xref: /openbmc/linux/arch/sh/kernel/setup.c (revision b04b4f78)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <asm/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/page.h>
35 #include <asm/elf.h>
36 #include <asm/sections.h>
37 #include <asm/irq.h>
38 #include <asm/setup.h>
39 #include <asm/clock.h>
40 #include <asm/mmu_context.h>
41 
42 /*
43  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
44  * This value will be used at the very early stage of serial setup.
45  * The bigger value means no problem.
46  */
47 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
48 	[0] = {
49 		.type			= CPU_SH_NONE,
50 		.loops_per_jiffy	= 10000000,
51 	},
52 };
53 EXPORT_SYMBOL(cpu_data);
54 
55 /*
56  * The machine vector. First entry in .machvec.init, or clobbered by
57  * sh_mv= on the command line, prior to .machvec.init teardown.
58  */
59 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
60 EXPORT_SYMBOL(sh_mv);
61 
62 #ifdef CONFIG_VT
63 struct screen_info screen_info;
64 #endif
65 
66 extern int root_mountflags;
67 
68 #define RAMDISK_IMAGE_START_MASK	0x07FF
69 #define RAMDISK_PROMPT_FLAG		0x8000
70 #define RAMDISK_LOAD_FLAG		0x4000
71 
72 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
73 
74 static struct resource code_resource = {
75 	.name = "Kernel code",
76 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
77 };
78 
79 static struct resource data_resource = {
80 	.name = "Kernel data",
81 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
82 };
83 
84 static struct resource bss_resource = {
85 	.name	= "Kernel bss",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
87 };
88 
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91 unsigned long memory_end = 0;
92 EXPORT_SYMBOL(memory_end);
93 
94 static struct resource mem_resources[MAX_NUMNODES];
95 
96 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
97 
98 static int __init early_parse_mem(char *p)
99 {
100 	unsigned long size;
101 
102 	memory_start = (unsigned long)__va(__MEMORY_START);
103 	size = memparse(p, &p);
104 
105 	if (size > __MEMORY_SIZE) {
106 		printk(KERN_ERR
107 			"Using mem= to increase the size of kernel memory "
108 			"is not allowed.\n"
109 			"  Recompile the kernel with the correct value for "
110 			"CONFIG_MEMORY_SIZE.\n");
111 		return 0;
112 	}
113 
114 	memory_end = memory_start + size;
115 
116 	return 0;
117 }
118 early_param("mem", early_parse_mem);
119 
120 /*
121  * Register fully available low RAM pages with the bootmem allocator.
122  */
123 static void __init register_bootmem_low_pages(void)
124 {
125 	unsigned long curr_pfn, last_pfn, pages;
126 
127 	/*
128 	 * We are rounding up the start address of usable memory:
129 	 */
130 	curr_pfn = PFN_UP(__MEMORY_START);
131 
132 	/*
133 	 * ... and at the end of the usable range downwards:
134 	 */
135 	last_pfn = PFN_DOWN(__pa(memory_end));
136 
137 	if (last_pfn > max_low_pfn)
138 		last_pfn = max_low_pfn;
139 
140 	pages = last_pfn - curr_pfn;
141 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
142 }
143 
144 #ifdef CONFIG_KEXEC
145 static void __init reserve_crashkernel(void)
146 {
147 	unsigned long long free_mem;
148 	unsigned long long crash_size, crash_base;
149 	void *vp;
150 	int ret;
151 
152 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
153 
154 	ret = parse_crashkernel(boot_command_line, free_mem,
155 			&crash_size, &crash_base);
156 	if (ret == 0 && crash_size) {
157 		if (crash_base <= 0) {
158 			vp = alloc_bootmem_nopanic(crash_size);
159 			if (!vp) {
160 				printk(KERN_INFO "crashkernel allocation "
161 				       "failed\n");
162 				return;
163 			}
164 			crash_base = __pa(vp);
165 		} else if (reserve_bootmem(crash_base, crash_size,
166 					BOOTMEM_EXCLUSIVE) < 0) {
167 			printk(KERN_INFO "crashkernel reservation failed - "
168 					"memory is in use\n");
169 			return;
170 		}
171 
172 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
173 				"for crashkernel (System RAM: %ldMB)\n",
174 				(unsigned long)(crash_size >> 20),
175 				(unsigned long)(crash_base >> 20),
176 				(unsigned long)(free_mem >> 20));
177 		crashk_res.start = crash_base;
178 		crashk_res.end   = crash_base + crash_size - 1;
179 		insert_resource(&iomem_resource, &crashk_res);
180 	}
181 }
182 #else
