xref: /openbmc/linux/arch/sh/kernel/setup.c (revision 545e4006)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/elf.h>
32 #include <asm/sections.h>
33 #include <asm/irq.h>
34 #include <asm/setup.h>
35 #include <asm/clock.h>
36 #include <asm/mmu_context.h>
37 
38 /*
39  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
40  * This value will be used at the very early stage of serial setup.
41  * The bigger value means no problem.
42  */
43 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
44 	[0] = {
45 		.type			= CPU_SH_NONE,
46 		.loops_per_jiffy	= 10000000,
47 	},
48 };
49 EXPORT_SYMBOL(cpu_data);
50 
51 /*
52  * The machine vector. First entry in .machvec.init, or clobbered by
53  * sh_mv= on the command line, prior to .machvec.init teardown.
54  */
55 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
56 EXPORT_SYMBOL(sh_mv);
57 
58 #ifdef CONFIG_VT
59 struct screen_info screen_info;
60 #endif
61 
62 extern int root_mountflags;
63 
64 #define RAMDISK_IMAGE_START_MASK	0x07FF
65 #define RAMDISK_PROMPT_FLAG		0x8000
66 #define RAMDISK_LOAD_FLAG		0x4000
67 
68 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
69 
70 static struct resource code_resource = {
71 	.name = "Kernel code",
72 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
73 };
74 
75 static struct resource data_resource = {
76 	.name = "Kernel data",
77 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
78 };
79 
80 static struct resource bss_resource = {
81 	.name	= "Kernel bss",
82 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
83 };
84 
85 unsigned long memory_start;
86 EXPORT_SYMBOL(memory_start);
87 unsigned long memory_end = 0;
88 EXPORT_SYMBOL(memory_end);
89 
90 static struct resource mem_resources[MAX_NUMNODES];
91 
92 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
93 
94 static int __init early_parse_mem(char *p)
95 {
96 	unsigned long size;
97 
98 	memory_start = (unsigned long)__va(__MEMORY_START);
99 	size = memparse(p, &p);
100 
101 	if (size > __MEMORY_SIZE) {
102 		static char msg[] __initdata = KERN_ERR
103 			"Using mem= to increase the size of kernel memory "
104 			"is not allowed.\n"
105 			"  Recompile the kernel with the correct value for "
106 			"CONFIG_MEMORY_SIZE.\n";
107 		printk(msg);
108 		return 0;
109 	}
110 
111 	memory_end = memory_start + size;
112 
113 	return 0;
114 }
115 early_param("mem", early_parse_mem);
116 
117 /*
118  * Register fully available low RAM pages with the bootmem allocator.
119  */
120 static void __init register_bootmem_low_pages(void)
121 {
122 	unsigned long curr_pfn, last_pfn, pages;
123 
124 	/*
125 	 * We are rounding up the start address of usable memory:
126 	 */
127 	curr_pfn = PFN_UP(__MEMORY_START);
128 
129 	/*
130 	 * ... and at the end of the usable range downwards:
131 	 */
132 	last_pfn = PFN_DOWN(__pa(memory_end));
133 
134 	if (last_pfn > max_low_pfn)
135 		last_pfn = max_low_pfn;
136 
137 	pages = last_pfn - curr_pfn;
138 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
139 }
140 
141 #ifdef CONFIG_KEXEC
142 static void __init reserve_crashkernel(void)
143 {
144 	unsigned long long free_mem;
145 	unsigned long long crash_size, crash_base;
146 	int ret;
147 
148 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
149 
150 	ret = parse_crashkernel(boot_command_line, free_mem,
151 			&crash_size, &crash_base);
152 	if (ret == 0 && crash_size) {
153 		if (crash_base <= 0) {
154 			printk(KERN_INFO "crashkernel reservation failed - "
155 					"you have to specify a base address\n");
156 			return;
157 		}
158 
159 		if (reserve_bootmem(crash_base, crash_size,
160 					BOOTMEM_EXCLUSIVE) < 0) {
161 			printk(KERN_INFO "crashkernel reservation failed - "
162 					"memory is in use\n");
163 			return;
164 		}
165 
166 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
167 				"for crashkernel (System RAM: %ldMB)\n",
168 				(unsigned long)(crash_size >> 20),
169 				(unsigned long)(crash_base >> 20),
170 				(unsigned long)(free_mem >> 20));
171 		crashk_res.start = crash_base;
172 		crashk_res.end   = crash_base + crash_size - 1;
173 	}
174 }
175 #else
176 static inline void __init reserve_crashkernel(void)
177 {}
178 #endif
179 
180 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
181 						unsigned long end_pfn)
182 {
183 	struct resource *res = &mem_resources[nid];
184 
185 	WARN_ON(res->name); /* max one active range per node for now */
186 
187 	res->name = "System RAM";
188 	res->start = start_pfn << PAGE_SHIFT;
189 	res->end = (end_pfn << PAGE_SHIFT) - 1;
190 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
191 	if (request_resource(&iomem_resource, res)) {
192 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
193 		       start_pfn, end_pfn);
194 		return;
195 	}
196 
197 	/*
198 	 *  We don't know which RAM region contains kernel data,
199 	 *  so we try it repeatedly and let the resource manager
200 	 *  test it.
