xref: /openbmc/linux/arch/sh/kernel/setup.c (revision 06d352f2)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/mmu_context.h>
43 
44 /*
45  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
46  * This value will be used at the very early stage of serial setup.
47  * The bigger value means no problem.
48  */
49 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
50 	[0] = {
51 		.type			= CPU_SH_NONE,
52 		.family			= CPU_FAMILY_UNKNOWN,
53 		.loops_per_jiffy	= 10000000,
54 	},
55 };
56 EXPORT_SYMBOL(cpu_data);
57 
58 /*
59  * The machine vector. First entry in .machvec.init, or clobbered by
60  * sh_mv= on the command line, prior to .machvec.init teardown.
61  */
62 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
63 EXPORT_SYMBOL(sh_mv);
64 
65 #ifdef CONFIG_VT
66 struct screen_info screen_info;
67 #endif
68 
69 extern int root_mountflags;
70 
71 #define RAMDISK_IMAGE_START_MASK	0x07FF
72 #define RAMDISK_PROMPT_FLAG		0x8000
73 #define RAMDISK_LOAD_FLAG		0x4000
74 
75 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
76 
77 static struct resource code_resource = {
78 	.name = "Kernel code",
79 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
80 };
81 
82 static struct resource data_resource = {
83 	.name = "Kernel data",
84 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
85 };
86 
87 static struct resource bss_resource = {
88 	.name	= "Kernel bss",
89 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
90 };
91 
92 unsigned long memory_start;
93 EXPORT_SYMBOL(memory_start);
94 unsigned long memory_end = 0;
95 EXPORT_SYMBOL(memory_end);
96 
97 static struct resource mem_resources[MAX_NUMNODES];
98 
99 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
100 
101 static int __init early_parse_mem(char *p)
102 {
103 	unsigned long size;
104 
105 	memory_start = (unsigned long)__va(__MEMORY_START);
106 	size = memparse(p, &p);
107 
108 	if (size > __MEMORY_SIZE) {
109 		printk(KERN_ERR
110 			"Using mem= to increase the size of kernel memory "
111 			"is not allowed.\n"
112 			"  Recompile the kernel with the correct value for "
113 			"CONFIG_MEMORY_SIZE.\n");
114 		return 0;
115 	}
116 
117 	memory_end = memory_start + size;
118 
119 	return 0;
120 }
121 early_param("mem", early_parse_mem);
122 
123 /*
124  * Register fully available low RAM pages with the bootmem allocator.
125  */
126 static void __init register_bootmem_low_pages(void)
127 {
128 	unsigned long curr_pfn, last_pfn, pages;
129 
130 	/*
131 	 * We are rounding up the start address of usable memory:
132 	 */
133 	curr_pfn = PFN_UP(__MEMORY_START);
134 
135 	/*
136 	 * ... and at the end of the usable range downwards:
137 	 */
138 	last_pfn = PFN_DOWN(__pa(memory_end));
139 
140 	if (last_pfn > max_low_pfn)
141 		last_pfn = max_low_pfn;
142 
143 	pages = last_pfn - curr_pfn;
144 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
145 }
146 
147 #ifdef CONFIG_KEXEC
148 static void __init reserve_crashkernel(void)
149 {
150 	unsigned long long free_mem;
151 	unsigned long long crash_size, crash_base;
152 	void *vp;
153 	int ret;
154 
155 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
156 
157 	ret = parse_crashkernel(boot_command_line, free_mem,
158 			&crash_size, &crash_base);
159 	if (ret == 0 && crash_size) {
160 		if (crash_base <= 0) {
161 			vp = alloc_bootmem_nopanic(crash_size);
162 			if (!vp) {
163 				printk(KERN_INFO "crashkernel allocation "
164 				       "failed\n");
165 				return;
166 			}
167 			crash_base = __pa(vp);
168 		} else if (reserve_bootmem(crash_base, crash_size,
169 					BOOTMEM_EXCLUSIVE) < 0) {
170 			printk(KERN_INFO "crashkernel reservation failed - "
171 					"memory is in use\n");
172 			return;
173 		}
174 
175 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
176 				"for crashkernel (System RAM: %ldMB)\n",
177 				(unsigned long)(crash_size >> 20),
178 				(unsigned long)(crash_base >> 20),
179 				(unsigned long)(free_mem >> 20));
180 		crashk_res.start = crash_base;
181 		crashk_res.end   = crash_base + crash_size - 1;
182 		insert_resource(&iomem_resource, &crashk_res);
183 	}
184 }
185 #else
186 static inline void __init reserve_crashkernel(void)
187 {}
188 #endif
189 
190 void __cpuinit calibrate_delay(void)
191 {
192 	struct clk *clk = clk_get(NULL, "cpu_clk");
193 
194 	if (IS_ERR(clk))
195 		panic("Need a sane CPU clock definition!");
196 
197 	loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
198 
199 	printk(KERN_INFO "Calibrating delay loop (skipped)... "
200 			 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
201 			 loops_per_jiffy/(500000/HZ),
202 			 (loops_per_jiffy/(5000/HZ)) % 100,
203 			 loops_per_jiffy);
204 }
205 
206 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
207 						unsigned long end_pfn)
208 {
209 	struct resource *res = &mem_resources[nid];
210 
211 	WARN_ON(res->name); /* max one active range per node for now */
212 
213 	res->name = "System RAM";
214 	res->start = start_pfn << PAGE_SHIFT;
215 	res->end = (end_pfn << PAGE_SHIFT) - 1;
216 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
217 	if (request_resource(&iomem_resource, res)) {
218 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
219 		       start_pfn, end_pfn);
220 		return;
221 	}
222 
223 	/*
224 	 *  We don't know which RAM region contains kernel data,
225 	 *  so we try it repeatedly and let the resource manager
226 	 *  test it.
