xref: /openbmc/linux/arch/sh/kernel/process_32.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sh/kernel/process.c
4  *
5  * This file handles the architecture-dependent parts of process handling..
6  *
7  *  Copyright (C) 1995  Linus Torvalds
8  *
9  *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
10  *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
11  *		     Copyright (C) 2002 - 2008  Paul Mundt
12  */
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/slab.h>
19 #include <linux/elfcore.h>
20 #include <linux/fs.h>
21 #include <linux/ftrace.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/prefetch.h>
24 #include <linux/stackprotector.h>
25 #include <linux/uaccess.h>
26 #include <asm/mmu_context.h>
27 #include <asm/fpu.h>
28 #include <asm/syscalls.h>
29 #include <asm/switch_to.h>
30 
31 void show_regs(struct pt_regs * regs)
32 {
33 	pr_info("\n");
34 	show_regs_print_info(KERN_DEFAULT);
35 
36 	pr_info("PC is at %pS\n", (void *)instruction_pointer(regs));
37 	pr_info("PR is at %pS\n", (void *)regs->pr);
38 
39 	pr_info("PC  : %08lx SP  : %08lx SR  : %08lx ", regs->pc,
40 		regs->regs[15], regs->sr);
41 #ifdef CONFIG_MMU
42 	pr_cont("TEA : %08x\n", __raw_readl(MMU_TEA));
43 #else
44 	pr_cont("\n");
45 #endif
46 
47 	pr_info("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
48 		regs->regs[0], regs->regs[1], regs->regs[2], regs->regs[3]);
49 	pr_info("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
50 		regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]);
51 	pr_info("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
52 		regs->regs[8], regs->regs[9], regs->regs[10], regs->regs[11]);
53 	pr_info("R12 : %08lx R13 : %08lx R14 : %08lx\n",
54 		regs->regs[12], regs->regs[13], regs->regs[14]);
55 	pr_info("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
56 		regs->mach, regs->macl, regs->gbr, regs->pr);
57 
58 	show_trace(NULL, (unsigned long *)regs->regs[15], regs, KERN_DEFAULT);
59 	show_code(regs);
60 }
61 
62 void start_thread(struct pt_regs *regs, unsigned long new_pc,
63 		  unsigned long new_sp)
64 {
65 	regs->pr = 0;
66 	regs->sr = SR_FD;
67 	regs->pc = new_pc;
68 	regs->regs[15] = new_sp;
69 
70 	free_thread_xstate(current);
71 }
72 EXPORT_SYMBOL(start_thread);
73 
74 void flush_thread(void)
75 {
76 	struct task_struct *tsk = current;
77 
78 	flush_ptrace_hw_breakpoint(tsk);
79 
80 #if defined(CONFIG_SH_FPU)
81 	/* Forget lazy FPU state */
82 	clear_fpu(tsk, task_pt_regs(tsk));
83 	clear_used_math();
84 #endif
85 }
86 
87 void release_thread(struct task_struct *dead_task)
88 {
89 	/* do nothing */
90 }
91 
92 asmlinkage void ret_from_fork(void);
93 asmlinkage void ret_from_kernel_thread(void);
94 
95 int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long arg,
96 		struct task_struct *p, unsigned long tls)
97 {
98 	struct thread_info *ti = task_thread_info(p);
99 	struct pt_regs *childregs;
100 
101 #if defined(CONFIG_SH_DSP)
102 	struct task_struct *tsk = current;
103 
104 	if (is_dsp_enabled(tsk)) {
105 		/* We can use the __save_dsp or just copy the struct:
106 		 * __save_dsp(p);
107 		 * p->thread.dsp_status.status |= SR_DSP
108 		 */
109 		p->thread.dsp_status = tsk->thread.dsp_status;
110 	}
111 #endif
112 
113 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
114 
115 	childregs = task_pt_regs(p);
116 	p->thread.sp = (unsigned long) childregs;
117 	if (unlikely(p->flags & PF_KTHREAD)) {
118 		memset(childregs, 0, sizeof(struct pt_regs));
119 		p->thread.pc = (unsigned long) ret_from_kernel_thread;
120 		childregs->regs[4] = arg;
121 		childregs->regs[5] = usp;
122 		childregs->sr = SR_MD;
123 #if defined(CONFIG_SH_FPU)
124 		childregs->sr |= SR_FD;
125 #endif
126 		ti->addr_limit = KERNEL_DS;
127 		ti->status &= ~TS_USEDFPU;
128 		p->thread.fpu_counter = 0;
129 		return 0;
130 	}
131 	*childregs = *current_pt_regs();
132 
133 	if (usp)
134 		childregs->regs[15] = usp;
135 	ti->addr_limit = USER_DS;
136 
137 	if (clone_flags & CLONE_SETTLS)
138 		childregs->gbr = tls;
139 
140 	childregs->regs[0] = 0; /* Set return value for child */
141 	p->thread.pc = (unsigned long) ret_from_fork;
142 	return 0;
143 }
144 
145 /*
146  *	switch_to(x,y) should switch tasks from x to y.
147  *
148  */
149 __notrace_funcgraph struct task_struct *
150 __switch_to(struct task_struct *prev, struct task_struct *next)
151 {
152 	struct thread_struct *next_t = &next->thread;
153 
154 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP)
155 	__stack_chk_guard = next->stack_canary;
156 #endif
157 
158 	unlazy_fpu(prev, task_pt_regs(prev));
159 
160 	/* we're going to use this soon, after a few expensive things */
161 	if (next->thread.fpu_counter > 5)
162 		prefetch(next_t->xstate);
163 
164 #ifdef CONFIG_MMU
165 	/*
166 	 * Restore the kernel mode register
167 	 *	k7 (r7_bank1)
168 	 */
169 	asm volatile("ldc	%0, r7_bank"
170 		     : /* no output */
171 		     : "r" (task_thread_info(next)));
172 #endif
173 
174 	/*
175 	 * If the task has used fpu the last 5 timeslices, just do a full
176 	 * restore of the math state immediately to avoid the trap; the
177 	 * chances of needing FPU soon are obviously high now
178 	 */
179 	if (next->thread.fpu_counter > 5)
180 		__fpu_state_restore();
181 
182 	return prev;
183 }
184 
185 unsigned long get_wchan(struct task_struct *p)
186 {
187 	unsigned long pc;
188 
189 	if (!p || p == current || p->state == TASK_RUNNING)
190 		return 0;
191 
192 	/*
193 	 * The same comment as on the Alpha applies here, too ...
194 	 */
195 	pc = thread_saved_pc(p);
196 
197 #ifdef CONFIG_FRAME_POINTER
198 	if (in_sched_functions(pc)) {
199 		unsigned long schedule_frame = (unsigned long)p->thread.sp;
200 		return ((unsigned long *)schedule_frame)[21];
201 	}
202 #endif
203 
204 	return pc;
205 }
206