183 static inline void __init reserve_crashkernel(void)
184 {}
185 #endif
186 
187 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
188 void __cpuinit calibrate_delay(void)
189 {
190 	struct clk *clk = clk_get(NULL, "cpu_clk");
191 
192 	if (IS_ERR(clk))
193 		panic("Need a sane CPU clock definition!");
194 
195 	loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
196 
197 	printk(KERN_INFO "Calibrating delay loop (skipped)... "
198 			 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
199 			 loops_per_jiffy/(500000/HZ),
200 			 (loops_per_jiffy/(5000/HZ)) % 100,
201 			 loops_per_jiffy);
202 }
203 #endif
204 
205 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
206 						unsigned long end_pfn)
207 {
208 	struct resource *res = &mem_resources[nid];
209 
210 	WARN_ON(res->name); /* max one active range per node for now */
211 
212 	res->name = "System RAM";
213 	res->start = start_pfn << PAGE_SHIFT;
214 	res->end = (end_pfn << PAGE_SHIFT) - 1;
215 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
216 	if (request_resource(&iomem_resource, res)) {
217 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
218 		       start_pfn, end_pfn);
219 		return;
220 	}
221 
222 	/*
223 	 *  We don't know which RAM region contains kernel data,
224 	 *  so we try it repeatedly and let the resource manager
225 	 *  test it.
226 	 */
227 	request_resource(res, &code_resource);
228 	request_resource(res, &data_resource);
229 	request_resource(res, &bss_resource);
230 
231 	add_active_range(nid, start_pfn, end_pfn);
232 }
233 
234 void __init setup_bootmem_allocator(unsigned long free_pfn)
235 {
236 	unsigned long bootmap_size;
237 
238 	/*
239 	 * Find a proper area for the bootmem bitmap. After this
240 	 * bootstrap step all allocations (until the page allocator
241 	 * is intact) must be done via bootmem_alloc().
242 	 */
243 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
244 					 min_low_pfn, max_low_pfn);
245 
246 	__add_active_range(0, min_low_pfn, max_low_pfn);
247 	register_bootmem_low_pages();
248 
249 	node_set_online(0);
250 
251 	/*
252 	 * Reserve the kernel text and
253 	 * Reserve the bootmem bitmap. We do this in two steps (first step
254 	 * was init_bootmem()), because this catches the (definitely buggy)
255 	 * case of us accidentally initializing the bootmem allocator with
256 	 * an invalid RAM area.
257 	 */
258 	reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
259 			(PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
260 			(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
261 			BOOTMEM_DEFAULT);
262 
263 	/*
264 	 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
265 	 */
266 	if (CONFIG_ZERO_PAGE_OFFSET != 0)
267 		reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
268 				BOOTMEM_DEFAULT);
269 
270 	sparse_memory_present_with_active_regions(0);
271 
272 #ifdef CONFIG_BLK_DEV_INITRD
273 	ROOT_DEV = Root_RAM0;
274 
275 	if (LOADER_TYPE && INITRD_START) {
276 		unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
277 
278 		if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
279 			reserve_bootmem(initrd_start_phys, INITRD_SIZE,
280 					BOOTMEM_DEFAULT);
281 			initrd_start = (unsigned long)__va(initrd_start_phys);
282 			initrd_end = initrd_start + INITRD_SIZE;
283 		} else {
284 			printk("initrd extends beyond end of memory "
285 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
286 			       initrd_start_phys + INITRD_SIZE,
287 			       (unsigned long)PFN_PHYS(max_low_pfn));
288 			initrd_start = 0;
289 		}
290 	}
291 #endif
292 
293 	reserve_crashkernel();
294 }
295 
296 #ifndef CONFIG_NEED_MULTIPLE_NODES
297 static void __init setup_memory(void)
298 {
299 	unsigned long start_pfn;
300 
301 	/*
302 	 * Partially used pages are not usable - thus
303 	 * we are rounding upwards:
304 	 */
305 	start_pfn = PFN_UP(__pa(_end));
306 	setup_bootmem_allocator(start_pfn);
307 }
308 #else
309 extern void __init setup_memory(void);
310 #endif
311 
312 /*
313  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
314  * is_kdump_kernel() to determine if we are booting after a panic. Hence
315  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
316  */
317 #ifdef CONFIG_CRASH_DUMP
318 /* elfcorehdr= specifies the location of elf core header
319  * stored by the crashed kernel.
