugfs_root); 565 566 return 0; 567 } 568 arch_initcall(sh_debugfs_init); 569