1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/debugfs.h> 28 #include <asm/uaccess.h> 29 #include <asm/io.h> 30 #include <asm/page.h> 31 #include <asm/elf.h> 32 #include <asm/sections.h> 33 #include <asm/irq.h> 34 #include <asm/setup.h> 35 #include <asm/clock.h> 36 #include <asm/mmu_context.h> 37 38 /* 39 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 40 * This value will be used at the very early stage of serial setup. 41 * The bigger value means no problem. 42 */ 43 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 44 [0] = { 45 .type = CPU_SH_NONE, 46 .loops_per_jiffy = 10000000, 47 }, 48 }; 49 EXPORT_SYMBOL(cpu_data); 50 51 /* 52 * The machine vector. First entry in .machvec.init, or clobbered by 53 * sh_mv= on the command line, prior to .machvec.init teardown. 54 */ 55 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 56 EXPORT_SYMBOL(sh_mv); 57 58 #ifdef CONFIG_VT 59 struct screen_info screen_info; 60 #endif 61 62 extern int root_mountflags; 63 64 #define RAMDISK_IMAGE_START_MASK 0x07FF 65 #define RAMDISK_PROMPT_FLAG 0x8000 66 #define RAMDISK_LOAD_FLAG 0x4000 67 68 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 69 70 static struct resource code_resource = { 71 .name = "Kernel code", 72 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 73 }; 74 75 static struct resource data_resource = { 76 .name = "Kernel data", 77 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 78 }; 79 80 static struct resource bss_resource = { 81 .name = "Kernel bss", 82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 83 }; 84 85 unsigned long memory_start; 86 EXPORT_SYMBOL(memory_start); 87 unsigned long memory_end = 0; 88 EXPORT_SYMBOL(memory_end); 89 90 static struct resource mem_resources[MAX_NUMNODES]; 91 92 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 93 94 static int __init early_parse_mem(char *p) 95 { 96 unsigned long size; 97 98 memory_start = (unsigned long)__va(__MEMORY_START); 99 size = memparse(p, &p); 100 101 if (size > __MEMORY_SIZE) { 102 static char msg[] __initdata = KERN_ERR 103 "Using mem= to increase the size of kernel memory " 104 "is not allowed.\n" 105 " Recompile the kernel with the correct value for " 106 "CONFIG_MEMORY_SIZE.\n"; 107 printk(msg); 108 return 0; 109 } 110 111 memory_end = memory_start + size; 112 113 return 0; 114 } 115 early_param("mem", early_parse_mem); 116 117 /* 118 * Register fully available low RAM pages with the bootmem allocator. 119 */ 120 static void __init register_bootmem_low_pages(void) 121 { 122 unsigned long curr_pfn, last_pfn, pages; 123 124 /* 125 * We are rounding up the start address of usable memory: 126 */ 127 curr_pfn = PFN_UP(__MEMORY_START); 128 129 /* 130 * ... and at the end of the usable range downwards: 131 */ 132 last_pfn = PFN_DOWN(__pa(memory_end)); 133 134 if (last_pfn > max_low_pfn) 135 last_pfn = max_low_pfn; 136 137 pages = last_pfn - curr_pfn; 138 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 139 } 140 141 #ifdef CONFIG_KEXEC 142 static void __init reserve_crashkernel(void) 143 { 144 unsigned long long free_mem; 145 unsigned long long crash_size, crash_base; 146 int ret; 147 148 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 149 150 ret = parse_crashkernel(boot_command_line, free_mem, 151 &crash_size, &crash_base); 152 if (ret == 0 && crash_size) { 153 if (crash_base <= 0) { 154 printk(KERN_INFO "crashkernel reservation failed - " 155 "you have to specify a base address\n"); 156 return; 157 } 158 159 if (reserve_bootmem(crash_base, crash_size, 160 BOOTMEM_EXCLUSIVE) < 0) { 161 printk(KERN_INFO "crashkernel reservation failed - " 162 "memory is in use\n"); 163 return; 164 } 165 166 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 167 "for crashkernel (System RAM: %ldMB)\n", 168 (unsigned long)(crash_size >> 20), 169 (unsigned long)(crash_base >> 20), 170 (unsigned long)(free_mem >> 20)); 171 crashk_res.start = crash_base; 172 crashk_res.end = crash_base + crash_size - 1; 173 } 174 } 175 #else 176 static inline void __init reserve_crashkernel(void) 177 {} 178 #endif 179 180 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 181 unsigned long end_pfn) 182 { 183 struct resource *res = &mem_resources[nid]; 184 185 WARN_ON(res->name); /* max one active range per node for now */ 186 187 res->name = "System RAM"; 188 res->start = start_pfn << PAGE_SHIFT; 189 res->end = (end_pfn << PAGE_SHIFT) - 1; 190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 191 if (request_resource(&iomem_resource, res)) { 192 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 193 start_pfn, end_pfn); 194 return; 195 } 196 