xref: /openbmc/linux/arch/sh/kernel/setup.c (revision 78c99ba1)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <asm/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/page.h>
36 #include <asm/elf.h>
37 #include <asm/sections.h>
38 #include <asm/irq.h>
39 #include <asm/setup.h>
40 #include <asm/clock.h>
41 #include <asm/mmu_context.h>
42 
43 /*
44  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
45  * This value will be used at the very early stage of serial setup.
46  * The bigger value means no problem.
47  */
48 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
49 	[0] = {
50 		.type			= CPU_SH_NONE,
51 		.loops_per_jiffy	= 10000000,
52 	},
53 };
54 EXPORT_SYMBOL(cpu_data);
55 
56 /*
57  * The machine vector. First entry in .machvec.init, or clobbered by
58  * sh_mv= on the command line, prior to .machvec.init teardown.
59  */
60 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
61 EXPORT_SYMBOL(sh_mv);
62 
63 #ifdef CONFIG_VT
64 struct screen_info screen_info;
65 #endif
66 
67 extern int root_mountflags;
68 
69 #define RAMDISK_IMAGE_START_MASK	0x07FF
70 #define RAMDISK_PROMPT_FLAG		0x8000
71 #define RAMDISK_LOAD_FLAG		0x4000
72 
73 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
74 
75 static struct resource code_resource = {
76 	.name = "Kernel code",
77 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
78 };
79 
80 static struct resource data_resource = {
81 	.name = "Kernel data",
82 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
83 };
84 
85 static struct resource bss_resource = {
86 	.name	= "Kernel bss",
87 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
88 };
89 
90 unsigned long memory_start;
91 EXPORT_SYMBOL(memory_start);
92 unsigned long memory_end = 0;
93 EXPORT_SYMBOL(memory_end);
94 
95 static struct resource mem_resources[MAX_NUMNODES];
96 
97 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
98 
99 static int __init early_parse_mem(char *p)
100 {
101 	unsigned long size;
102 
103 	memory_start = (unsigned long)__va(__MEMORY_START);
104 	size = memparse(p, &p);
105 
106 	if (size > __MEMORY_SIZE) {
107 		printk(KERN_ERR
108 			"Using mem= to increase the size of kernel memory "
109 			"is not allowed.\n"
110 			"  Recompile the kernel with the correct value for "
111 			"CONFIG_MEMORY_SIZE.\n");
112 		return 0;
113 	}
114 
115 	memory_end = memory_start + size;
116 
117 	return 0;
118 }
119 early_param("mem", early_parse_mem);
120 
121 /*
122  * Register fully available low RAM pages with the bootmem allocator.
123  */
124 static void __init register_bootmem_low_pages(void)
125 {
126 	unsigned long curr_pfn, last_pfn, pages;
127 
128 	/*
129 	 * We are rounding up the start address of usable memory:
130 	 */
131 	curr_pfn = PFN_UP(__MEMORY_START);
132 
133 	/*
134 	 * ... and at the end of the usable range downwards:
135 	 */
136 	last_pfn = PFN_DOWN(__pa(memory_end));
137 
138 	if (last_pfn > max_low_pfn)
139 		last_pfn = max_low_pfn;
140 
141 	pages = last_pfn - curr_pfn;
142 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
143 }
144 
145 #ifdef CONFIG_KEXEC
146 static void __init reserve_crashkernel(void)
147 {
148 	unsigned long long free_mem;
149 	unsigned long long crash_size, crash_base;
150 	void *vp;
151 	int ret;
152 
153 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
154 
155 	ret = parse_crashkernel(boot_command_line, free_mem,
156 			&crash_size, &crash_base);
157 	if (ret == 0 && crash_size) {
158 		if (crash_base <= 0) {
159 			vp = alloc_bootmem_nopanic(crash_size);
160 			if (!vp) {
161 				printk(KERN_INFO "crashkernel allocation "
162 				       "failed\n");
163 				return;
164 			}
165 			crash_base = __pa(vp);
166 		} else if (reserve_bootmem(crash_base, crash_size,
167 					BOOTMEM_EXCLUSIVE) < 0) {
168 			printk(KERN_INFO "crashkernel reservation failed - "
169 					"memory is in use\n");
170 			return;
171 		}
172 
173 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
174 				"for crashkernel (System RAM: %ldMB)\n",
175 				(unsigned long)(crash_size >> 20),
176 				(unsigned long)(crash_base >> 20),
177 				(unsigned long)(free_mem >> 20));
178 		crashk_res.start = crash_base;
179 		crashk_res.end   = crash_base + crash_size - 1;
180 		insert_resource(&iomem_resource, &crashk_res);
181 	}
