1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/debugfs.h> 28 #include <linux/crash_dump.h> 29 #include <linux/mmzone.h> 30 #include <linux/clk.h> 31 #include <linux/delay.h> 32 #include <linux/platform_device.h> 33 #include <asm/uaccess.h> 34 #include <asm/io.h> 35 #include <asm/page.h> 36 #include <asm/elf.h> 37 #include <asm/sections.h> 38 #include <asm/irq.h> 39 #include <asm/setup.h> 40 #include <asm/clock.h> 41 #include <asm/mmu_context.h> 42 43 /* 44 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 45 * This value will be used at the very early stage of serial setup. 46 * The bigger value means no problem. 47 */ 48 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 49 [0] = { 50 .type = CPU_SH_NONE, 51 .loops_per_jiffy = 10000000, 52 }, 53 }; 54 EXPORT_SYMBOL(cpu_data); 55 56 /* 57 * The machine vector. First entry in .machvec.init, or clobbered by 58 * sh_mv= on the command line, prior to .machvec.init teardown. 59 */ 60 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 61 EXPORT_SYMBOL(sh_mv); 62 63 #ifdef CONFIG_VT 64 struct screen_info screen_info; 65 #endif 66 67 extern int root_mountflags; 68 69 #define RAMDISK_IMAGE_START_MASK 0x07FF 70 #define RAMDISK_PROMPT_FLAG 0x8000 71 #define RAMDISK_LOAD_FLAG 0x4000 72 73 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 74 75 static struct resource code_resource = { 76 .name = "Kernel code", 77 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 78 }; 79 80 static struct resource data_resource = { 81 .name = "Kernel data", 82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 83 }; 84 85 static struct resource bss_resource = { 86 .name = "Kernel bss", 87 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 88 }; 89 90 unsigned long memory_start; 91 EXPORT_SYMBOL(memory_start); 92 unsigned long memory_end = 0; 93 EXPORT_SYMBOL(memory_end); 94 95 static struct resource mem_resources[MAX_NUMNODES]; 96 97 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 98 99 static int __init early_parse_mem(char *p) 100 { 101 unsigned long size; 102 103 memory_start = (unsigned long)__va(__MEMORY_START); 104 size = memparse(p, &p); 105 106 if (size > __MEMORY_SIZE) { 107 printk(KERN_ERR 108 "Using mem= to increase the size of kernel memory " 109 "is not allowed.\n" 110 " Recompile the kernel with the correct value for " 111 "CONFIG_MEMORY_SIZE.\n"); 112 return 0; 113 } 114 115 memory_end = memory_start + size; 116 117 return 0; 118 } 119 early_param("mem", early_parse_mem); 120 121 /* 122 * Register fully available low RAM pages with the bootmem allocator. 123 */ 124 static void __init register_bootmem_low_pages(void) 125 { 126 unsigned long curr_pfn, last_pfn, pages; 127 128 /* 129 * We are rounding up the start address of usable memory: 130 */ 131 curr_pfn = PFN_UP(__MEMORY_START); 132 133 /* 134 * ... and at the end of the usable range downwards: 135 */ 136 last_pfn = PFN_DOWN(__pa(memory_end)); 137 138 if (last_pfn > max_low_pfn) 139 last_pfn = max_low_pfn; 140 141 pages = last_pfn - curr_pfn; 142 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 143 } 144 145 #ifdef CONFIG_KEXEC 146 static void __init reserve_crashkernel(void) 147 { 148 unsigned long long free_mem; 149 unsigned long long crash_size, crash_base; 150 void *vp; 151 int ret; 152 153 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 154 155 ret = parse_crashkernel(boot_command_line, free_mem, 156 &crash_size, &crash_base); 157 if (ret == 0 && crash_size) { 158 if (crash_base <= 0) { 159 vp = alloc_bootmem_nopanic(crash_size); 160 if (!vp) { 161 printk(KERN_INFO "crashkernel allocation " 162 "failed\n"); 163 return; 164 } 165 crash_base = __pa(vp); 166 } else if (reserve_bootmem(crash_base, crash_size, 167 BOOTMEM_EXCLUSIVE) < 0) { 168 printk(KERN_INFO "crashkernel reservation failed - " 169 "memory is in use\n"); 170 return; 171 } 172 173 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 174 "for crashkernel (System RAM: %ldMB)\n", 175 (unsigned