xref: /openbmc/linux/arch/sh/kernel/perf_event.c (revision 85250a24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support framework for SuperH hardware counters.
4  *
5  *  Copyright (C) 2009  Paul Mundt
6  *
7  * Heavily based on the x86 and PowerPC implementations.
8  *
9  * x86:
10  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
11  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
12  *  Copyright (C) 2009 Jaswinder Singh Rajput
13  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
14  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
15  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16  *
17  * ppc:
18  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19  */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/perf_event.h>
25 #include <linux/export.h>
26 #include <asm/processor.h>
27 
28 struct cpu_hw_events {
29 	struct perf_event	*events[MAX_HWEVENTS];
30 	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
31 	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
32 };
33 
34 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
35 
36 static struct sh_pmu *sh_pmu __read_mostly;
37 
38 /* Number of perf_events counting hardware events */
39 static atomic_t num_events;
40 /* Used to avoid races in calling reserve/release_pmc_hardware */
41 static DEFINE_MUTEX(pmc_reserve_mutex);
42 
43 /*
44  * Stub these out for now, do something more profound later.
45  */
46 int reserve_pmc_hardware(void)
47 {
48 	return 0;
49 }
50 
51 void release_pmc_hardware(void)
52 {
53 }
54 
55 static inline int sh_pmu_initialized(void)
56 {
57 	return !!sh_pmu;
58 }
59 
60 /*
61  * Release the PMU if this is the last perf_event.
62  */
63 static void hw_perf_event_destroy(struct perf_event *event)
64 {
65 	if (!atomic_add_unless(&num_events, -1, 1)) {
66 		mutex_lock(&pmc_reserve_mutex);
67 		if (atomic_dec_return(&num_events) == 0)
68 			release_pmc_hardware();
69 		mutex_unlock(&pmc_reserve_mutex);
70 	}
71 }
72 
73 static int hw_perf_cache_event(int config, int *evp)
74 {
75 	unsigned long type, op, result;
76 	int ev;
77 
78 	if (!sh_pmu->cache_events)
79 		return -EINVAL;
80 
81 	/* unpack config */
82 	type = config & 0xff;
83 	op = (config >> 8) & 0xff;
84 	result = (config >> 16) & 0xff;
85 
86 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
87 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
88 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
89 		return -EINVAL;
90 
91 	ev = (*sh_pmu->cache_events)[type][op][result];
92 	if (ev == 0)
93 		return -EOPNOTSUPP;
94 	if (ev == -1)
95 		return -EINVAL;
96 	*evp = ev;
97 	return 0;
98 }
99 
100 static int __hw_perf_event_init(struct perf_event *event)
101 {
102 	struct perf_event_attr *attr = &event->attr;
103 	struct hw_perf_event *hwc = &event->hw;
104 	int config = -1;
105 	int err;
106 
107 	if (!sh_pmu_initialized())
108 		return -ENODEV;
109 
110 	/*
111 	 * See if we need to reserve the counter.
112 	 *
113 	 * If no events are currently in use, then we have to take a
114 	 * mutex to ensure that we don't race with another task doing
115 	 * reserve_pmc_hardware or release_pmc_hardware.
116 	 */
117 	err = 0;
118 	if (!atomic_inc_not_zero(&num_events)) {
119 		mutex_lock(&pmc_reserve_mutex);
120 		if (atomic_read(&num_events) == 0 &&
121 		    reserve_pmc_hardware())
122 			err = -EBUSY;
123 		else
124 			atomic_inc(&num_events);
125 		mutex_unlock(&pmc_reserve_mutex);
126 	}
127 
128 	if (err)
129 		return err;
130 
131 	event->destroy = hw_perf_event_destroy;
132 
133 	switch (attr->type) {
134 	case PERF_TYPE_RAW:
135 		config = attr->config & sh_pmu->raw_event_mask;
136 		break;
137 	case PERF_TYPE_HW_CACHE:
138 		err = hw_perf_cache_event(attr->config, &config);
139 		if (err)
140 			return err;
141 		break;
142 	case PERF_TYPE_HARDWARE:
143 		if (attr->config >= sh_pmu->max_events)
144 			return -EINVAL;
145 
146 		config = sh_pmu->event_map(attr->config);
147 		break;
148 	}
149 
150 	if (config == -1)
151 		return -EINVAL;
152 
153 	hwc->config |= config;
154 
155 	return 0;
156 }
157 
158 static void sh_perf_event_update(struct perf_event *event,
159 				   struct hw_perf_event *hwc, int idx)
160 {
161 	u64 prev_raw_count, new_raw_count;
162 	s64 delta;
163 	int shift = 0;
164 
165 	/*
166 	 * Depending on the counter configuration, they may or may not
167 	 * be chained, in which case the previous counter value can be
168 	 * updated underneath us if the lower-half overflows.
169 	 *
170 	 * Our tactic to handle this is to first atomically read and
171 	 * exchange a new raw count - then add that new-prev delta
172 	 * count to the generic counter atomically.
173 	 *
174 	 * As there is no interrupt associated with the overflow events,
175 	 * this is the simplest approach for maintaining consistency.
176 	 */
177 again:
178 	prev_raw_count = local64_read(&hwc->prev_count);
179 	new_raw_count = sh_pmu->read(idx);
180 
181 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
182 			     new_raw_count) != prev_raw_count)
183 		goto again;
184 
185 	/*
186 	 * Now we have the new raw value and have updated the prev
187 	 * timestamp already. We can now calculate the elapsed delta
188 	 * (counter-)time and add that to the generic counter.
