1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/debugfs.h> 28 #include <linux/crash_dump.h> 29 #include <linux/mmzone.h> 30 #include <linux/clk.h> 31 #include <linux/delay.h> 32 #include <asm/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/page.h> 35 #include <asm/elf.h> 36 #include <asm/sections.h> 37 #include <asm/irq.h> 38 #include <asm/setup.h> 39 #include <asm/clock.h> 40 #include <asm/mmu_context.h> 41 42 /* 43 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 44 * This value will be used at the very early stage of serial setup. 45 * The bigger value means no problem. 46 */ 47 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 48 [0] = { 49 .type = CPU_SH_NONE, 50 .loops_per_jiffy = 10000000, 51 }, 52 }; 53 EXPORT_SYMBOL(cpu_data); 54 55 /* 56 * The machine vector. First entry in .machvec.init, or clobbered by 57 * sh_mv= on the command line, prior to .machvec.init teardown. 58 */ 59 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 60 EXPORT_SYMBOL(sh_mv); 61 62 #ifdef CONFIG_VT 63 struct screen_info screen_info; 64 #endif 65 66 extern int root_mountflags; 67 68 #define RAMDISK_IMAGE_START_MASK 0x07FF 69 #define RAMDISK_PROMPT_FLAG 0x8000 70 #define RAMDISK_LOAD_FLAG 0x4000 71 72 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 73 74 static struct resource code_resource = { 75 .name = "Kernel code", 76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 77 }; 78 79 static struct resource data_resource = { 80 .name = "Kernel data", 81 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 82 }; 83 84 static struct resource bss_resource = { 85 .name = "Kernel bss", 86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 87 }; 88 89 unsigned long memory_start; 90 EXPORT_SYMBOL(memory_start); 91 unsigned long memory_end = 0; 92 EXPORT_SYMBOL(memory_end); 93 94 static struct resource mem_resources[MAX_NUMNODES]; 95 96 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 97 98 static int __init early_parse_mem(char *p) 99 { 100 unsigned long size; 101 102 memory_start = (unsigned long)__va(__MEMORY_START); 103 size = memparse(p, &p); 104 105 if (size > __MEMORY_SIZE) { 106 static char msg[] __initdata = KERN_ERR 107 "Using mem= to increase the size of kernel memory " 108 "is not allowed.\n" 109 " Recompile the kernel with the correct value for " 110 "CONFIG_MEMORY_SIZE.\n"; 111 printk(msg); 112 return 0; 113 } 114 115 memory_end = memory_start + size; 116 117 return 0; 118 } 119 early_param("mem", early_parse_mem); 120 121 /* 122 * Register fully available low RAM pages with the bootmem allocator. 123 */ 124 static void __init register_bootmem_low_pages(void) 125 { 126 unsigned long curr_pfn, last_pfn, pages; 127 128 /* 129 * We are rounding up the start address of usable memory: 130 */ 131 curr_pfn = PFN_UP(__MEMORY_START); 132 133 /* 134 * ... and at the end of the usable range downwards: 135 */ 136 last_pfn = PFN_DOWN(__pa(memory_end)); 137 138 if (last_pfn > max_low_pfn) 139 last_pfn = max_low_pfn; 140 141 pages = last_pfn - curr_pfn; 142 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 143 } 144 145 #ifdef CONFIG_KEXEC 146 static void __init reserve_crashkernel(void) 147 { 148 unsigned long long free_mem; 149 unsigned long long crash_size, crash_base; 150 void *vp; 151 int ret; 152 153 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 154 155 ret = parse_crashkernel(boot_command_line, free_mem, 156 &crash_size, &crash_base); 157 if (ret == 0 && crash_size) { 158 if (crash_base <= 0) { 159 vp = alloc_bootmem_nopanic(crash_size); 160 if (!vp) { 161 printk(KERN_INFO "crashkernel allocation " 162 "failed\n"); 163 return; 164 } 165 crash_base = __pa(vp); 166 } else if (reserve_bootmem(crash_base, crash_size, 167 BOOTMEM_EXCLUSIVE) < 0) { 168 printk(KERN_INFO "crashkernel reservation failed - " 169 "memory is in use\n"); 170 return; 171 } 172 173 