xref: /openbmc/linux/arch/sh/kernel/process_32.c (revision 7fe2f639)
1 /*
2  * arch/sh/kernel/process.c
3  *
4  * This file handles the architecture-dependent parts of process handling..
5  *
6  *  Copyright (C) 1995  Linus Torvalds
7  *
8  *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
9  *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
10  *		     Copyright (C) 2002 - 2008  Paul Mundt
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file "COPYING" in the main directory of this archive
14  * for more details.
15  */
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/elfcore.h>
20 #include <linux/kallsyms.h>
21 #include <linux/fs.h>
22 #include <linux/ftrace.h>
23 #include <linux/hw_breakpoint.h>
24 #include <linux/prefetch.h>
25 #include <asm/uaccess.h>
26 #include <asm/mmu_context.h>
27 #include <asm/system.h>
28 #include <asm/fpu.h>
29 #include <asm/syscalls.h>
30 
31 void show_regs(struct pt_regs * regs)
32 {
33 	printk("\n");
34 	printk("Pid : %d, Comm: \t\t%s\n", task_pid_nr(current), current->comm);
35 	printk("CPU : %d        \t\t%s  (%s %.*s)\n\n",
36 	       smp_processor_id(), print_tainted(), init_utsname()->release,
37 	       (int)strcspn(init_utsname()->version, " "),
38 	       init_utsname()->version);
39 
40 	print_symbol("PC is at %s\n", instruction_pointer(regs));
41 	print_symbol("PR is at %s\n", regs->pr);
42 
43 	printk("PC  : %08lx SP  : %08lx SR  : %08lx ",
44 	       regs->pc, regs->regs[15], regs->sr);
45 #ifdef CONFIG_MMU
46 	printk("TEA : %08x\n", __raw_readl(MMU_TEA));
47 #else
48 	printk("\n");
49 #endif
50 
51 	printk("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
52 	       regs->regs[0],regs->regs[1],
53 	       regs->regs[2],regs->regs[3]);
54 	printk("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
55 	       regs->regs[4],regs->regs[5],
56 	       regs->regs[6],regs->regs[7]);
57 	printk("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
58 	       regs->regs[8],regs->regs[9],
59 	       regs->regs[10],regs->regs[11]);
60 	printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
61 	       regs->regs[12],regs->regs[13],
62 	       regs->regs[14]);
63 	printk("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
64 	       regs->mach, regs->macl, regs->gbr, regs->pr);
65 
66 	show_trace(NULL, (unsigned long *)regs->regs[15], regs);
67 	show_code(regs);
68 }
69 
70 /*
71  * Create a kernel thread
72  */
73 ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
74 {
75 	do_exit(fn(arg));
76 }
77 
78 /* Don't use this in BL=1(cli).  Or else, CPU resets! */
79 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
80 {
81 	struct pt_regs regs;
82 	int pid;
83 
84 	memset(&regs, 0, sizeof(regs));
85 	regs.regs[4] = (unsigned long)arg;
86 	regs.regs[5] = (unsigned long)fn;
87 
88 	regs.pc = (unsigned long)kernel_thread_helper;
89 	regs.sr = SR_MD;
90 #if defined(CONFIG_SH_FPU)
91 	regs.sr |= SR_FD;
92 #endif
93 
94 	/* Ok, create the new process.. */
95 	pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
96 		      &regs, 0, NULL, NULL);
97 
98 	return pid;
99 }
100 EXPORT_SYMBOL(kernel_thread);
101 
102 void start_thread(struct pt_regs *regs, unsigned long new_pc,
103 		  unsigned long new_sp)
104 {
105 	regs->pr = 0;
106 	regs->sr = SR_FD;
107 	regs->pc = new_pc;
108 	regs->regs[15] = new_sp;
109 
110 	free_thread_xstate(current);
111 }
112 EXPORT_SYMBOL(start_thread);
113 
114 /*
115  * Free current thread data structures etc..
116  */
117 void exit_thread(void)
118 {
119 }
120 
121 void flush_thread(void)
122 {
123 	struct task_struct *tsk = current;
124 
125 	flush_ptrace_hw_breakpoint(tsk);
126 
127 #if defined(CONFIG_SH_FPU)
128 	/* Forget lazy FPU state */
129 	clear_fpu(tsk, task_pt_regs(tsk));
130 	clear_used_math();
131 #endif
132 }
133 
134 void release_thread(struct task_struct *dead_task)
135 {
136 	/* do nothing */
137 }
138 
139 /* Fill in the fpu structure for a core dump.. */
140 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
141 {
142 	int fpvalid = 0;
143 
144 #if defined(CONFIG_SH_FPU)
145 	struct task_struct *tsk = current;
146 
147 	fpvalid = !!tsk_used_math(tsk);
148 	if (fpvalid)
149 		fpvalid = !fpregs_get(tsk, NULL, 0,
150 				      sizeof(struct user_fpu_struct),
151 				      fpu, NULL);
152 #endif
153 
154 	return fpvalid;
155 }
156 EXPORT_SYMBOL(dump_fpu);
157 
158 /*
159  * This gets called before we allocate a new thread and copy
160  * the current task into it.