182 }
183 #else
184 static inline void __init reserve_crashkernel(void)
185 {}
186 #endif
187 
188 void __cpuinit calibrate_delay(void)
189 {
190 	struct clk *clk = clk_get(NULL, "cpu_clk");
191 
192 	if (IS_ERR(clk))
193 		panic("Need a sane CPU clock definition!");
194 
195 	loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
196 
197 	printk(KERN_INFO "Calibrating delay loop (skipped)... "
198 			 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
199 			 loops_per_jiffy/(500000/HZ),
200 			 (loops_per_jiffy/(5000/HZ)) % 100,
201 			 loops_per_jiffy);
202 }
203 
204 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
205 						unsigned long end_pfn)
206 {
207 	struct resource *res = &mem_resources[nid];
208 
209 	WARN_ON(res->name); /* max one active range per node for now */
210 
211 	res->name = "System RAM";
212 	res->start = start_pfn << PAGE_SHIFT;
213 	res->end = (end_pfn << PAGE_SHIFT) - 1;
214 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
215 	if (request_resource(&iomem_resource, res)) {
216 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
217 		       start_pfn, end_pfn);
218 		return;
219 	}
220 
221 	/*
222 	 *  We don't know which RAM region contains kernel data,
223 	 *  so we try it repeatedly and let the resource manager
224 	 *  test it.
225 	 */
226 	request_resource(res, &code_resource);
227 	request_resource(res, &data_resource);
228 	request_resource(res, &bss_resource);
229 
230 	add_active_range(nid, start_pfn, end_pfn);
231 }
232 
233 void __init setup_bootmem_allocator(unsigned long free_pfn)
234 {
235 	unsigned long bootmap_size;
236 
237 	/*
238 	 * Find a proper area for the bootmem bitmap. After this
239 	 * bootstrap step all allocations (until the page allocator
240 	 * is intact) must be done via bootmem_alloc().
241 	 */
242 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
243 					 min_low_pfn, max_low_pfn);
244 
245 	__add_active_range(0, min_low_pfn, max_low_pfn);
246 	register_bootmem_low_pages();
247 
248 	node_set_online(0);
249 
250 	/*
251 	 * Reserve the kernel text and
252 	 * Reserve the bootmem bitmap. We do this in two steps (first step
253 	 * was init_bootmem()), because this catches the (definitely buggy)
254 	 * case of us accidentally initializing the bootmem allocator with
255 	 * an invalid RAM area.
256 	 */
257 	reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
258 			(PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
259 			(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
260 			BOOTMEM_DEFAULT);
261 
262 	/*
263 	 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
264 	 */
265 	if (CONFIG_ZERO_PAGE_OFFSET != 0)
266 		reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
267 				BOOTMEM_DEFAULT);
268 
269 	sparse_memory_present_with_active_regions(0);
270 
271 #ifdef CONFIG_BLK_DEV_INITRD
272 	ROOT_DEV = Root_RAM0;
273 
274 	if (LOADER_TYPE && INITRD_START) {
275 		unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
276 
277 		if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
278 			reserve_bootmem(initrd_start_phys, INITRD_SIZE,
279 					BOOTMEM_DEFAULT);
280 			initrd_start = (unsigned long)__va(initrd_start_phys);
281 			initrd_end = initrd_start + INITRD_SIZE;
282 		} else {
283 			printk("initrd extends beyond end of memory "
284 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
285 			       initrd_start_phys + INITRD_SIZE,
286 			       (unsigned long)PFN_PHYS(max_low_pfn));
287 			initrd_start = 0;
288 		}
289 	}
290 #endif
291 
292 	reserve_crashkernel();
293 }
294 
295 #ifndef CONFIG_NEED_MULTIPLE_NODES
296 static void __init setup_memory(void)
297 {
298 	unsigned long start_pfn;
299 
300 	/*
301 	 * Partially used pages are not usable - thus
302 	 * we are rounding upwards:
303 	 */
304 	start_pfn = PFN_UP(__pa(_end));
305 	setup_bootmem_allocator(start_pfn);
306 }
307 #else
308 extern void __init setup_memory(void);
309 #endif
310 
311 /*
312  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
313  * is_kdump_kernel() to determine if we are booting after a panic. Hence
314  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
315  */
316 #ifdef CONFIG_CRASH_DUMP
317 /* elfcorehdr= specifies the location of elf core header
318  * stored by the crashed kernel.