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 174 "for crashkernel (System RAM: %ldMB)\n", 175 (unsigned long)(crash_size >> 20), 176 (unsigned long)(crash_base >> 20), 177 (unsigned long)(free_mem >> 20)); 178 crashk_res.start = crash_base; 179 crashk_res.end = crash_base + crash_size - 1; 180 insert_resource(&iomem_resource, &crashk_res); 181 } 182 } 183 #else 184 static inline void __init reserve_crashkernel(void) 185 {} 186 #endif 187 188 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY 189 void __cpuinit calibrate_delay(void) 190 { 191 struct clk *clk = clk_get(NULL, "cpu_clk"); 192 193 if (IS_ERR(clk)) 194 panic("Need a sane CPU clock definition!"); 195 196 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; 197 198 printk(KERN_INFO "Calibrating delay loop (skipped)... " 199 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", 200 loops_per_jiffy/(500000/HZ), 201 (loops_per_jiffy/(5000/HZ)) % 100, 202 loops_per_jiffy); 203 } 204 #endif 205 206 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 207 unsigned long end_pfn) 208 { 209 struct resource *res = &mem_resources[nid]; 210 211 WARN_ON(res->name); /* max one active range per node for now */ 212 213 res->name = "System RAM"; 214 res->start = start_pfn << PAGE_SHIFT; 215 res->end = (end_pfn << PAGE_SHIFT) - 1; 216 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 217 if (request_resource(&iomem_resource, res)) { 218 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 219 start_pfn, end_pfn); 220 return; 221 } 222 223 /* 224 * We don't know which RAM region contains kernel data, 225 * so we try it repeatedly and let the resource manager 226 * test it. 227 */ 228 request_resource(res, &code_resource); 229 request_resource(res, &data_resource); 230 request_resource(res, &bss_resource); 231 232 add_active_range(nid, start_pfn, end_pfn); 233 } 234 235 void __init setup_bootmem_allocator(unsigned long free_pfn) 236 { 237 unsigned long bootmap_size; 238 239 /* 240 * Find a proper area for the bootmem bitmap. After this 241 * bootstrap step all allocations (until the page allocator 242 * is intact) must be done via bootmem_alloc(). 243 */ 244 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 245 min_low_pfn, max_low_pfn); 246 247 __add_active_range(0, min_low_pfn, max_low_pfn); 248 register_bootmem_low_pages(); 249 250 node_set_online(0); 251 252 /* 253 * Reserve the kernel text and 254 * Reserve the bootmem bitmap. We do this in two steps (first step 255 * was init_bootmem()), because this catches the (definitely buggy) 256 * case of us accidentally initializing the bootmem allocator with 257 * an invalid RAM area. 258 */ 259 reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, 260 (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) - 261 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET), 262 BOOTMEM_DEFAULT); 263 264 /* 265 * reserve physical page 0 - it's a special BIOS page on many boxes, 266 * enabling clean reboots, SMP operation, laptop functions. 267 */ 268 reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET, 269 BOOTMEM_DEFAULT); 270 271 sparse_memory_present_with_active_regions(0); 272 273 #ifdef CONFIG_BLK_DEV_INITRD 274 ROOT_DEV = Root_RAM0; 275 276 if (LOADER_TYPE && INITRD_START) { 277 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START; 278 279 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) { 280 reserve_bootmem(initrd_start_phys, INITRD_SIZE, 281 BOOTMEM_DEFAULT); 282 initrd_start = (unsigned long)__va(initrd_start_phys); 283 initrd_end = initrd_start + INITRD_SIZE; 284 } else { 285 printk("initrd extends beyond end of memory " 286 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 287 initrd_start_phys + INITRD_SIZE, 288 (unsigned long)PFN_PHYS(max_low_pfn)); 289 initrd_start = 0; 290 } 291 } 292 #endif 293 294 reserve_crashkernel(); 295 } 296 297 #ifndef CONFIG_NEED_MULTIPLE_NODES 298 static void __init setup_memory(void) 299 { 300 unsigned long start_pfn; 301 302 /* 303 * Partially used pages are not usable - thus 304 * we are rounding upwards: 305 */ 306 start_pfn = PFN_UP(__pa(_end)); 307 setup_bootmem_allocator(start_pfn); 308 } 309 #else 310 extern void __init setup_memory(void); 311 #endif 312 313 /* 314 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by 315 * is_kdump_kernel() to determine if we are booting after a panic. Hence 316 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. 