161  */
162 void prepare_to_copy(struct task_struct *tsk)
163 {
164 	unlazy_fpu(tsk, task_pt_regs(tsk));
165 }
166 
167 asmlinkage void ret_from_fork(void);
168 
169 int copy_thread(unsigned long clone_flags, unsigned long usp,
170 		unsigned long unused,
171 		struct task_struct *p, struct pt_regs *regs)
172 {
173 	struct thread_info *ti = task_thread_info(p);
174 	struct pt_regs *childregs;
175 
176 #if defined(CONFIG_SH_DSP)
177 	struct task_struct *tsk = current;
178 
179 	if (is_dsp_enabled(tsk)) {
180 		/* We can use the __save_dsp or just copy the struct:
181 		 * __save_dsp(p);
182 		 * p->thread.dsp_status.status |= SR_DSP
183 		 */
184 		p->thread.dsp_status = tsk->thread.dsp_status;
185 	}
186 #endif
187 
188 	childregs = task_pt_regs(p);
189 	*childregs = *regs;
190 
191 	if (user_mode(regs)) {
192 		childregs->regs[15] = usp;
193 		ti->addr_limit = USER_DS;
194 	} else {
195 		childregs->regs[15] = (unsigned long)childregs;
196 		ti->addr_limit = KERNEL_DS;
197 		ti->status &= ~TS_USEDFPU;
198 		p->fpu_counter = 0;
199 	}
200 
201 	if (clone_flags & CLONE_SETTLS)
202 		childregs->gbr = childregs->regs[0];
203 
204 	childregs->regs[0] = 0; /* Set return value for child */
205 
206 	p->thread.sp = (unsigned long) childregs;
207 	p->thread.pc = (unsigned long) ret_from_fork;
208 
209 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
210 
211 	return 0;
212 }
213 
214 /*
215  *	switch_to(x,y) should switch tasks from x to y.
216  *
217  */
218 __notrace_funcgraph struct task_struct *
219 __switch_to(struct task_struct *prev, struct task_struct *next)
220 {
221 	struct thread_struct *next_t = &next->thread;
222 
223 	unlazy_fpu(prev, task_pt_regs(prev));
224 
225 	/* we're going to use this soon, after a few expensive things */
226 	if (next->fpu_counter > 5)
227 		prefetch(next_t->xstate);
228 
229 #ifdef CONFIG_MMU
230 	/*
231 	 * Restore the kernel mode register
232 	 *	k7 (r7_bank1)
233 	 */
234 	asm volatile("ldc	%0, r7_bank"
235 		     : /* no output */
236 		     : "r" (task_thread_info(next)));
237 #endif
238 
239 	/*
240 	 * If the task has used fpu the last 5 timeslices, just do a full
241 	 * restore of the math state immediately to avoid the trap; the
242 	 * chances of needing FPU soon are obviously high now
243 	 */
244 	if (next->fpu_counter > 5)
245 		__fpu_state_restore();
246 
247 	return prev;
248 }
249 
250 asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
251 			unsigned long r6, unsigned long r7,
252 			struct pt_regs __regs)
253 {
254 #ifdef CONFIG_MMU
255 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
256 	return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
257 #else
258 	/* fork almost works, enough to trick you into looking elsewhere :-( */
259 	return -EINVAL;
260 #endif
261 }
262 
263 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
264 			 unsigned long parent_tidptr,
265 			 unsigned long child_tidptr,
266 			 struct pt_regs __regs)
267 {
268 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
269 	if (!newsp)
270 		newsp = regs->regs[15];
271 	return do_fork(clone_flags, newsp, regs, 0,
272 			(int __user *)parent_tidptr,
273 			(int __user *)child_tidptr);
274 }
275 
276 /*
277  * This is trivial, and on the face of it looks like it
278  * could equally well be done in user mode.
279  *
280  * Not so, for quite unobvious reasons - register pressure.
281  * In user mode vfork() cannot have a stack frame, and if
282  * done by calling the "clone()" system call directly, you
283  * do not have enough call-clobbered registers to hold all
284  * the information you need.
285  */
286 asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
287 			 unsigned long r6, unsigned long r7,
288 			 struct pt_regs __regs)
289 {
290 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
291 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
292 		       0, NULL, NULL);
293 }
294 
295 /*
296  * sys_execve() executes a new program.
297  */
298 asmlinkage int sys_execve(const char __user *ufilename,
299 			  const char __user *const __user *uargv,
300 			  const char __user *const __user *uenvp,
301 			  unsigned long r7, struct pt_regs __regs)
302 {
303 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
304 	int error;
305 	char *filename;
306 
307 	filename = getname(ufilename);
308 	error = PTR_ERR(filename);
309 	if (IS_ERR(filename))
310 		goto out;
311 
312 	error = do_execve(filename, uargv, uenvp, regs);
313 	putname(filename);
314 out:
315 	return error;
316 }
317 
318 unsigned long get_wchan(struct task_struct *p)
319 {
320 	unsigned long pc;
321 
322 	if (!p || p == current || p->state == TASK_RUNNING)
323 		return 0;
324 
325 	/*
326 	 * The same comment as on the Alpha applies here, too ...
327 	 */
328 	pc = thread_saved_pc(p);
329 
330 #ifdef CONFIG_FRAME_POINTER
331 	if (in_sched_functions(pc)) {
332 		unsigned long schedule_frame = (unsigned long)p->thread.sp;
333 		return ((unsigned long *)schedule_frame)[21];
334 	}
335 #endif
336 
337 	return pc;
338 }
339