319  */
320 static int __init parse_elfcorehdr(char *arg)
321 {
322 	if (!arg)
323 		return -EINVAL;
324 	elfcorehdr_addr = memparse(arg, &arg);
325 	return 0;
326 }
327 early_param("elfcorehdr", parse_elfcorehdr);
328 #endif
329 
330 void __init __attribute__ ((weak)) plat_early_device_setup(void)
331 {
332 }
333 
334 void __init setup_arch(char **cmdline_p)
335 {
336 	enable_mmu();
337 
338 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
339 
340 	printk(KERN_NOTICE "Boot params:\n"
341 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
342 			   "... RAMDISK_FLAGS     - %08lx\n"
343 			   "... ORIG_ROOT_DEV     - %08lx\n"
344 			   "... LOADER_TYPE       - %08lx\n"
345 			   "... INITRD_START      - %08lx\n"
346 			   "... INITRD_SIZE       - %08lx\n",
347 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
348 			   ORIG_ROOT_DEV, LOADER_TYPE,
349 			   INITRD_START, INITRD_SIZE);
350 
351 #ifdef CONFIG_BLK_DEV_RAM
352 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
353 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
354 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
355 #endif
356 
357 	if (!MOUNT_ROOT_RDONLY)
358 		root_mountflags &= ~MS_RDONLY;
359 	init_mm.start_code = (unsigned long) _text;
360 	init_mm.end_code = (unsigned long) _etext;
361 	init_mm.end_data = (unsigned long) _edata;
362 	init_mm.brk = (unsigned long) _end;
363 
364 	code_resource.start = virt_to_phys(_text);
365 	code_resource.end = virt_to_phys(_etext)-1;
366 	data_resource.start = virt_to_phys(_etext);
367 	data_resource.end = virt_to_phys(_edata)-1;
368 	bss_resource.start = virt_to_phys(__bss_start);
369 	bss_resource.end = virt_to_phys(_ebss)-1;
370 
371 	memory_start = (unsigned long)__va(__MEMORY_START);
372 	if (!memory_end)
373 		memory_end = memory_start + __MEMORY_SIZE;
374 
375 #ifdef CONFIG_CMDLINE_BOOL
376 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
377 #else
378 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
379 #endif
380 
381 	/* Save unparsed command line copy for /proc/cmdline */
382 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
383 	*cmdline_p = command_line;
384 
385 	parse_early_param();
386 
387 	plat_early_device_setup();
388 
389 	sh_mv_setup();
390 
391 	/*
392 	 * Find the highest page frame number we have available
393 	 */
394 	max_pfn = PFN_DOWN(__pa(memory_end));
395 
396 	/*
397 	 * Determine low and high memory ranges:
398 	 */
399 	max_low_pfn = max_pfn;
400 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
401 
402 	nodes_clear(node_online_map);
403 
404 	/* Setup bootmem with available RAM */
405 	setup_memory();
406 	sparse_init();
407 
408 #ifdef CONFIG_DUMMY_CONSOLE
409 	conswitchp = &dummy_con;
410 #endif
411 
412 	/* Perform the machine specific initialisation */
413 	if (likely(sh_mv.mv_setup))
414 		sh_mv.mv_setup(cmdline_p);
415 
416 	paging_init();
417 
418 #ifdef CONFIG_SMP
419 	plat_smp_setup();
420 #endif
421 }
422 
423 /* processor boot mode configuration */
424 int generic_mode_pins(void)
425 {
426 	pr_warning("generic_mode_pins(): missing mode pin configuration\n");
427 	return 0;
428 }
429 
430 int test_mode_pin(int pin)
431 {
432 	return sh_mv.mv_mode_pins() & pin;
433 }
434 
435 static const char *cpu_name[] = {
436 	[CPU_SH7201]	= "SH7201",
437 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
438 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
439 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
440 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
441 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
442 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
443 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
444 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
445 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
446 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
447 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
