xref: /openbmc/linux/arch/sh/kernel/process_32.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * arch/sh/kernel/process.c
3  *
4  * This file handles the architecture-dependent parts of process handling..
5  *
6  *  Copyright (C) 1995  Linus Torvalds
7  *
8  *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
9  *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
10  *		     Copyright (C) 2002 - 2008  Paul Mundt
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file "COPYING" in the main directory of this archive
14  * for more details.
15  */
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/elfcore.h>
20 #include <linux/kallsyms.h>
21 #include <linux/fs.h>
22 #include <linux/ftrace.h>
23 #include <linux/hw_breakpoint.h>
24 #include <asm/uaccess.h>
25 #include <asm/mmu_context.h>
26 #include <asm/system.h>
27 #include <asm/fpu.h>
28 #include <asm/syscalls.h>
29 
30 void show_regs(struct pt_regs * regs)
31 {
32 	printk("\n");
33 	printk("Pid : %d, Comm: \t\t%s\n", task_pid_nr(current), current->comm);
34 	printk("CPU : %d        \t\t%s  (%s %.*s)\n\n",
35 	       smp_processor_id(), print_tainted(), init_utsname()->release,
36 	       (int)strcspn(init_utsname()->version, " "),
37 	       init_utsname()->version);
38 
39 	print_symbol("PC is at %s\n", instruction_pointer(regs));
40 	print_symbol("PR is at %s\n", regs->pr);
41 
42 	printk("PC  : %08lx SP  : %08lx SR  : %08lx ",
43 	       regs->pc, regs->regs[15], regs->sr);
44 #ifdef CONFIG_MMU
45 	printk("TEA : %08x\n", __raw_readl(MMU_TEA));
46 #else
47 	printk("\n");
48 #endif
49 
50 	printk("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
51 	       regs->regs[0],regs->regs[1],
52 	       regs->regs[2],regs->regs[3]);
53 	printk("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
54 	       regs->regs[4],regs->regs[5],
55 	       regs->regs[6],regs->regs[7]);
56 	printk("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
57 	       regs->regs[8],regs->regs[9],
58 	       regs->regs[10],regs->regs[11]);
59 	printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
60 	       regs->regs[12],regs->regs[13],
61 	       regs->regs[14]);
62 	printk("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
63 	       regs->mach, regs->macl, regs->gbr, regs->pr);
64 
65 	show_trace(NULL, (unsigned long *)regs->regs[15], regs);
66 	show_code(regs);
67 }
68 
69 /*
70  * Create a kernel thread
71  */
72 ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
73 {
74 	do_exit(fn(arg));
75 }
76 
77 /* Don't use this in BL=1(cli).  Or else, CPU resets! */
78 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
79 {
80 	struct pt_regs regs;
81 	int pid;
82 
83 	memset(&regs, 0, sizeof(regs));
84 	regs.regs[4] = (unsigned long)arg;
85 	regs.regs[5] = (unsigned long)fn;
86 
87 	regs.pc = (unsigned long)kernel_thread_helper;
88 	regs.sr = SR_MD;
89 #if defined(CONFIG_SH_FPU)
90 	regs.sr |= SR_FD;
91 #endif
92 
93 	/* Ok, create the new process.. */
94 	pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
95 		      &regs, 0, NULL, NULL);
96 
97 	return pid;
98 }
99 EXPORT_SYMBOL(kernel_thread);
100 
101 void start_thread(struct pt_regs *regs, unsigned long new_pc,
102 		  unsigned long new_sp)
103 {
104 	set_fs(USER_DS);
105 
106 	regs->pr = 0;
107 	regs->sr = SR_FD;
108 	regs->pc = new_pc;
109 	regs->regs[15] = new_sp;
110 
111 	free_thread_xstate(current);
112 }
113 EXPORT_SYMBOL(start_thread);
114 
115 /*
116  * Free current thread data structures etc..
117  */
118 void exit_thread(void)
119 {
120 }
121 
122 void flush_thread(void)
123 {
124 	struct task_struct *tsk = current;
125 
126 	flush_ptrace_hw_breakpoint(tsk);
127 
128 #if defined(CONFIG_SH_FPU)
129 	/* Forget lazy FPU state */
130 	clear_fpu(tsk, task_pt_regs(tsk));
131 	clear_used_math();
132 #endif
133 }
134 
135 void release_thread(struct task_struct *dead_task)
136 {
137 	/* do nothing */
138 }
139 
140 /* Fill in the fpu structure for a core dump.. */
141 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
142 {
143 	int fpvalid = 0;
144 
145 #if defined(CONFIG_SH_FPU)
146 	struct task_struct *tsk = current;
147 
148 	fpvalid = !!tsk_used_math(tsk);
149 	if (fpvalid)
150 		fpvalid = !fpregs_get(tsk, NULL, 0,
151 				      sizeof(struct user_fpu_struct),
152 				      fpu, NULL);
153 #endif
154 
155 	return fpvalid;
156 }
157 EXPORT_SYMBOL(dump_fpu);
158 
159 /*
160  * This gets called before we allocate a new thread and copy
161  * the current task into it.