197 /* 198 * We don't know which RAM region contains kernel data, 199 * so we try it repeatedly and let the resource manager 200 * test it. 201 */ 202 request_resource(res, &code_resource); 203 request_resource(res, &data_resource); 204 request_resource(res, &bss_resource); 205 206 #ifdef CONFIG_KEXEC 207 if (crashk_res.start != crashk_res.end) 208 request_resource(res, &crashk_res); 209 #endif 210 211 add_active_range(nid, start_pfn, end_pfn); 212 } 213 214 void __init setup_bootmem_allocator(unsigned long free_pfn) 215 { 216 unsigned long bootmap_size; 217 218 /* 219 * Find a proper area for the bootmem bitmap. After this 220 * bootstrap step all allocations (until the page allocator 221 * is intact) must be done via bootmem_alloc(). 222 */ 223 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 224 min_low_pfn, max_low_pfn); 225 226 __add_active_range(0, min_low_pfn, max_low_pfn); 227 register_bootmem_low_pages(); 228 229 node_set_online(0); 230 231 /* 232 * Reserve the kernel text and 233 * Reserve the bootmem bitmap. We do this in two steps (first step 234 * was init_bootmem()), because this catches the (definitely buggy) 235 * case of us accidentally initializing the bootmem allocator with 236 * an invalid RAM area. 237 */ 238 reserve_bootmem(__MEMORY_START+PAGE_SIZE, 239 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START, 240 BOOTMEM_DEFAULT); 241 242 /* 243 * reserve physical page 0 - it's a special BIOS page on many boxes, 244 * enabling clean reboots, SMP operation, laptop functions. 245 */ 246 reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT); 247 248 sparse_memory_present_with_active_regions(0); 249 250 #ifdef CONFIG_BLK_DEV_INITRD 251 ROOT_DEV = Root_RAM0; 252 253 if (LOADER_TYPE && INITRD_START) { 254 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { 255 reserve_bootmem(INITRD_START + __MEMORY_START, 256 INITRD_SIZE, BOOTMEM_DEFAULT); 257 initrd_start = INITRD_START + PAGE_OFFSET + 258 __MEMORY_START; 259 initrd_end = initrd_start + INITRD_SIZE; 260 } else { 261 printk("initrd extends beyond end of memory " 262 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 263 INITRD_START + INITRD_SIZE, 264 max_low_pfn << PAGE_SHIFT); 265 initrd_start = 0; 266 } 267 } 268 #endif 269 270 reserve_crashkernel(); 271 } 272 273 #ifndef CONFIG_NEED_MULTIPLE_NODES 274 static void __init setup_memory(void) 275 { 276 unsigned long start_pfn; 277 278 /* 279 * Partially used pages are not usable - thus 280 * we are rounding upwards: 281 */ 282 start_pfn = PFN_UP(__pa(_end)); 283 setup_bootmem_allocator(start_pfn); 284 } 285 #else 286 extern void __init setup_memory(void); 287 #endif 288 289 void __init setup_arch(char **cmdline_p) 290 { 291 enable_mmu(); 292 293 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 294 295 printk(KERN_NOTICE "Boot params:\n" 296 "... MOUNT_ROOT_RDONLY - %08lx\n" 297 "... RAMDISK_FLAGS - %08lx\n" 298 "... ORIG_ROOT_DEV - %08lx\n" 299 "... LOADER_TYPE - %08lx\n" 300 "... INITRD_START - %08lx\n" 301 "... INITRD_SIZE - %08lx\n", 302 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 303 ORIG_ROOT_DEV, LOADER_TYPE, 304 INITRD_START, INITRD_SIZE); 305 306 #ifdef CONFIG_BLK_DEV_RAM 307 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 308 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 309 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 310 #endif 311 312 if (!MOUNT_ROOT_RDONLY) 313 root_mountflags &= ~MS_RDONLY; 314 init_mm.start_code = (unsigned long) _text; 315 init_mm.end_code = (unsigned long) _etext; 316 init_mm.end_data = (unsigned long) _edata; 317 init_mm.brk = (unsigned long) _end; 318 319 code_resource.start = virt_to_phys(_text); 320 code_resource.end = virt_to_phys(_etext)-1; 321 data_resource.start = virt_to_phys(_etext); 322 data_resource.end = virt_to_phys(_edata)-1; 323 bss_resource.start = virt_to_phys(__bss_start); 324 bss_resource.end = virt_to_phys(_ebss)-1; 325 326 memory_start = (unsigned long)__va(__MEMORY_START); 327 if (!memory_end) 328 memory_end = memory_start + __MEMORY_SIZE; 329 330 #ifdef CONFIG_CMDLINE_BOOL 331 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 332 #else 333 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 334 #endif 335 336 /* Save unparsed command line copy for /proc/cmdline */ 337 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 338 *cmdline_p = command_line; 339 340 parse_early_param(); 341 342 sh_mv_setup(); 343 344 /* 345 * Find the highest page frame number we have available 346 */ 347 max_pfn = PFN_DOWN(__pa(memory_end)); 348 349 /* 350 * Determine low and high memory ranges: 351 */ 352 