448 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
449 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
450 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
451 	[CPU_SH7786]	= "SH7786",
452 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
453 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
454 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
455 	[CPU_SH7366]	= "SH7366",	[CPU_SH7724]	= "SH7724",
456 	[CPU_SH_NONE]	= "Unknown"
457 };
458 
459 const char *get_cpu_subtype(struct sh_cpuinfo *c)
460 {
461 	return cpu_name[c->type];
462 }
463 EXPORT_SYMBOL(get_cpu_subtype);
464 
465 #ifdef CONFIG_PROC_FS
466 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
467 static const char *cpu_flags[] = {
468 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
469 	"ptea", "llsc", "l2", "op32", "pteaex", NULL
470 };
471 
472 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
473 {
474 	unsigned long i;
475 
476 	seq_printf(m, "cpu flags\t:");
477 
478 	if (!c->flags) {
479 		seq_printf(m, " %s\n", cpu_flags[0]);
480 		return;
481 	}
482 
483 	for (i = 0; cpu_flags[i]; i++)
484 		if ((c->flags & (1 << i)))
485 			seq_printf(m, " %s", cpu_flags[i+1]);
486 
487 	seq_printf(m, "\n");
488 }
489 
490 static void show_cacheinfo(struct seq_file *m, const char *type,
491 			   struct cache_info info)
492 {
493 	unsigned int cache_size;
494 
495 	cache_size = info.ways * info.sets * info.linesz;
496 
497 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
498 		   type, cache_size >> 10, info.ways);
499 }
500 
501 /*
502  *	Get CPU information for use by the procfs.
503  */
504 static int show_cpuinfo(struct seq_file *m, void *v)
505 {
506 	struct sh_cpuinfo *c = v;
507 	unsigned int cpu = c - cpu_data;
508 
509 	if (!cpu_online(cpu))
510 		return 0;
511 
512 	if (cpu == 0)
513 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
514 
515 	seq_printf(m, "processor\t: %d\n", cpu);
516 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
517 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
518 	if (c->cut_major == -1)
519 		seq_printf(m, "cut\t\t: unknown\n");
520 	else if (c->cut_minor == -1)
521 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
522 	else
523 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
524 
525 	show_cpuflags(m, c);
526 
527 	seq_printf(m, "cache type\t: ");
528 
529 	/*
530 	 * Check for what type of cache we have, we support both the
531 	 * unified cache on the SH-2 and SH-3, as well as the harvard
532 	 * style cache on the SH-4.
533 	 */
534 	if (c->icache.flags & SH_CACHE_COMBINED) {
535 		seq_printf(m, "unified\n");
536 		show_cacheinfo(m, "cache", c->icache);
537 	} else {
538 		seq_printf(m, "split (harvard)\n");
539 		show_cacheinfo(m, "icache", c->icache);
540 		show_cacheinfo(m, "dcache", c->dcache);
541 	}
542 
543 	/* Optional secondary cache */
544 	if (c->flags & CPU_HAS_L2_CACHE)
545 		show_cacheinfo(m, "scache", c->scache);
546 
547 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
548 		     c->loops_per_jiffy/(500000/HZ),
549 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
550 
551 	return 0;
552 }
553 
554 static void *c_start(struct seq_file *m, loff_t *pos)
555 {
556 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
557 }
558 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
559 {
560 	++*pos;
561 	return c_start(m, pos);
562 }
563 static void c_stop(struct seq_file *m, void *v)
564 {
565 }
566 const struct seq_operations cpuinfo_op = {
567 	.start	= c_start,
568 	.next	= c_next,
569 	.stop	= c_stop,
570 	.show	= show_cpuinfo,
571 };
572 #endif /* CONFIG_PROC_FS */
573 
574 struct dentry *sh_debugfs_root;
575 
576 static int __init sh_debugfs_init(void)
577 {
578 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
579 	if (!sh_debugfs_root)
580 		return -ENOMEM;
581 	if (IS_ERR(sh_debugfs_root))
582 		return PTR_ERR(sh_debugfs_root);
583 
584 	return 0;
585 }
586 arch_initcall(sh_debugfs_init);
587