long)(crash_size >> 20), 176 (unsigned long)(crash_base >> 20), 177 (unsigned long)(free_mem >> 20)); 178 crashk_res.start = crash_base; 179 crashk_res.end = crash_base + crash_size - 1; 180 insert_resource(&iomem_resource, &crashk_res); 181 } 182 } 183 #else 184 static inline void __init reserve_crashkernel(void) 185 {} 186 #endif 187 188 void __cpuinit calibrate_delay(void) 189 { 190 struct clk *clk = clk_get(NULL, "cpu_clk"); 191 192 if (IS_ERR(clk)) 193 panic("Need a sane CPU clock definition!"); 194 195 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; 196 197 printk(KERN_INFO "Calibrating delay loop (skipped)... " 198 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", 199 loops_per_jiffy/(500000/HZ), 200 (loops_per_jiffy/(5000/HZ)) % 100, 201 loops_per_jiffy); 202 } 203 204 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 205 unsigned long end_pfn) 206 { 207 struct resource *res = &mem_resources[nid]; 208 209 WARN_ON(res->name); /* max one active range per node for now */ 210 211 res->name = "System RAM"; 212 res->start = start_pfn << PAGE_SHIFT; 213 res->end = (end_pfn << PAGE_SHIFT) - 1; 214 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 215 if (request_resource(&iomem_resource, res)) { 216 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 217 start_pfn, end_pfn); 218 return; 219 } 220 221 /* 222 * We don't know which RAM region contains kernel data, 223 * so we try it repeatedly and let the resource manager 224 * test it. 225 */ 226 request_resource(res, &code_resource); 227 request_resource(res, &data_resource); 228 request_resource(res, &bss_resource); 229 230 add_active_range(nid, start_pfn, end_pfn); 231 } 232 233 void __init setup_bootmem_allocator(unsigned long free_pfn) 234 { 235 unsigned long bootmap_size; 236 237 /* 238 * Find a proper area for the bootmem bitmap. After this 239 * bootstrap step all allocations (until the page allocator 240 * is intact) must be done via bootmem_alloc(). 241 */ 242 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 243 min_low_pfn, max_low_pfn); 244 245 __add_active_range(0, min_low_pfn, max_low_pfn); 246 register_bootmem_low_pages(); 247 248 node_set_online(0); 249 250 /* 251 * Reserve the kernel text and 252 * Reserve the bootmem bitmap. We do this in two steps (first step 253 * was init_bootmem()), because this catches the (definitely buggy) 254 * case of us accidentally initializing the bootmem allocator with 255 * an invalid RAM area. 256 */ 257 reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, 258 (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) - 259 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET), 260 BOOTMEM_DEFAULT); 261 262 /* 263 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET. 264 */ 265 if (CONFIG_ZERO_PAGE_OFFSET != 0) 266 reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET, 267 BOOTMEM_DEFAULT); 268 269 sparse_memory_present_with_active_regions(0); 270 271 #ifdef CONFIG_BLK_DEV_INITRD 272 ROOT_DEV = Root_RAM0; 273 274 if (LOADER_TYPE && INITRD_START) { 275 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START; 276 277 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) { 278 reserve_bootmem(initrd_start_phys, INITRD_SIZE, 279 BOOTMEM_DEFAULT); 280 initrd_start = (unsigned long)__va(initrd_start_phys); 281 initrd_end = initrd_start + INITRD_SIZE; 282 } else { 283 printk("initrd extends beyond end of memory " 284 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 285 initrd_start_phys + INITRD_SIZE, 286 (unsigned long)PFN_PHYS(max_low_pfn)); 287 initrd_start = 0; 288 } 289 } 290 #endif 291 292 reserve_crashkernel(); 293 } 294 295 #ifndef CONFIG_NEED_MULTIPLE_NODES 296 static void __init setup_memory(void) 297 { 298 unsigned long start_pfn; 299 300 /* 301 * Partially used pages are not usable - thus 302 * we are rounding upwards: 303 */ 304 start_pfn = PFN_UP(__pa(_end)); 305 setup_bootmem_allocator(start_pfn); 306 } 307 #else 308 extern void __init setup_memory(void); 309 #endif 310 311 /* 312 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by 313 * is_kdump_kernel() to determine if we are booting after a panic. Hence 314 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. 