317 */ 318 #ifdef CONFIG_CRASH_DUMP 319 /* elfcorehdr= specifies the location of elf core header 320 * stored by the crashed kernel. 321 */ 322 static int __init parse_elfcorehdr(char *arg) 323 { 324 if (!arg) 325 return -EINVAL; 326 elfcorehdr_addr = memparse(arg, &arg); 327 return 0; 328 } 329 early_param("elfcorehdr", parse_elfcorehdr); 330 #endif 331 332 void __init setup_arch(char **cmdline_p) 333 { 334 enable_mmu(); 335 336 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 337 338 printk(KERN_NOTICE "Boot params:\n" 339 "... MOUNT_ROOT_RDONLY - %08lx\n" 340 "... RAMDISK_FLAGS - %08lx\n" 341 "... ORIG_ROOT_DEV - %08lx\n" 342 "... LOADER_TYPE - %08lx\n" 343 "... INITRD_START - %08lx\n" 344 "... INITRD_SIZE - %08lx\n", 345 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 346 ORIG_ROOT_DEV, LOADER_TYPE, 347 INITRD_START, INITRD_SIZE); 348 349 #ifdef CONFIG_BLK_DEV_RAM 350 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 351 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 352 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 353 #endif 354 355 if (!MOUNT_ROOT_RDONLY) 356 root_mountflags &= ~MS_RDONLY; 357 init_mm.start_code = (unsigned long) _text; 358 init_mm.end_code = (unsigned long) _etext; 359 init_mm.end_data = (unsigned long) _edata; 360 init_mm.brk = (unsigned long) _end; 361 362 code_resource.start = virt_to_phys(_text); 363 code_resource.end = virt_to_phys(_etext)-1; 364 data_resource.start = virt_to_phys(_etext); 365 data_resource.end = virt_to_phys(_edata)-1; 366 bss_resource.start = virt_to_phys(__bss_start); 367 bss_resource.end = virt_to_phys(_ebss)-1; 368 369 memory_start = (unsigned long)__va(__MEMORY_START); 370 if (!memory_end) 371 memory_end = memory_start + __MEMORY_SIZE; 372 373 #ifdef CONFIG_CMDLINE_BOOL 374 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 375 #else 376 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 377 #endif 378 379 /* Save unparsed command line copy for /proc/cmdline */ 380 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 381 *cmdline_p = command_line; 382 383 parse_early_param(); 384 385 sh_mv_setup(); 386 387 /* 388 * Find the highest page frame number we have available 389 */ 390 max_pfn = PFN_DOWN(__pa(memory_end)); 391 392 /* 393 * Determine low and high memory ranges: 394 */ 395 max_low_pfn = max_pfn; 396 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 397 398 nodes_clear(node_online_map); 399 400 /* Setup bootmem with available RAM */ 401 setup_memory(); 402 sparse_init(); 403 404 #ifdef CONFIG_DUMMY_CONSOLE 405 conswitchp = &dummy_con; 406 #endif 407 408 /* Perform the machine specific initialisation */ 409 if (likely(sh_mv.mv_setup)) 410 sh_mv.mv_setup(cmdline_p); 411 412 paging_init(); 413 414 #ifdef CONFIG_SMP 415 plat_smp_setup(); 416 #endif 417 } 418 419 static const char *cpu_name[] = { 420 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 421 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 422 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 423 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 424 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 425 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 426 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 427 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 428 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 