162  */
163 void prepare_to_copy(struct task_struct *tsk)
164 {
165 	unlazy_fpu(tsk, task_pt_regs(tsk));
166 }
167 
168 asmlinkage void ret_from_fork(void);
169 
170 int copy_thread(unsigned long clone_flags, unsigned long usp,
171 		unsigned long unused,
172 		struct task_struct *p, struct pt_regs *regs)
173 {
174 	struct thread_info *ti = task_thread_info(p);
175 	struct pt_regs *childregs;
176 
177 #if defined(CONFIG_SH_DSP)
178 	struct task_struct *tsk = current;
179 
180 	if (is_dsp_enabled(tsk)) {
181 		/* We can use the __save_dsp or just copy the struct:
182 		 * __save_dsp(p);
183 		 * p->thread.dsp_status.status |= SR_DSP
184 		 */
185 		p->thread.dsp_status = tsk->thread.dsp_status;
186 	}
187 #endif
188 
189 	childregs = task_pt_regs(p);
190 	*childregs = *regs;
191 
192 	if (user_mode(regs)) {
193 		childregs->regs[15] = usp;
194 		ti->addr_limit = USER_DS;
195 	} else {
196 		childregs->regs[15] = (unsigned long)childregs;
197 		ti->addr_limit = KERNEL_DS;
198 		ti->status &= ~TS_USEDFPU;
199 		p->fpu_counter = 0;
200 	}
201 
202 	if (clone_flags & CLONE_SETTLS)
203 		childregs->gbr = childregs->regs[0];
204 
205 	childregs->regs[0] = 0; /* Set return value for child */
206 
207 	p->thread.sp = (unsigned long) childregs;
208 	p->thread.pc = (unsigned long) ret_from_fork;
209 
210 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
211 
212 	return 0;
213 }
214 
215 /*
216  *	switch_to(x,y) should switch tasks from x to y.
217  *
218  */
219 __notrace_funcgraph struct task_struct *
220 __switch_to(struct task_struct *prev, struct task_struct *next)
221 {
222 	struct thread_struct *next_t = &next->thread;
223 
224 	unlazy_fpu(prev, task_pt_regs(prev));
225 
226 	/* we're going to use this soon, after a few expensive things */
227 	if (next->fpu_counter > 5)
228 		prefetch(next_t->xstate);
229 
230 #ifdef CONFIG_MMU
231 	/*
232 	 * Restore the kernel mode register
233 	 *	k7 (r7_bank1)
234 	 */
235 	asm volatile("ldc	%0, r7_bank"
236 		     : /* no output */
237 		     : "r" (task_thread_info(next)));
238 #endif
239 
240 	/*
241 	 * If the task has used fpu the last 5 timeslices, just do a full
242 	 * restore of the math state immediately to avoid the trap; the
243 	 * chances of needing FPU soon are obviously high now
244 	 */
245 	if (next->fpu_counter > 5)
246 		__fpu_state_restore();
247 
248 	return prev;
249 }
250 
251 asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
252 			unsigned long r6, unsigned long r7,
253 			struct pt_regs __regs)
254 {
255 #ifdef CONFIG_MMU
256 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
257 	return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
258 #else
259 	/* fork almost works, enough to trick you into looking elsewhere :-( */
260 	return -EINVAL;
261 #endif
262 }
263 
264 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
265 			 unsigned long parent_tidptr,
266 			 unsigned long child_tidptr,
267 			 struct pt_regs __regs)
268 {
269 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
270 	if (!newsp)
271 		newsp = regs->regs[15];
272 	return do_fork(clone_flags, newsp, regs, 0,
273 			(int __user *)parent_tidptr,
274 			(int __user *)child_tidptr);
275 }
276 
277 /*
278  * This is trivial, and on the face of it looks like it
279  * could equally well be done in user mode.
280  *
281  * Not so, for quite unobvious reasons - register pressure.
282  * In user mode vfork() cannot have a stack frame, and if
283  * done by calling the "clone()" system call directly, you
284  * do not have enough call-clobbered registers to hold all
285  * the information you need.
286  */
287 asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
288 			 unsigned long r6, unsigned long r7,
289 			 struct pt_regs __regs)
290 {
291 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
292 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
293 		       0, NULL, NULL);
294 }
295 
296 /*
297  * sys_execve() executes a new program.
298  */
299 asmlinkage int sys_execve(const char __user *ufilename,
300 			  const char __user *const __user *uargv,
301 			  const char __user *const __user *uenvp,
302 			  unsigned long r7, struct pt_regs __regs)
303 {
304 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
305 	int error;
306 	char *filename;
307 
308 	filename = getname(ufilename);
309 	error = PTR_ERR(filename);
310 	if (IS_ERR(filename))
311 		goto out;
312 
313 	error = do_execve(filename, uargv, uenvp, regs);
314 	putname(filename);
315 out:
316 	return error;
317 }
318 
319 unsigned long get_wchan(struct task_struct *p)
320 {
321 	unsigned long pc;
322 
323 	if (!p || p == current || p->state == TASK_RUNNING)
324 		return 0;
325 
326 	/*
327 	 * The same comment as on the Alpha applies here, too ...
328 	 */
329 	pc = thread_saved_pc(p);
330 
331 #ifdef CONFIG_FRAME_POINTER
332 	if (in_sched_functions(pc)) {
333 		unsigned long schedule_frame = (unsigned long)p->thread.sp;
334 		return ((unsigned long *)schedule_frame)[21];
335 	}
336 #endif
337 
338 	return pc;
339 }
340