201 	 */
202 	request_resource(res, &code_resource);
203 	request_resource(res, &data_resource);
204 	request_resource(res, &bss_resource);
205 
206 #ifdef CONFIG_KEXEC
207 	if (crashk_res.start != crashk_res.end)
208 		request_resource(res, &crashk_res);
209 #endif
210 
211 	add_active_range(nid, start_pfn, end_pfn);
212 }
213 
214 void __init setup_bootmem_allocator(unsigned long free_pfn)
215 {
216 	unsigned long bootmap_size;
217 
218 	/*
219 	 * Find a proper area for the bootmem bitmap. After this
220 	 * bootstrap step all allocations (until the page allocator
221 	 * is intact) must be done via bootmem_alloc().
222 	 */
223 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
224 					 min_low_pfn, max_low_pfn);
225 
226 	__add_active_range(0, min_low_pfn, max_low_pfn);
227 	register_bootmem_low_pages();
228 
229 	node_set_online(0);
230 
231 	/*
232 	 * Reserve the kernel text and
233 	 * Reserve the bootmem bitmap. We do this in two steps (first step
234 	 * was init_bootmem()), because this catches the (definitely buggy)
235 	 * case of us accidentally initializing the bootmem allocator with
236 	 * an invalid RAM area.
237 	 */
238 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
239 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
240 		BOOTMEM_DEFAULT);
241 
242 	/*
243 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
244 	 * enabling clean reboots, SMP operation, laptop functions.
245 	 */
246 	reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
247 
248 	sparse_memory_present_with_active_regions(0);
249 
250 #ifdef CONFIG_BLK_DEV_INITRD
251 	ROOT_DEV = Root_RAM0;
252 
253 	if (LOADER_TYPE && INITRD_START) {
254 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
255 			reserve_bootmem(INITRD_START + __MEMORY_START,
256 					INITRD_SIZE, BOOTMEM_DEFAULT);
257 			initrd_start = INITRD_START + PAGE_OFFSET +
258 					__MEMORY_START;
259 			initrd_end = initrd_start + INITRD_SIZE;
260 		} else {
261 			printk("initrd extends beyond end of memory "
262 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
263 				    INITRD_START + INITRD_SIZE,
264 				    max_low_pfn << PAGE_SHIFT);
265 			initrd_start = 0;
266 		}
267 	}
268 #endif
269 
270 	reserve_crashkernel();
271 }
272 
273 #ifndef CONFIG_NEED_MULTIPLE_NODES
274 static void __init setup_memory(void)
275 {
276 	unsigned long start_pfn;
277 
278 	/*
279 	 * Partially used pages are not usable - thus
280 	 * we are rounding upwards:
281 	 */
282 	start_pfn = PFN_UP(__pa(_end));
283 	setup_bootmem_allocator(start_pfn);
284 }
285 #else
286 extern void __init setup_memory(void);
287 #endif
288 
289 void __init setup_arch(char **cmdline_p)
290 {
291 	enable_mmu();
292 
293 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
294 
295 	printk(KERN_NOTICE "Boot params:\n"
296 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
297 			   "... RAMDISK_FLAGS     - %08lx\n"
298 			   "... ORIG_ROOT_DEV     - %08lx\n"
299 			   "... LOADER_TYPE       - %08lx\n"
300 			   "... INITRD_START      - %08lx\n"
301 			   "... INITRD_SIZE       - %08lx\n",
302 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
303 			   ORIG_ROOT_DEV, LOADER_TYPE,
304 			   INITRD_START, INITRD_SIZE);
305 
306 #ifdef CONFIG_BLK_DEV_RAM
307 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
308 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
309 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
310 #endif
311 
312 	if (!MOUNT_ROOT_RDONLY)
313 		root_mountflags &= ~MS_RDONLY;
314 	init_mm.start_code = (unsigned long) _text;
315 	init_mm.end_code = (unsigned long) _etext;
316 	init_mm.end_data = (unsigned long) _edata;
317 	init_mm.brk = (unsigned long) _end;
318 
319 	code_resource.start = virt_to_phys(_text);
320 	code_resource.end = virt_to_phys(_etext)-1;
321 	data_resource.start = virt_to_phys(_etext);
322 	data_resource.end = virt_to_phys(_edata)-1;
323 	bss_resource.start = virt_to_phys(__bss_start);
324 	bss_resource.end = virt_to_phys(_ebss)-1;
325 
326 	memory_start = (unsigned long)__va(__MEMORY_START);
327 	if (!memory_end)
328 		memory_end = memory_start + __MEMORY_SIZE;
329 
330 #ifdef CONFIG_CMDLINE_BOOL
331 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
332 #else
333 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
334 #endif
335 
336 	/* Save unparsed command line copy for /proc/cmdline */
337 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
338 	*cmdline_p = command_line;
339 
340 	parse_early_param();
341 
342 	sh_mv_setup();
343 
344 	/*
345 	 * Find the highest page frame number we have available
346 	 */
347 	max_pfn = PFN_DOWN(__pa(memory_end));
348 
349 	/*
350 	 * Determine low and high memory ranges:
351 	 */
352 	max_low_pfn = max_pfn;