189 	 *
190 	 * Careful, not all hw sign-extends above the physical width
191 	 * of the count.
192 	 */
193 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
194 	delta >>= shift;
195 
196 	local64_add(delta, &event->count);
197 }
198 
199 static void sh_pmu_stop(struct perf_event *event, int flags)
200 {
201 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
202 	struct hw_perf_event *hwc = &event->hw;
203 	int idx = hwc->idx;
204 
205 	if (!(event->hw.state & PERF_HES_STOPPED)) {
206 		sh_pmu->disable(hwc, idx);
207 		cpuc->events[idx] = NULL;
208 		event->hw.state |= PERF_HES_STOPPED;
209 	}
210 
211 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
212 		sh_perf_event_update(event, &event->hw, idx);
213 		event->hw.state |= PERF_HES_UPTODATE;
214 	}
215 }
216 
217 static void sh_pmu_start(struct perf_event *event, int flags)
218 {
219 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
220 	struct hw_perf_event *hwc = &event->hw;
221 	int idx = hwc->idx;
222 
223 	if (WARN_ON_ONCE(idx == -1))
224 		return;
225 
226 	if (flags & PERF_EF_RELOAD)
227 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
228 
229 	cpuc->events[idx] = event;
230 	event->hw.state = 0;
231 	sh_pmu->enable(hwc, idx);
232 }
233 
234 static void sh_pmu_del(struct perf_event *event, int flags)
235 {
236 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
237 
238 	sh_pmu_stop(event, PERF_EF_UPDATE);
239 	__clear_bit(event->hw.idx, cpuc->used_mask);
240 
241 	perf_event_update_userpage(event);
242 }
243 
244 static int sh_pmu_add(struct perf_event *event, int flags)
245 {
246 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
247 	struct hw_perf_event *hwc = &event->hw;
248 	int idx = hwc->idx;
249 	int ret = -EAGAIN;
250 
251 	perf_pmu_disable(event->pmu);
252 
253 	if (__test_and_set_bit(idx, cpuc->used_mask)) {
254 		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
255 		if (idx == sh_pmu->num_events)
256 			goto out;
257 
258 		__set_bit(idx, cpuc->used_mask);
259 		hwc->idx = idx;
260 	}
261 
262 	sh_pmu->disable(hwc, idx);
263 
264 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
265 	if (flags & PERF_EF_START)
266 		sh_pmu_start(event, PERF_EF_RELOAD);
267 
268 	perf_event_update_userpage(event);
269 	ret = 0;
270 out:
271 	perf_pmu_enable(event->pmu);
272 	return ret;
273 }
274 
275 static void sh_pmu_read(struct perf_event *event)
276 {
277 	sh_perf_event_update(event, &event->hw, event->hw.idx);
278 }
279 
280 static int sh_pmu_event_init(struct perf_event *event)
281 {
282 	int err;
283 
284 	/* does not support taken branch sampling */
285 	if (has_branch_stack(event))
286 		return -EOPNOTSUPP;
287 
288 	switch (event->attr.type) {
289 	case PERF_TYPE_RAW:
290 	case PERF_TYPE_HW_CACHE:
291 	case PERF_TYPE_HARDWARE:
292 		err = __hw_perf_event_init(event);
293 		break;
294 
295 	default:
296 		return -ENOENT;
297 	}
298 
299 	if (unlikely(err)) {
300 		if (event->destroy)
301 			event->destroy(event);
302 	}
303 
304 	return err;
305 }
306 
307 static void sh_pmu_enable(struct pmu *pmu)
308 {
309 	if (!sh_pmu_initialized())
310 		return;
311 
312 	sh_pmu->enable_all();
313 }
314 
315 static void sh_pmu_disable(struct pmu *pmu)
316 {
317 	if (!sh_pmu_initialized())
318 		return;
319 
320 	sh_pmu->disable_all();
321 }
322 
323 static struct pmu pmu = {
324 	.pmu_enable	= sh_pmu_enable,
325 	.pmu_disable	= sh_pmu_disable,
326 	.event_init	= sh_pmu_event_init,
327 	.add		= sh_pmu_add,
328 	.del		= sh_pmu_del,
329 	.start		= sh_pmu_start,
330 	.stop		= sh_pmu_stop,
331 	.read		= sh_pmu_read,
332 };
333 
334 static int sh_pmu_prepare_cpu(unsigned int cpu)
335 {
336 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
337 
338 	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
339 	return 0;
340 }
341 
342 int register_sh_pmu(struct sh_pmu *_pmu)
343 {
344 	if (sh_pmu)
345 		return -EBUSY;
346 	sh_pmu = _pmu;
347 
348 	pr_info("Performance Events: %s support registered\n", _pmu->name);
349 
350 	/*
351 	 * All of the on-chip counters are "limited", in that they have
352 	 * no interrupts, and are therefore unable to do sampling without
353 	 * further work and timer assistance.
354 	 */
355 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
356 
357 	WARN_ON(_pmu->num_events > MAX_HWEVENTS);
358 
359 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
360 	cpuhp_setup_state(CPUHP_PERF_SUPERH, "PERF_SUPERH", sh_pmu_prepare_cpu,
361 			  NULL);
362 	return 0;
363 }
364