320  */
321 static int __init parse_elfcorehdr(char *arg)
322 {
323 	if (!arg)
324 		return -EINVAL;
325 	elfcorehdr_addr = memparse(arg, &arg);
326 	return 0;
327 }
328 early_param("elfcorehdr", parse_elfcorehdr);
329 #endif
330 
331 void __init setup_arch(char **cmdline_p)
332 {
333 	enable_mmu();
334 
335 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
336 
337 	printk(KERN_NOTICE "Boot params:\n"
338 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
339 			   "... RAMDISK_FLAGS     - %08lx\n"
340 			   "... ORIG_ROOT_DEV     - %08lx\n"
341 			   "... LOADER_TYPE       - %08lx\n"
342 			   "... INITRD_START      - %08lx\n"
343 			   "... INITRD_SIZE       - %08lx\n",
344 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
345 			   ORIG_ROOT_DEV, LOADER_TYPE,
346 			   INITRD_START, INITRD_SIZE);
347 
348 #ifdef CONFIG_BLK_DEV_RAM
349 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
350 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
351 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
352 #endif
353 
354 	if (!MOUNT_ROOT_RDONLY)
355 		root_mountflags &= ~MS_RDONLY;
356 	init_mm.start_code = (unsigned long) _text;
357 	init_mm.end_code = (unsigned long) _etext;
358 	init_mm.end_data = (unsigned long) _edata;
359 	init_mm.brk = (unsigned long) _end;
360 
361 	code_resource.start = virt_to_phys(_text);
362 	code_resource.end = virt_to_phys(_etext)-1;
363 	data_resource.start = virt_to_phys(_etext);
364 	data_resource.end = virt_to_phys(_edata)-1;
365 	bss_resource.start = virt_to_phys(__bss_start);
366 	bss_resource.end = virt_to_phys(_ebss)-1;
367 
368 	memory_start = (unsigned long)__va(__MEMORY_START);
369 	if (!memory_end)
370 		memory_end = memory_start + __MEMORY_SIZE;
371 
372 #ifdef CONFIG_CMDLINE_BOOL
373 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
374 #else
375 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
376 #endif
377 
378 	/* Save unparsed command line copy for /proc/cmdline */
379 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
380 	*cmdline_p = command_line;
381 
382 	parse_early_param();
383 
384 	sh_mv_setup();
385 
386 	/*
387 	 * Find the highest page frame number we have available
388 	 */
389 	max_pfn = PFN_DOWN(__pa(memory_end));
390 
391 	/*
392 	 * Determine low and high memory ranges:
393 	 */
394 	max_low_pfn = max_pfn;
395 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
396 
397 	nodes_clear(node_online_map);
398 
399 	/* Setup bootmem with available RAM */
400 	setup_memory();
401 	sparse_init();
402 
403 #ifdef CONFIG_DUMMY_CONSOLE
404 	conswitchp = &dummy_con;
405 #endif
406 
407 	/* Perform the machine specific initialisation */
408 	if (likely(sh_mv.mv_setup))
409 		sh_mv.mv_setup(cmdline_p);
410 
411 	paging_init();
412 
413 #ifdef CONFIG_SMP
414 	plat_smp_setup();
415 #endif
416 }
417 
418 static const char *cpu_name[] = {
419 	[CPU_SH7201]	= "SH7201",
420 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
421 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
422 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
423 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
424 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
425 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
426 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
427 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
428 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
429 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
430 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
431 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
432 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
433 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
434 	[CPU_SH7786]	= "SH7786",