315 */ 316 #ifdef CONFIG_CRASH_DUMP 317 /* elfcorehdr= specifies the location of elf core header 318 * stored by the crashed kernel. 319 */ 320 static int __init parse_elfcorehdr(char *arg) 321 { 322 if (!arg) 323 return -EINVAL; 324 elfcorehdr_addr = memparse(arg, &arg); 325 return 0; 326 } 327 early_param("elfcorehdr", parse_elfcorehdr); 328 #endif 329 330 void __init __attribute__ ((weak)) plat_early_device_setup(void) 331 { 332 } 333 334 void __init setup_arch(char **cmdline_p) 335 { 336 enable_mmu(); 337 338 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 339 340 printk(KERN_NOTICE "Boot params:\n" 341 "... MOUNT_ROOT_RDONLY - %08lx\n" 342 "... RAMDISK_FLAGS - %08lx\n" 343 "... ORIG_ROOT_DEV - %08lx\n" 344 "... LOADER_TYPE - %08lx\n" 345 "... INITRD_START - %08lx\n" 346 "... INITRD_SIZE - %08lx\n", 347 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 348 ORIG_ROOT_DEV, LOADER_TYPE, 349 INITRD_START, INITRD_SIZE); 350 351 #ifdef CONFIG_BLK_DEV_RAM 352 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 353 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 354 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 355 #endif 356 357 if (!MOUNT_ROOT_RDONLY) 358 root_mountflags &= ~MS_RDONLY; 359 init_mm.start_code = (unsigned long) _text; 360 init_mm.end_code = (unsigned long) _etext; 361 init_mm.end_data = (unsigned long) _edata; 362 init_mm.brk = (unsigned long) _end; 363 364 code_resource.start = virt_to_phys(_text); 365 code_resource.end = virt_to_phys(_etext)-1; 366 data_resource.start = virt_to_phys(_etext); 367 data_resource.end = virt_to_phys(_edata)-1; 368 bss_resource.start = virt_to_phys(__bss_start); 369 bss_resource.end = virt_to_phys(_ebss)-1; 370 371 memory_start = (unsigned long)__va(__MEMORY_START); 372 if (!memory_end) 373 memory_end = memory_start + __MEMORY_SIZE; 374 375 #ifdef CONFIG_CMDLINE_BOOL 376 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 377 #else 378 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 379 #endif 380 381 /* Save unparsed command line copy for /proc/cmdline */ 382 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 383 *cmdline_p = command_line; 384 385 parse_early_param(); 386 387 plat_early_device_setup(); 388 389 sh_mv_setup(); 390 391 /* 392 * Find the highest page frame number we have available 393 */ 394 max_pfn = PFN_DOWN(__pa(memory_end)); 395 396 /* 397 * Determine low and high memory ranges: 398 */ 399 max_low_pfn = max_pfn; 400 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 401 402 nodes_clear(node_online_map); 403 404 /* Setup bootmem with available RAM */ 405 setup_memory(); 406 sparse_init(); 407 408 #ifdef CONFIG_DUMMY_CONSOLE 409 conswitchp = &dummy_con; 410 #endif 411 412 /* Perform the machine specific initialisation */ 413 if (likely(sh_mv.mv_setup)) 414 sh_mv.mv_setup(cmdline_p); 415 416 paging_init(); 417 418 #ifdef CONFIG_SMP 419 plat_smp_setup(); 420 #endif 421 } 422 423 /* processor boot mode configuration */ 424 int generic_mode_pins(void) 425 { 426 pr_warning("generic_mode_pins(): missing mode pin configuration\n"); 427 return 0; 428 } 429 430 int test_mode_pin(int pin) 431 { 432 return sh_mv.mv_mode_pins() & pin; 433 } 434 435 static const char *cpu_name[] = { 436 [CPU_SH7201] = "SH7201", 437 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 438 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 439 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 440 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 441 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 442 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 443 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 444 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 445 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 