353 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
354 
355 	nodes_clear(node_online_map);
356 
357 	/* Setup bootmem with available RAM */
358 	setup_memory();
359 	sparse_init();
360 
361 #ifdef CONFIG_DUMMY_CONSOLE
362 	conswitchp = &dummy_con;
363 #endif
364 
365 	/* Perform the machine specific initialisation */
366 	if (likely(sh_mv.mv_setup))
367 		sh_mv.mv_setup(cmdline_p);
368 
369 	paging_init();
370 
371 #ifdef CONFIG_SMP
372 	plat_smp_setup();
373 #endif
374 }
375 
376 static const char *cpu_name[] = {
377 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
378 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
379 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
380 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
381 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
382 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
383 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
384 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
385 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
386 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
387 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
388 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
389 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
390 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
391 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
392 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
393 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
394 	[CPU_SH7366]	= "SH7366",	[CPU_SH_NONE]	= "Unknown"
395 };
396 
397 const char *get_cpu_subtype(struct sh_cpuinfo *c)
398 {
399 	return cpu_name[c->type];
400 }
401 
402 #ifdef CONFIG_PROC_FS
403 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
404 static const char *cpu_flags[] = {
405 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
406 	"ptea", "llsc", "l2", "op32", NULL
407 };
408 
409 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
410 {
411 	unsigned long i;
412 
413 	seq_printf(m, "cpu flags\t:");
414 
415 	if (!c->flags) {
416 		seq_printf(m, " %s\n", cpu_flags[0]);
417 		return;
418 	}
419 
420 	for (i = 0; cpu_flags[i]; i++)
421 		if ((c->flags & (1 << i)))
422 			seq_printf(m, " %s", cpu_flags[i+1]);
423 
424 	seq_printf(m, "\n");
425 }
426 
427 static void show_cacheinfo(struct seq_file *m, const char *type,
428 			   struct cache_info info)
429 {
430 	unsigned int cache_size;
431 
432 	cache_size = info.ways * info.sets * info.linesz;
433 
434 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
435 		   type, cache_size >> 10, info.ways);
436 }
437 
438 /*
439  *	Get CPU information for use by the procfs.
440  */
441 static int show_cpuinfo(struct seq_file *m, void *v)
442 {
443 	struct sh_cpuinfo *c = v;
444 	unsigned int cpu = c - cpu_data;
445 
446 	if (!cpu_online(cpu))
447 		return 0;
448 
449 	if (cpu == 0)
450 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
451 
452 	seq_printf(m, "processor\t: %d\n", cpu);
453 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
454 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
455 
456 	show_cpuflags(m, c);
457 
458 	seq_printf(m, "cache type\t: ");
459 
460 	/*
461 	 * Check for what type of cache we have, we support both the
462 	 * unified cache on the SH-2 and SH-3, as well as the harvard
463 	 * style cache on the SH-4.
464 	 */
465 	if (c->icache.flags & SH_CACHE_COMBINED) {
466 		seq_printf(m, "unified\n");
467 		show_cacheinfo(m, "cache", c->icache);
468 	} else {
469 		seq_printf(m, "split (harvard)\n");
470 		show_cacheinfo(m, "icache", c->icache);
471 		show_cacheinfo(m, "dcache", c->dcache);
472 	}
473 
474 	/* Optional secondary cache */
475 	if (c->flags & CPU_HAS_L2_CACHE)
476 		show_cacheinfo(m, "scache", c->scache);
477 
478 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
479 		     c->loops_per_jiffy/(500000/HZ),
480 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
481 
482 	return 0;
483 }
484 
485 static void *c_start(struct seq_file *m, loff_t *pos)
486 {
487 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
488 }
489 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
490 {
491 	++*pos;
492 	return c_start(m, pos);
493 }
494 static void c_stop(struct seq_file *m, void *v)
495 {
496 }
497 const struct seq_operations cpuinfo_op = {
498 	.start	= c_start,
499 	.next	= c_next,
500 	.stop	= c_stop,
501 	.show	= show_cpuinfo,
502 };
503 #endif /* CONFIG_PROC_FS */
504 
505 struct dentry *sh_debugfs_root;
506 
507 static int __init sh_debugfs_init(void)
508 {
509 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
510 	if (IS_ERR(sh_debugfs_root))
511 		return PTR_ERR(sh_debugfs_root);
512 
513 	return 0;
514 }
515 arch_initcall(sh_debugfs_init);
516