435 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
436 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
437 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
438 	[CPU_SH7366]	= "SH7366",	[CPU_SH_NONE]	= "Unknown"
439 };
440 
441 const char *get_cpu_subtype(struct sh_cpuinfo *c)
442 {
443 	return cpu_name[c->type];
444 }
445 EXPORT_SYMBOL(get_cpu_subtype);
446 
447 #ifdef CONFIG_PROC_FS
448 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
449 static const char *cpu_flags[] = {
450 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
451 	"ptea", "llsc", "l2", "op32", "pteaex", NULL
452 };
453 
454 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
455 {
456 	unsigned long i;
457 
458 	seq_printf(m, "cpu flags\t:");
459 
460 	if (!c->flags) {
461 		seq_printf(m, " %s\n", cpu_flags[0]);
462 		return;
463 	}
464 
465 	for (i = 0; cpu_flags[i]; i++)
466 		if ((c->flags & (1 << i)))
467 			seq_printf(m, " %s", cpu_flags[i+1]);
468 
469 	seq_printf(m, "\n");
470 }
471 
472 static void show_cacheinfo(struct seq_file *m, const char *type,
473 			   struct cache_info info)
474 {
475 	unsigned int cache_size;
476 
477 	cache_size = info.ways * info.sets * info.linesz;
478 
479 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
480 		   type, cache_size >> 10, info.ways);
481 }
482 
483 /*
484  *	Get CPU information for use by the procfs.
485  */
486 static int show_cpuinfo(struct seq_file *m, void *v)
487 {
488 	struct sh_cpuinfo *c = v;
489 	unsigned int cpu = c - cpu_data;
490 
491 	if (!cpu_online(cpu))
492 		return 0;
493 
494 	if (cpu == 0)
495 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
496 
497 	seq_printf(m, "processor\t: %d\n", cpu);
498 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
499 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
500 	if (c->cut_major == -1)
501 		seq_printf(m, "cut\t\t: unknown\n");
502 	else if (c->cut_minor == -1)
503 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
504 	else
505 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
506 
507 	show_cpuflags(m, c);
508 
509 	seq_printf(m, "cache type\t: ");
510 
511 	/*
512 	 * Check for what type of cache we have, we support both the
513 	 * unified cache on the SH-2 and SH-3, as well as the harvard
514 	 * style cache on the SH-4.
515 	 */
516 	if (c->icache.flags & SH_CACHE_COMBINED) {
517 		seq_printf(m, "unified\n");
518 		show_cacheinfo(m, "cache", c->icache);
519 	} else {
520 		seq_printf(m, "split (harvard)\n");
521 		show_cacheinfo(m, "icache", c->icache);
522 		show_cacheinfo(m, "dcache", c->dcache);
523 	}
524 
525 	/* Optional secondary cache */
526 	if (c->flags & CPU_HAS_L2_CACHE)
527 		show_cacheinfo(m, "scache", c->scache);
528 
529 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
530 		     c->loops_per_jiffy/(500000/HZ),
531 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
532 
533 	return 0;
534 }
535 
536 static void *c_start(struct seq_file *m, loff_t *pos)
537 {
538 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
539 }
540 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
541 {
542 	++*pos;
543 	return c_start(m, pos);
544 }
545 static void c_stop(struct seq_file *m, void *v)
546 {
547 }
548 const struct seq_operations cpuinfo_op = {
549 	.start	= c_start,
550 	.next	= c_next,
551 	.stop	= c_stop,
552 	.show	= show_cpuinfo,
553 };
554 #endif /* CONFIG_PROC_FS */
555 
556 struct dentry *sh_debugfs_root;
557 
558 static int __init sh_debugfs_init(void)
559 {
560 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
561 	if (!sh_debugfs_root)
562 		return -ENOMEM;
563 	if (IS_ERR(sh_debugfs_root))
564 		return PTR_ERR(sh_debugfs_root);
565 
566 	return 0;
567 }
568 arch_initcall(sh_debugfs_init);
569