446 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 447 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 448 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 449 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 450 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 451 [CPU_SH7786] = "SH7786", 452 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 453 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 454 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 455 [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724", 456 [CPU_SH_NONE] = "Unknown" 457 }; 458 459 const char *get_cpu_subtype(struct sh_cpuinfo *c) 460 { 461 return cpu_name[c->type]; 462 } 463 EXPORT_SYMBOL(get_cpu_subtype); 464 465 #ifdef CONFIG_PROC_FS 466 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 467 static const char *cpu_flags[] = { 468 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 469 "ptea", "llsc", "l2", "op32", "pteaex", NULL 470 }; 471 472 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 473 { 474 unsigned long i; 475 476 seq_printf(m, "cpu flags\t:"); 477 478 if (!c->flags) { 479 seq_printf(m, " %s\n", cpu_flags[0]); 480 return; 481 } 482 483 for (i = 0; cpu_flags[i]; i++) 484 if ((c->flags & (1 << i))) 485 seq_printf(m, " %s", cpu_flags[i+1]); 486 487 seq_printf(m, "\n"); 488 } 489 490 static void show_cacheinfo(struct seq_file *m, const char *type, 491 struct cache_info info) 492 { 493 unsigned int cache_size; 494 495 cache_size = info.ways * info.sets * info.linesz; 496 497 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 498 type, cache_size >> 10, info.ways); 499 } 500 501 /* 502 * Get CPU information for use by the procfs. 503 */ 504 static int show_cpuinfo(struct seq_file *m, void *v) 505 { 506 struct sh_cpuinfo *c = v; 507 unsigned int cpu = c - cpu_data; 508 509 if (!cpu_online(cpu)) 510 return 0; 511 512 if (cpu == 0) 513 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 514 515 seq_printf(m, "processor\t: %d\n", cpu); 516 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 517 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 518 if (c->cut_major == -1) 519 seq_printf(m, "cut\t\t: unknown\n"); 520 else if (c->cut_minor == -1) 521 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); 522 else 523 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); 524 525 show_cpuflags(m, c); 526 527 seq_printf(m, "cache type\t: "); 528 529 /* 530 * Check for what type of cache we have, we support both the 531 * unified cache on the SH-2 and SH-3, as well as the harvard 532 * style cache on the SH-4. 533 */ 534 if (c->icache.flags & SH_CACHE_COMBINED) { 535 seq_printf(m, "unified\n"); 536 show_cacheinfo(m, "cache", c->icache); 537 } else { 538 seq_printf(m, "split (harvard)\n"); 539 show_cacheinfo(m, "icache", c->icache); 540 show_cacheinfo(m, "dcache", c->dcache); 541 } 542 543 /* Optional secondary cache */ 544 if (c->flags & CPU_HAS_L2_CACHE) 545 show_cacheinfo(m, "scache", c->scache); 546 547 seq_printf(m, "bogomips\t: %lu.%02lu\n", 548 c->loops_per_jiffy/(500000/HZ), 549 (c->loops_per_jiffy/(5000/HZ)) % 100); 550 551 return 0; 552 } 553 554 static void *c_start(struct seq_file *m, loff_t *pos) 555 { 556 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 557 } 558 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 559 { 560 ++*pos; 561 return c_start(m, pos); 562 } 563 static void c_stop(struct seq_file *m, void *v) 564 { 565 } 566 const struct seq_operations cpuinfo_op = { 567 .start = c_start, 568 .next = c_next, 569 .stop = c_stop, 570 .show = show_cpuinfo, 571 }; 572 #endif /* CONFIG_PROC_FS */ 573 574 struct dentry *sh_debugfs_root; 575 576 static int __init sh_debugfs_init(void) 577 { 578 sh_debugfs_root = debugfs_create_dir("sh", NULL); 579 if (!sh_debugfs_root) 580 return -ENOMEM; 581 if (IS_ERR(sh_debugfs_root)) 582 return PTR_ERR(sh_debugfs_root); 583 584 return 0; 585 } 586 arch_initcall(sh_debugfs_init); 587