1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <asm/uaccess.h> 27 #include <asm/io.h> 28 #include <asm/page.h> 29 #include <asm/elf.h> 30 #include <asm/sections.h> 31 #include <asm/irq.h> 32 #include <asm/setup.h> 33 #include <asm/clock.h> 34 #include <asm/mmu_context.h> 35 36 /* 37 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 38 * This value will be used at the very early stage of serial setup. 39 * The bigger value means no problem. 40 */ 41 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 42 [0] = { 43 .type = CPU_SH_NONE, 44 .loops_per_jiffy = 10000000, 45 }, 46 }; 47 EXPORT_SYMBOL(cpu_data); 48 49 /* 50 * The machine vector. First entry in .machvec.init, or clobbered by 51 * sh_mv= on the command line, prior to .machvec.init teardown. 52 */ 53 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 54 55 #ifdef CONFIG_VT 56 struct screen_info screen_info; 57 #endif 58 59 extern int root_mountflags; 60 61 #define RAMDISK_IMAGE_START_MASK 0x07FF 62 #define RAMDISK_PROMPT_FLAG 0x8000 63 #define RAMDISK_LOAD_FLAG 0x4000 64 65 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 66 67 static struct resource code_resource = { 68 .name = "Kernel code", 69 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 70 }; 71 72 static struct resource data_resource = { 73 .name = "Kernel data", 74 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 75 }; 76 77 unsigned long memory_start; 78 EXPORT_SYMBOL(memory_start); 79 unsigned long memory_end = 0; 80 EXPORT_SYMBOL(memory_end); 81 82 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 83 84 static int __init early_parse_mem(char *p) 85 { 86 unsigned long size; 87 88 memory_start = (unsigned long)__va(__MEMORY_START); 89 size = memparse(p, &p); 90 91 if (size > __MEMORY_SIZE) { 92 static char msg[] __initdata = KERN_ERR 93 "Using mem= to increase the size of kernel memory " 94 "is not allowed.\n" 95 " Recompile the kernel with the correct value for " 96 "CONFIG_MEMORY_SIZE.\n"; 97 printk(msg); 98 return 0; 99 } 100 101 memory_end = memory_start + size; 102 103 return 0; 104 } 105 early_param("mem", early_parse_mem); 106 107 /* 108 * Register fully available low RAM pages with the bootmem allocator. 109 */ 110 static void __init register_bootmem_low_pages(void) 111 { 112 unsigned long curr_pfn, last_pfn, pages; 113 114 /* 115 * We are rounding up the start address of usable memory: 116 */ 117 curr_pfn = PFN_UP(__MEMORY_START); 118 119 /* 120 * ... and at the end of the usable range downwards: 121 */ 122 last_pfn = PFN_DOWN(__pa(memory_end)); 123 124 if (last_pfn > max_low_pfn) 125 last_pfn = max_low_pfn; 126 127 pages = last_pfn - curr_pfn; 128 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 129 } 130 131 #ifdef CONFIG_KEXEC 132 static void __init reserve_crashkernel(void) 133 { 134 unsigned long long free_mem; 135 unsigned long long crash_size, crash_base; 136 int ret; 137 138 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 139 140 ret = parse_crashkernel(boot_command_line, free_mem, 141 &crash_size, &crash_base); 142 if (ret == 0 && crash_size) { 143 if (crash_base > 0) { 144 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 145 "for crashkernel (System RAM: %ldMB)\n", 146 (unsigned long)(crash_size >> 20), 147 (unsigned long)(crash_base >> 20), 148 (unsigned long)(free_mem >> 20)); 149 crashk_res.start = crash_base; 150 crashk_res.end = crash_base + crash_size - 1; 151 reserve_bootmem(crash_base, crash_size); 152 } else 153 printk(KERN_INFO "crashkernel reservation failed - " 154 "you have to specify a base address\n"); 155 } 156 } 157 #else 158 static inline void __init reserve_crashkernel(void) 159 {} 160 #endif 161 162 void __init setup_bootmem_allocator(unsigned long free_pfn) 163 { 164 unsigned long bootmap_size; 165 166 /* 167 * Find a proper area for the bootmem bitmap. After this 168 * bootstrap step all allocations (until the page allocator 169 * is intact) must be done via bootmem_alloc(). 