xref: /openbmc/linux/arch/sh/kernel/process_32.c (revision b1a3e75e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sh/kernel/process.c
4  *
5  * This file handles the architecture-dependent parts of process handling..
6  *
7  *  Copyright (C) 1995  Linus Torvalds
8  *
9  *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
10  *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
11  *		     Copyright (C) 2002 - 2008  Paul Mundt
12  */
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/slab.h>
19 #include <linux/elfcore.h>
20 #include <linux/fs.h>
21 #include <linux/ftrace.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/prefetch.h>
24 #include <linux/stackprotector.h>
25 #include <linux/uaccess.h>
26 #include <asm/mmu_context.h>
27 #include <asm/fpu.h>
28 #include <asm/syscalls.h>
29 #include <asm/switch_to.h>
30 
31 void show_regs(struct pt_regs * regs)
32 {
33 	printk("\n");
34 	show_regs_print_info(KERN_DEFAULT);
35 
36 	printk("PC is at %pS\n", (void *)instruction_pointer(regs));
37 	printk("PR is at %pS\n", (void *)regs->pr);
38 
39 	printk("PC  : %08lx SP  : %08lx SR  : %08lx ",
40 	       regs->pc, regs->regs[15], regs->sr);
41 #ifdef CONFIG_MMU
42 	printk("TEA : %08x\n", __raw_readl(MMU_TEA));
43 #else
44 	printk("\n");
45 #endif
46 
47 	printk("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
48 	       regs->regs[0],regs->regs[1],
49 	       regs->regs[2],regs->regs[3]);
50 	printk("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
51 	       regs->regs[4],regs->regs[5],
52 	       regs->regs[6],regs->regs[7]);
53 	printk("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
54 	       regs->regs[8],regs->regs[9],
55 	       regs->regs[10],regs->regs[11]);
56 	printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
57 	       regs->regs[12],regs->regs[13],
58 	       regs->regs[14]);
59 	printk("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
60 	       regs->mach, regs->macl, regs->gbr, regs->pr);
61 
62 	show_trace(NULL, (unsigned long *)regs->regs[15], regs, KERN_DEFAULT);
63 	show_code(regs);
64 }
65 
66 void start_thread(struct pt_regs *regs, unsigned long new_pc,
67 		  unsigned long new_sp)
68 {
69 	regs->pr = 0;
70 	regs->sr = SR_FD;
71 	regs->pc = new_pc;
72 	regs->regs[15] = new_sp;
73 
74 	free_thread_xstate(current);
75 }
76 EXPORT_SYMBOL(start_thread);
77 
78 void flush_thread(void)
79 {
80 	struct task_struct *tsk = current;
81 
82 	flush_ptrace_hw_breakpoint(tsk);
83 
84 #if defined(CONFIG_SH_FPU)
85 	/* Forget lazy FPU state */
86 	clear_fpu(tsk, task_pt_regs(tsk));
87 	clear_used_math();
88 #endif
89 }
90 
91 void release_thread(struct task_struct *dead_task)
92 {
93 	/* do nothing */
94 }
95 
96 asmlinkage void ret_from_fork(void);
97 asmlinkage void ret_from_kernel_thread(void);
98 
99 int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long arg,
100 		struct task_struct *p, unsigned long tls)
101 {
102 	struct thread_info *ti = task_thread_info(p);
103 	struct pt_regs *childregs;
104 
105 #if defined(CONFIG_SH_DSP)
106 	struct task_struct *tsk = current;
107 
108 	if (is_dsp_enabled(tsk)) {
109 		/* We can use the __save_dsp or just copy the struct:
110 		 * __save_dsp(p);
111 		 * p->thread.dsp_status.status |= SR_DSP
112 		 */
113 		p->thread.dsp_status = tsk->thread.dsp_status;
114 	}
115 #endif
116 
117 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
118 
119 	childregs = task_pt_regs(p);
120 	p->thread.sp = (unsigned long) childregs;
121 	if (unlikely(p->flags & PF_KTHREAD)) {
122 		memset(childregs, 0, sizeof(struct pt_regs));
123 		p->thread.pc = (unsigned long) ret_from_kernel_thread;
124 		childregs->regs[4] = arg;
125 		childregs->regs[5] = usp;
126 		childregs->sr = SR_MD;
127 #if defined(CONFIG_SH_FPU)
128 		childregs->sr |= SR_FD;
129 #endif
130 		ti->addr_limit = KERNEL_DS;
131 		ti->status &= ~TS_USEDFPU;
132 		p->thread.fpu_counter = 0;
133 		return 0;
134 	}
135 	*childregs = *current_pt_regs();
136 
137 	if (usp)
138 		childregs->regs[15] = usp;
139 	ti->addr_limit = USER_DS;
140 
141 	if (clone_flags & CLONE_SETTLS)
142 		childregs->gbr = tls;
143 
144 	childregs->regs[0] = 0; /* Set return value for child */
145 	p->thread.pc = (unsigned long) ret_from_fork;
146 	return 0;
147 }
148 
149 /*
150  *	switch_to(x,y) should switch tasks from x to y.
151  *
152  */
153 __notrace_funcgraph struct task_struct *
154 __switch_to(struct task_struct *prev, struct task_struct *next)
155 {
156 	struct thread_struct *next_t = &next->thread;
157 
158 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP)
159 	__stack_chk_guard = next->stack_canary;
160 #endif
161 
162 	unlazy_fpu(prev, task_pt_regs(prev));
163 
164 	/* we're going to use this soon, after a few expensive things */
165 	if (next->thread.fpu_counter > 5)
166 		prefetch(next_t->xstate);
167 
168 #ifdef CONFIG_MMU
169 	/*
170 	 * Restore the kernel mode register
171 	 *	k7 (r7_bank1)
172 	 */
173 	asm volatile("ldc	%0, r7_bank"
174 		     : /* no output */
175 		     : "r" (task_thread_info(next)));
176 #endif
177 
178 	/*
179 	 * If the task has used fpu the last 5 timeslices, just do a full
180 	 * restore of the math state immediately to avoid the trap; the
181 	 * chances of needing FPU soon are obviously high now
182 	 */
183 	if (next->thread.fpu_counter > 5)
184 		__fpu_state_restore();
185 
186 	return prev;
187 }
188 
189 unsigned long get_wchan(struct task_struct *p)
190 {
191 	unsigned long pc;
192 
193 	if (!p || p == current || p->state == TASK_RUNNING)
194 		return 0;
195 
196 	/*
197 	 * The same comment as on the Alpha applies here, too ...
198 	 */
199 	pc = thread_saved_pc(p);
200 
201 #ifdef CONFIG_FRAME_POINTER
202 	if (in_sched_functions(pc)) {
203 		unsigned long schedule_frame = (unsigned long)p->thread.sp;
204 		return ((unsigned long *)schedule_frame)[21];
205 	}
206 #endif
207 
208 	return pc;
209 }
210