1 /* 2 * machine_kexec.c - handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2003 Eric Biederman <ebiederm@xmission.com> 4 * 5 * GameCube/ppc32 port Copyright (C) 2004 Albert Herranz 6 * LANDISK/sh4 supported by kogiidena 7 * 8 * This source code is licensed under the GNU General Public License, 9 * Version 2. See the file COPYING for more details. 10 */ 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/delay.h> 14 #include <linux/reboot.h> 15 #include <linux/numa.h> 16 #include <linux/ftrace.h> 17 #include <linux/suspend.h> 18 #include <linux/memblock.h> 19 #include <asm/pgtable.h> 20 #include <asm/pgalloc.h> 21 #include <asm/mmu_context.h> 22 #include <asm/io.h> 23 #include <asm/cacheflush.h> 24 #include <asm/sh_bios.h> 25 #include <asm/reboot.h> 26 27 typedef void (*relocate_new_kernel_t)(unsigned long indirection_page, 28 unsigned long reboot_code_buffer, 29 unsigned long start_address); 30 31 extern const unsigned char relocate_new_kernel[]; 32 extern const unsigned int relocate_new_kernel_size; 33 extern void *vbr_base; 34 35 void native_machine_crash_shutdown(struct pt_regs *regs) 36 { 37 /* Nothing to do for UP, but definitely broken for SMP.. */ 38 } 39 40 /* 41 * Do what every setup is needed on image and the 42 * reboot code buffer to allow us to avoid allocations 43 * later. 44 */ 45 int machine_kexec_prepare(struct kimage *image) 46 { 47 return 0; 48 } 49 50 void machine_kexec_cleanup(struct kimage *image) 51 { 52 } 53 54 static void kexec_info(struct kimage *image) 55 { 56 int i; 57 printk("kexec information\n"); 58 for (i = 0; i < image->nr_segments; i++) { 59 printk(" segment[%d]: 0x%08x - 0x%08x (0x%08x)\n", 60 i, 61 (unsigned int)image->segment[i].mem, 62 (unsigned int)image->segment[i].mem + 63 image->segment[i].memsz, 64 (unsigned int)image->segment[i].memsz); 65 } 66 printk(" start : 0x%08x\n\n", (unsigned int)image->start); 67 } 68 69 /* 70 * Do not allocate memory (or fail in any way) in machine_kexec(). 71 * We are past the point of no return, committed to rebooting now. 72 */ 73 void machine_kexec(struct kimage *image) 74 { 75 unsigned long page_list; 76 unsigned long reboot_code_buffer; 77 relocate_new_kernel_t rnk; 78 unsigned long entry; 79 unsigned long *ptr; 80 int save_ftrace_enabled; 81 82 /* 83 * Nicked from the mips version of machine_kexec(): 84 * The generic kexec code builds a page list with physical 85 * addresses. Use phys_to_virt() to convert them to virtual. 86 */ 87 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); 88 ptr = (entry & IND_INDIRECTION) ? 89 phys_to_virt(entry & PAGE_MASK) : ptr + 1) { 90 if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION || 91 *ptr & IND_DESTINATION) 92 *ptr = (unsigned long) phys_to_virt(*ptr); 93 } 94 95 #ifdef CONFIG_KEXEC_JUMP 96 if (image->preserve_context) 97 save_processor_state(); 98 #endif 99 100 save_ftrace_enabled = __ftrace_enabled_save(); 101 102 /* Interrupts aren't acceptable while we reboot */ 103 local_irq_disable(); 104 105 page_list = image->head; 106 107 /* we need both effective and real address here */ 108 reboot_code_buffer = 109 (unsigned long)page_address(image->control_code_page); 110 111 /* copy our kernel relocation code to the control code page */ 112 memcpy((void *)reboot_code_buffer, relocate_new_kernel, 113 relocate_new_kernel_size); 114 115 kexec_info(image); 116 flush_cache_all(); 117 118 sh_bios_vbr_reload(); 119 120 /* now call it */ 121 rnk = (relocate_new_kernel_t) reboot_code_buffer; 122 (*rnk)(page_list, reboot_code_buffer, 123 (unsigned long)phys_to_virt(image->start)); 124 125 #ifdef CONFIG_KEXEC_JUMP 126 asm volatile("ldc %0, vbr" : : "r" (&vbr_base) : "memory"); 127 128 if (image->preserve_context) 129 restore_processor_state(); 130 131 /* Convert page list back to physical addresses, what a mess. */ 132 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); 133 ptr = (*ptr & IND_INDIRECTION) ? 134 phys_to_virt(*ptr & PAGE_MASK) : ptr + 1) { 135 if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION || 136 *ptr & IND_DESTINATION) 137 *ptr = virt_to_phys(*ptr); 138 } 139 #endif 140 141 __ftrace_enabled_restore(save_ftrace_enabled); 142 } 143 144 void arch_crash_save_vmcoreinfo(void) 145 { 146 #ifdef CONFIG_NUMA 147 VMCOREINFO_SYMBOL(node_data); 148 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 149 #endif 150 #ifdef CONFIG_X2TLB 151 VMCOREINFO_CONFIG(X2TLB); 152 #endif 153 } 154 155 void __init reserve_crashkernel(void) 156 { 157 unsigned long long crash_size, crash_base; 158 int ret; 159 160 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 161 &crash_size, &crash_base); 162 if (ret == 0 && crash_size > 0) { 163 crashk_res.start = crash_base; 164 crashk_res.end = crash_base + crash_size - 1; 165 } 166 167 if (crashk_res.end == crashk_res.start) 168 goto disable; 169 170 crash_size = PAGE_ALIGN(resource_size(&crashk_res)); 171 if (!crashk_res.start) { 172 unsigned long max = memblock_end_of_DRAM() - memory_limit; 173 crashk_res.start = __memblock_alloc_base(crash_size, PAGE_SIZE, max); 174 if (!crashk_res.start) { 175 pr_err("crashkernel allocation failed\n"); 176 goto disable; 177 } 178 } else { 179 ret = memblock_reserve(crashk_res.start, crash_size); 180 if (unlikely(ret < 0)) { 181 pr_err("crashkernel reservation failed - " 182 "memory is in use\n"); 183 goto disable; 184 } 185 } 186 187 crashk_res.end = crashk_res.start + crash_size - 1; 188 189 /* 190 * Crash kernel trumps memory limit 191 */ 192 if ((memblock_end_of_DRAM() - memory_limit) <= crashk_res.end) { 193 memory_limit = 0; 194 pr_info("Disabled memory limit for crashkernel\n"); 195 } 196 197 pr_info("Reserving %ldMB of memory at 0x%08lx " 198 "for crashkernel (System RAM: %ldMB)\n", 199 (unsigned long)(crash_size >> 20), 200 (unsigned long)(crashk_res.start), 201 (unsigned long)(memblock_phys_mem_size() >> 20)); 202 203 return; 204 205 disable: 206 crashk_res.start = crashk_res.end = 0; 207 } 208