227 	 */
228 	request_resource(res, &code_resource);
229 	request_resource(res, &data_resource);
230 	request_resource(res, &bss_resource);
231 
232 	add_active_range(nid, start_pfn, end_pfn);
233 }
234 
235 void __init setup_bootmem_allocator(unsigned long free_pfn)
236 {
237 	unsigned long bootmap_size;
238 	unsigned long bootmap_pages, bootmem_paddr;
239 	u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
240 	int i;
241 
242 	bootmap_pages = bootmem_bootmap_pages(total_pages);
243 
244 	bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
245 
246 	/*
247 	 * Find a proper area for the bootmem bitmap. After this
248 	 * bootstrap step all allocations (until the page allocator
249 	 * is intact) must be done via bootmem_alloc().
250 	 */
251 	bootmap_size = init_bootmem_node(NODE_DATA(0),
252 					 bootmem_paddr >> PAGE_SHIFT,
253 					 min_low_pfn, max_low_pfn);
254 
255 	/* Add active regions with valid PFNs. */
256 	for (i = 0; i < lmb.memory.cnt; i++) {
257 		unsigned long start_pfn, end_pfn;
258 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
259 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
260 		__add_active_range(0, start_pfn, end_pfn);
261 	}
262 
263 	/*
264 	 * Add all physical memory to the bootmem map and mark each
265 	 * area as present.
266 	 */
267 	register_bootmem_low_pages();
268 
269 	/* Reserve the sections we're already using. */
270 	for (i = 0; i < lmb.reserved.cnt; i++)
271 		reserve_bootmem(lmb.reserved.region[i].base,
272 				lmb_size_bytes(&lmb.reserved, i),
273 				BOOTMEM_DEFAULT);
274 
275 	node_set_online(0);
276 
277 	sparse_memory_present_with_active_regions(0);
278 
279 #ifdef CONFIG_BLK_DEV_INITRD
280 	ROOT_DEV = Root_RAM0;
281 
282 	if (LOADER_TYPE && INITRD_START) {
283 		unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
284 
285 		if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
286 			reserve_bootmem(initrd_start_phys, INITRD_SIZE,
287 					BOOTMEM_DEFAULT);
288 			initrd_start = (unsigned long)__va(initrd_start_phys);
289 			initrd_end = initrd_start + INITRD_SIZE;
290 		} else {
291 			printk("initrd extends beyond end of memory "
292 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
293 			       initrd_start_phys + INITRD_SIZE,
294 			       (unsigned long)PFN_PHYS(max_low_pfn));
295 			initrd_start = 0;
296 		}
297 	}
298 #endif
299 
300 	reserve_crashkernel();
301 }
302 
303 #ifndef CONFIG_NEED_MULTIPLE_NODES
304 static void __init setup_memory(void)
305 {
306 	unsigned long start_pfn;
307 	u64 base = min_low_pfn << PAGE_SHIFT;
308 	u64 size = (max_low_pfn << PAGE_SHIFT) - base;
309 
310 	/*
311 	 * Partially used pages are not usable - thus
312 	 * we are rounding upwards:
313 	 */
314 	start_pfn = PFN_UP(__pa(_end));
315 
316 	lmb_add(base, size);
317 
318 	/*
319 	 * Reserve the kernel text and
320 	 * Reserve the bootmem bitmap. We do this in two steps (first step
321 	 * was init_bootmem()), because this catches the (definitely buggy)
322 	 * case of us accidentally initializing the bootmem allocator with
323 	 * an invalid RAM area.