170 */ 171 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 172 min_low_pfn, max_low_pfn); 173 174 add_active_range(0, min_low_pfn, max_low_pfn); 175 register_bootmem_low_pages(); 176 177 node_set_online(0); 178 179 /* 180 * Reserve the kernel text and 181 * Reserve the bootmem bitmap. We do this in two steps (first step 182 * was init_bootmem()), because this catches the (definitely buggy) 183 * case of us accidentally initializing the bootmem allocator with 184 * an invalid RAM area. 185 */ 186 reserve_bootmem(__MEMORY_START+PAGE_SIZE, 187 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START); 188 189 /* 190 * reserve physical page 0 - it's a special BIOS page on many boxes, 191 * enabling clean reboots, SMP operation, laptop functions. 192 */ 193 reserve_bootmem(__MEMORY_START, PAGE_SIZE); 194 195 sparse_memory_present_with_active_regions(0); 196 197 #ifdef CONFIG_BLK_DEV_INITRD 198 ROOT_DEV = Root_RAM0; 199 200 if (LOADER_TYPE && INITRD_START) { 201 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { 202 reserve_bootmem(INITRD_START + __MEMORY_START, 203 INITRD_SIZE); 204 initrd_start = INITRD_START + PAGE_OFFSET + 205 __MEMORY_START; 206 initrd_end = initrd_start + INITRD_SIZE; 207 } else { 208 printk("initrd extends beyond end of memory " 209 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 210 INITRD_START + INITRD_SIZE, 211 max_low_pfn << PAGE_SHIFT); 212 initrd_start = 0; 213 } 214 } 215 #endif 216 217 reserve_crashkernel(); 218 } 219 220 #ifndef CONFIG_NEED_MULTIPLE_NODES 221 static void __init setup_memory(void) 222 { 223 unsigned long start_pfn; 224 225 /* 226 * Partially used pages are not usable - thus 227 * we are rounding upwards: 228 */ 229 start_pfn = PFN_UP(__pa(_end)); 230 setup_bootmem_allocator(start_pfn); 231 } 232 #else 233 extern void __init setup_memory(void); 234 #endif 235 236 void __init setup_arch(char **cmdline_p) 237 { 238 enable_mmu(); 239 240 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 241 242 #ifdef CONFIG_BLK_DEV_RAM 243 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 244 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 245 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 246 #endif 247 248 if (!MOUNT_ROOT_RDONLY) 249 root_mountflags &= ~MS_RDONLY; 250 init_mm.start_code = (unsigned long) _text; 251 init_mm.end_code = (unsigned long) _etext; 252 init_mm.end_data = (unsigned long) _edata; 253 init_mm.brk = (unsigned long) _end; 254 255 code_resource.start = virt_to_phys(_text); 256 code_resource.end = virt_to_phys(_etext)-1; 257 data_resource.start = virt_to_phys(_etext); 258 data_resource.end = virt_to_phys(_edata)-1; 259 260 memory_start = (unsigned long)__va(__MEMORY_START); 261 if (!memory_end) 262 memory_end = memory_start + __MEMORY_SIZE; 263 264 #ifdef CONFIG_CMDLINE_BOOL 265 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 266 #else 267 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 268 #endif 269 270 /* Save unparsed command line copy for /proc/cmdline */ 271 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 272 *cmdline_p = command_line; 273 274 parse_early_param(); 275 276 sh_mv_setup(); 277 278 /* 279 * Find the highest page frame number we have available 280 */ 281 max_pfn = PFN_DOWN(__pa(memory_end)); 282 283 /* 284 * Determine low and high memory ranges: 285 */ 286 max_low_pfn = max_pfn; 287 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 288 289 nodes_clear(node_online_map); 290 291 /* Setup bootmem with available RAM */ 292 setup_memory(); 293 sparse_init(); 294 295 #ifdef CONFIG_DUMMY_CONSOLE 296 conswitchp = &dummy_con; 297 #endif 298 299 /* Perform the machine specific initialisation */ 300 if (likely(sh_mv.mv_setup)) 301 sh_mv.mv_setup(cmdline_p); 