max_low_pfn = max_pfn; 353 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 354 355 nodes_clear(node_online_map); 356 357 /* Setup bootmem with available RAM */ 358 setup_memory(); 359 sparse_init(); 360 361 #ifdef CONFIG_DUMMY_CONSOLE 362 conswitchp = &dummy_con; 363 #endif 364 365 /* Perform the machine specific initialisation */ 366 if (likely(sh_mv.mv_setup)) 367 sh_mv.mv_setup(cmdline_p); 368 369 paging_init(); 370 371 #ifdef CONFIG_SMP 372 plat_smp_setup(); 373 #endif 374 } 375 376 static const char *cpu_name[] = { 377 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 378 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 379 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 380 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 381 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 382 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 383 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 384 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 385 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 386 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 387 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 388 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 389 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 390 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 391 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 392 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 393 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 394 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown" 395 }; 396 397 const char *get_cpu_subtype(struct sh_cpuinfo *c) 398 { 399 return cpu_name[c->type]; 400 } 401 402 #ifdef CONFIG_PROC_FS 403 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 404 static const char *cpu_flags[] = { 405 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 406 "ptea", "llsc", "l2", "op32", NULL 407 }; 408 409 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 410 { 411 unsigned long i; 412 413 seq_printf(m, "cpu flags\t:"); 414 415 if (!c->flags) { 416 seq_printf(m, " %s\n", cpu_flags[0]); 417 return; 418 } 419 420 for (i = 0; cpu_flags[i]; i++) 421 if ((c->flags & (1 << i))) 422 seq_printf(m, " %s", cpu_flags[i+1]); 423 424 seq_printf(m, "\n"); 425 } 426 427 static void show_cacheinfo(struct seq_file *m, const char *type, 428 struct cache_info info) 429 { 430 unsigned int cache_size; 431 432 cache_size = info.ways * info.sets * info.linesz; 433 434 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 435 type, cache_size >> 10, info.ways); 436 } 437 438 /* 439 * Get CPU information for use by the procfs. 440 */ 441 static int show_cpuinfo(struct seq_file *m, void *v) 442 { 443 struct sh_cpuinfo *c = v; 444 unsigned int cpu = c - cpu_data; 445 446 if (!cpu_online(cpu)) 447 return 0; 448 449 if (cpu == 0) 450 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 451 452 seq_printf(m, "processor\t: %d\n", cpu); 453 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 454 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 455 456 show_cpuflags(m, c); 457 458 seq_printf(m, "cache type\t: "); 459 460 /* 461 * Check for what type of cache we have, we support both the 462 * unified cache on the SH-2 and SH-3, as well as the harvard 463 * style cache on the SH-4. 464 */ 465 if (c->icache.flags & SH_CACHE_COMBINED) { 466 seq_printf(m, "unified\n"); 467 show_cacheinfo(m, "cache", c->icache); 468 } else { 469 seq_printf(m, "split (harvard)\n"); 470 show_cacheinfo(m, "icache", c->icache); 471 show_cacheinfo(m, "dcache", c->dcache); 472 } 473 474 /* Optional secondary cache */ 475 if (c->flags & CPU_HAS_L2_CACHE) 476 show_cacheinfo(m, "scache", c->scache); 477 478 seq_printf(m, "bogomips\t: %lu.%02lu\n", 479 c->loops_per_jiffy/(500000/HZ), 480 (c->loops_per_jiffy/(5000/HZ)) % 100); 481 482 return 0; 483 } 484 485 static void *c_start(struct seq_file *m, loff_t *pos) 486 { 487 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 488 } 489 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 490 { 491 ++*pos; 492 return c_start(m, pos); 493 } 494 static void c_stop(struct seq_file *m, void *v) 495 { 496 } 497 const struct seq_operations cpuinfo_op = { 498 .start = c_start, 499 .next = c_next, 500 .stop = c_stop, 501 .show = show_cpuinfo, 502 }; 503 #endif /* CONFIG_PROC_FS */ 504 505 struct dentry *sh_debugfs_root; 506 507 static int __init sh_debugfs_init(void) 508 { 509 sh_debugfs_root = debugfs_create_dir("sh", NULL); 510 if (IS_ERR(sh_debugfs_root)) 511 return PTR_ERR(sh_debugfs_root); 512 513 return 0; 514 } 515 arch_initcall(sh_debugfs_init); 516