429 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 430 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 431 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 432 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 433 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 434 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 435 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 436 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 437 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown" 438 }; 439 440 const char *get_cpu_subtype(struct sh_cpuinfo *c) 441 { 442 return cpu_name[c->type]; 443 } 444 EXPORT_SYMBOL(get_cpu_subtype); 445 446 #ifdef CONFIG_PROC_FS 447 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 448 static const char *cpu_flags[] = { 449 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 450 "ptea", "llsc", "l2", "op32", NULL 451 }; 452 453 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 454 { 455 unsigned long i; 456 457 seq_printf(m, "cpu flags\t:"); 458 459 if (!c->flags) { 460 seq_printf(m, " %s\n", cpu_flags[0]); 461 return; 462 } 463 464 for (i = 0; cpu_flags[i]; i++) 465 if ((c->flags & (1 << i))) 466 seq_printf(m, " %s", cpu_flags[i+1]); 467 468 seq_printf(m, "\n"); 469 } 470 471 static void show_cacheinfo(struct seq_file *m, const char *type, 472 struct cache_info info) 473 { 474 unsigned int cache_size; 475 476 cache_size = info.ways * info.sets * info.linesz; 477 478 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 479 type, cache_size >> 10, info.ways); 480 } 481 482 /* 483 * Get CPU information for use by the procfs. 484 */ 485 static int show_cpuinfo(struct seq_file *m, void *v) 486 { 487 struct sh_cpuinfo *c = v; 488 unsigned int cpu = c - cpu_data; 489 490 if (!cpu_online(cpu)) 491 return 0; 492 493 if (cpu == 0) 494 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 495 496 seq_printf(m, "processor\t: %d\n", cpu); 497 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 498 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 499 if (c->cut_major == -1) 500 seq_printf(m, "cut\t\t: unknown\n"); 501 else if (c->cut_minor == -1) 502 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); 503 else 504 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); 505 506 show_cpuflags(m, c); 507 508 seq_printf(m, "cache type\t: "); 509 510 /* 511 * Check for what type of cache we have, we support both the 512 * unified cache on the SH-2 and SH-3, as well as the harvard 513 * style cache on the SH-4. 514 */ 515 if (c->icache.flags & SH_CACHE_COMBINED) { 516 seq_printf(m, "unified\n"); 517 show_cacheinfo(m, "cache", c->icache); 518 } else { 519 seq_printf(m, "split (harvard)\n"); 520 show_cacheinfo(m, "icache", c->icache); 521 show_cacheinfo(m, "dcache", c->dcache); 522 } 523 524 /* Optional secondary cache */ 525 if (c->flags & CPU_HAS_L2_CACHE) 526 show_cacheinfo(m, "scache", c->scache); 527 528 seq_printf(m, "bogomips\t: %lu.%02lu\n", 529 c->loops_per_jiffy/(500000/HZ), 530 (c->loops_per_jiffy/(5000/HZ)) % 100); 531 532 return 0; 533 } 534 535 static void *c_start(struct seq_file *m, loff_t *pos) 536 { 537 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 538 } 539 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 540 { 541 ++*pos; 542 return c_start(m, pos); 543 } 544 static void c_stop(struct seq_file *m, void *v) 545 { 546 } 547 const struct seq_operations cpuinfo_op = { 548 .start = c_start, 549 .next = c_next, 550 .stop = c_stop, 551 .show = show_cpuinfo, 552 }; 553 #endif /* CONFIG_PROC_FS */ 554 555 struct dentry *sh_debugfs_root; 556 557 static int __init sh_debugfs_init(void) 558 { 559 sh_debugfs_root = debugfs_create_dir("sh", NULL); 560 if (!sh_debugfs_root) 561 return -ENOMEM; 562 if (IS_ERR(sh_debugfs_root)) 563 return PTR_ERR(sh_debugfs_root); 564 565 return 0; 566 } 567 arch_initcall(sh_debugfs_init); 568