302 303 paging_init(); 304 305 #ifdef CONFIG_SMP 306 plat_smp_setup(); 307 #endif 308 } 309 310 static const char *cpu_name[] = { 311 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 312 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 313 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 314 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 315 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 316 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 317 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 318 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 319 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 320 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 321 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 322 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 323 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 324 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 325 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 326 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 327 [CPU_SH_NONE] = "Unknown" 328 }; 329 330 const char *get_cpu_subtype(struct sh_cpuinfo *c) 331 { 332 return cpu_name[c->type]; 333 } 334 335 #ifdef CONFIG_PROC_FS 336 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 337 static const char *cpu_flags[] = { 338 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 339 "ptea", "llsc", "l2", "op32", NULL 340 }; 341 342 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 343 { 344 unsigned long i; 345 346 seq_printf(m, "cpu flags\t:"); 347 348 if (!c->flags) { 349 seq_printf(m, " %s\n", cpu_flags[0]); 350 return; 351 } 352 353 for (i = 0; cpu_flags[i]; i++) 354 if ((c->flags & (1 << i))) 355 seq_printf(m, " %s", cpu_flags[i+1]); 356 357 seq_printf(m, "\n"); 358 } 359 360 static void show_cacheinfo(struct seq_file *m, const char *type, 361 struct cache_info info) 362 { 363 unsigned int cache_size; 364 365 cache_size = info.ways * info.sets * info.linesz; 366 367 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 368 type, cache_size >> 10, info.ways); 369 } 370 371 /* 372 * Get CPU information for use by the procfs. 373 */ 374 static int show_cpuinfo(struct seq_file *m, void *v) 375 { 376 struct sh_cpuinfo *c = v; 377 unsigned int cpu = c - cpu_data; 378 379 if (!cpu_online(cpu)) 380 return 0; 381 382 if (cpu == 0) 383 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 384 385 seq_printf(m, "processor\t: %d\n", cpu); 386 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 387 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 388 389 show_cpuflags(m, c); 390 391 seq_printf(m, "cache type\t: "); 392 393 /* 394 * Check for what type of cache we have, we support both the 395 * unified cache on the SH-2 and SH-3, as well as the harvard 396 * style cache on the SH-4. 397 */ 398 if (c->icache.flags & SH_CACHE_COMBINED) { 399 seq_printf(m, "unified\n"); 400 show_cacheinfo(m, "cache", c->icache); 401 } else { 402 seq_printf(m, "split (harvard)\n"); 403 show_cacheinfo(m, "icache", c->icache); 404 show_cacheinfo(m, "dcache", c->dcache); 405 } 406 407 /* Optional secondary cache */ 408 if (c->flags & CPU_HAS_L2_CACHE) 409 show_cacheinfo(m, "scache", c->scache); 410 411 seq_printf(m, "bogomips\t: %lu.%02lu\n", 412 c->loops_per_jiffy/(500000/HZ), 413 (c->loops_per_jiffy/(5000/HZ)) % 100); 414 415 return 0; 416 } 417 418 static void *c_start(struct seq_file *m, loff_t *pos) 419 { 420 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 421 } 422 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 423 { 424 ++*pos; 425 return c_start(m, pos); 426 } 427 static void c_stop(struct seq_file *m, void *v) 428 { 429 } 430 const struct seq_operations cpuinfo_op = { 431 .start = c_start, 432 .next = c_next, 433 .stop = c_stop, 434 .show = show_cpuinfo, 435 }; 436 #endif /* CONFIG_PROC_FS */ 437