324 	 */
325 	lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
326 		    (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
327 		    (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
328 
329 	/*
330 	 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
331 	 */
332 	if (CONFIG_ZERO_PAGE_OFFSET != 0)
333 		lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
334 
335 	lmb_analyze();
336 	lmb_dump_all();
337 
338 	setup_bootmem_allocator(start_pfn);
339 }
340 #else
341 extern void __init setup_memory(void);
342 #endif
343 
344 /*
345  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
346  * is_kdump_kernel() to determine if we are booting after a panic. Hence
347  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
348  */
349 #ifdef CONFIG_CRASH_DUMP
350 /* elfcorehdr= specifies the location of elf core header
351  * stored by the crashed kernel.
352  */
353 static int __init parse_elfcorehdr(char *arg)
354 {
355 	if (!arg)
356 		return -EINVAL;
357 	elfcorehdr_addr = memparse(arg, &arg);
358 	return 0;
359 }
360 early_param("elfcorehdr", parse_elfcorehdr);
361 #endif
362 
363 void __init __attribute__ ((weak)) plat_early_device_setup(void)
364 {
365 }
366 
367 void __init setup_arch(char **cmdline_p)
368 {
369 	enable_mmu();
370 
371 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
372 
373 	printk(KERN_NOTICE "Boot params:\n"
374 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
375 			   "... RAMDISK_FLAGS     - %08lx\n"
376 			   "... ORIG_ROOT_DEV     - %08lx\n"
377 			   "... LOADER_TYPE       - %08lx\n"
378 			   "... INITRD_START      - %08lx\n"
379 			   "... INITRD_SIZE       - %08lx\n",
380 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
381 			   ORIG_ROOT_DEV, LOADER_TYPE,
382 			   INITRD_START, INITRD_SIZE);
383 
384 #ifdef CONFIG_BLK_DEV_RAM
385 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
386 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
387 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
388 #endif
389 
390 	if (!MOUNT_ROOT_RDONLY)
391 		root_mountflags &= ~MS_RDONLY;
392 	init_mm.start_code = (unsigned long) _text;
393 	init_mm.end_code = (unsigned long) _etext;
394 	init_mm.end_data = (unsigned long) _edata;
395 	init_mm.brk = (unsigned long) _end;
396 
397 	code_resource.start = virt_to_phys(_text);
398 	code_resource.end = virt_to_phys(_etext)-1;
399 	data_resource.start = virt_to_phys(_etext);
400 	data_resource.end = virt_to_phys(_edata)-1;
401 	bss_resource.start = virt_to_phys(__bss_start);
402 	bss_resource.end = virt_to_phys(_ebss)-1;
403 
404 	memory_start = (unsigned long)__va(__MEMORY_START);
405 	if (!memory_end)
406 		memory_end = memory_start + __MEMORY_SIZE;
407 
408 #ifdef CONFIG_CMDLINE_OVERWRITE
409 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
410 #else
411 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
412 #ifdef CONFIG_CMDLINE_EXTEND
413 	strlcat(command_line, " ", sizeof(command_line));
414 	strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
415 #endif
416 #endif
417 
418 	/* Save unparsed command line copy for /proc/cmdline */
419 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
420 	*cmdline_p = command_line;
421 
422 	parse_early_param();
423 
424 	plat_early_device_setup();
425 
426 	/* Let earlyprintk output early console messages */
427 	early_platform_driver_probe("earlyprintk", 1, 1);
428 
429 	sh_mv_setup();
430 
431 	/*
432 	 * Find the highest page frame number we have available
433 	 */
434 	max_pfn = PFN_DOWN(__pa(memory_end));
435 
436 	/*
437 	 * Determine low and high memory ranges:
438 	 */
439 	max_low_pfn = max_pfn;
440 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
441 
442 	nodes_clear(node_online_map);
443 
444 	/* Setup bootmem with available RAM */
445 	lmb_init();
446 	setup_memory();
447 	sparse_init();
448 
449 #ifdef CONFIG_DUMMY_CONSOLE
450 	conswitchp = &dummy_con;
451 #endif
452 
453 	/* Perform the machine specific initialisation */
454 	if (likely(sh_mv.mv_setup))
455 		sh_mv.mv_setup(cmdline_p);
456 
457 	paging_init();
458 
459 #ifdef CONFIG_PMB_ENABLE
460 	pmb_init();
461 #endif
462 
463 #ifdef CONFIG_SMP
464 	plat_smp_setup();
465 #endif
466 }
467 
468 /* processor boot mode configuration */
469 int generic_mode_pins(void)
470 {
471 	pr_warning("generic_mode_pins(): missing mode pin configuration\n");
472 	return 0;
473 }
474 
475 int test_mode_pin(int pin)
476 {
477 	return sh_mv.mv_mode_pins() & pin;
478 }
479 
480 static const char *cpu_name[] = {
481 	[CPU_SH7201]	= "SH7201",
482 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
483 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
484 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
485 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
486 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
487 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
488 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
489 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
490 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
491 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
492 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
493 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
494 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
495 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
496 	[CPU_SH7786]	= "SH7786",	[CPU_SH7757]	= "SH7757",
497 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
498 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
499 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
500 	[CPU_SH7366]	= "SH7366",	[CPU_SH7724]	= "SH7724",
501 	[CPU_SH_NONE]	= "Unknown"
502 };
503 
504 const char *get_cpu_subtype(struct sh_cpuinfo *c)
505 {
506 	return cpu_name[c->type];
507 }
508 EXPORT_SYMBOL(get_cpu_subtype);
509 
510 #ifdef CONFIG_PROC_FS
511 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
512 static const char *cpu_flags[] = {
513 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
514 	"ptea", "llsc", "l2", "op32", "pteaex", NULL
515 };
516 
517 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
518 {
519 	unsigned long i;
520 
521 	seq_printf(m, "cpu flags\t:");
522 
523 	if (!c->flags) {
524 		seq_printf(m, " %s\n", cpu_flags[0]);
525 		return;
526 	}
527 
528 	for (i = 0; cpu_flags[i]; i++)
529 		if ((c->flags & (1 << i)))
530 			seq_printf(m, " %s", cpu_flags[i+1]);
531 
532 	seq_printf(m, "\n");
533 }
534 
535 static void show_cacheinfo(struct seq_file *m, const char *type,
536 			   struct cache_info info)
537 {
538 	unsigned int cache_size;
539 
540 	cache_size = info.ways * info.sets * info.linesz;
541 
542 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
543 		   type, cache_size >> 10, info.ways);
544 }
545 
546 /*
547  *	Get CPU information for use by the procfs.
548  */
549 static int show_cpuinfo(struct seq_file *m, void *v)
550 {
551 	struct sh_cpuinfo *c = v;
552 	unsigned int cpu = c - cpu_data;
553 
554 	if (!cpu_online(cpu))
555 		return 0;
556 
557 	if (cpu == 0)
558 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
559 	else
560 		seq_printf(m, "\n");
561 
562 	seq_printf(m, "processor\t: %d\n", cpu);
563 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
564 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
565 	if (c->cut_major == -1)
566 		seq_printf(m, "cut\t\t: unknown\n");
567 	else if (c->cut_minor == -1)
568 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
569 	else
570 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
571 
572 	show_cpuflags(m, c);
573 
574 	seq_printf(m, "cache type\t: ");
575 
576 	/*
577 	 * Check for what type of cache we have, we support both the
578 	 * unified cache on the SH-2 and SH-3, as well as the harvard
579 	 * style cache on the SH-4.
580 	 */
581 	if (c->icache.flags & SH_CACHE_COMBINED) {
582 		seq_printf(m, "unified\n");
583 		show_cacheinfo(m, "cache", c->icache);
584 	} else {
585 		seq_printf(m, "split (harvard)\n");
586 		show_cacheinfo(m, "icache", c->icache);
587 		show_cacheinfo(m, "dcache", c->dcache);
588 	}
589 
590 	/* Optional secondary cache */
591 	if (c->flags & CPU_HAS_L2_CACHE)
592 		show_cacheinfo(m, "scache", c->scache);
593 
594 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
595 		     c->loops_per_jiffy/(500000/HZ),
596 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
597 
598 	return 0;
599 }
600 
601 static void *c_start(struct seq_file *m, loff_t *pos)
602 {
603 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
604 }
605 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
606 {
607 	++*pos;
608 	return c_start(m, pos);
609 }
610 static void c_stop(struct seq_file *m, void *v)
611 {
612 }
613 const struct seq_operations cpuinfo_op = {
614 	.start	= c_start,
615 	.next	= c_next,
616 	.stop	= c_stop,
617 	.show	= show_cpuinfo,
618 };
619 #endif /* CONFIG_PROC_FS */
620 
621 struct dentry *sh_debugfs_root;
622 
623 static int __init sh_debugfs_init(void)
624 {
625 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
626 	if (!sh_debugfs_root)
627 		return -ENOMEM;
628 	if (IS_ERR(sh_debugfs_root))
629 		return PTR_ERR(sh_debugfs_root);
630 
631 	return 0;
632 }
633 arch_initcall(sh_debugfs_init);
634