1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel probes (kprobes) for SuperH 4 * 5 * Copyright (C) 2007 Chris Smith <chris.smith@st.com> 6 * Copyright (C) 2006 Lineo Solutions, Inc. 7 */ 8 #include <linux/kprobes.h> 9 #include <linux/extable.h> 10 #include <linux/ptrace.h> 11 #include <linux/preempt.h> 12 #include <linux/kdebug.h> 13 #include <linux/slab.h> 14 #include <asm/cacheflush.h> 15 #include <linux/uaccess.h> 16 17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 19 20 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode); 21 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode); 22 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2); 23 24 #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b) 25 #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b) 26 #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000) 27 #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023) 28 #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000) 29 #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003) 30 31 #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00) 32 #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00) 33 34 #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00) 35 #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900) 36 37 #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b) 38 #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b) 39 40 int __kprobes arch_prepare_kprobe(struct kprobe *p) 41 { 42 kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr); 43 44 if (OPCODE_RTE(opcode)) 45 return -EFAULT; /* Bad breakpoint */ 46 47 p->opcode = opcode; 48 49 return 0; 50 } 51 52 void __kprobes arch_copy_kprobe(struct kprobe *p) 53 { 54 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 55 p->opcode = *p->addr; 56 } 57 58 void __kprobes arch_arm_kprobe(struct kprobe *p) 59 { 60 *p->addr = BREAKPOINT_INSTRUCTION; 61 flush_icache_range((unsigned long)p->addr, 62 (unsigned long)p->addr + sizeof(kprobe_opcode_t)); 63 } 64 65 void __kprobes arch_disarm_kprobe(struct kprobe *p) 66 { 67 *p->addr = p->opcode; 68 flush_icache_range((unsigned long)p->addr, 69 (unsigned long)p->addr + sizeof(kprobe_opcode_t)); 70 } 71 72 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 73 { 74 if (*p->addr == BREAKPOINT_INSTRUCTION) 75 return 1; 76 77 return 0; 78 } 79 80 /** 81 * If an illegal slot instruction exception occurs for an address 82 * containing a kprobe, remove the probe. 83 * 84 * Returns 0 if the exception was handled successfully, 1 otherwise. 85 */ 86 int __kprobes kprobe_handle_illslot(unsigned long pc) 87 { 88 struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1); 89 90 if (p != NULL) { 91 printk("Warning: removing kprobe from delay slot: 0x%.8x\n", 92 (unsigned int)pc + 2); 93 unregister_kprobe(p); 94 return 0; 95 } 96 97 return 1; 98 } 99 100 void __kprobes arch_remove_kprobe(struct kprobe *p) 101 { 102 struct kprobe *saved = this_cpu_ptr(&saved_next_opcode); 103 104 if (saved->addr) { 105 arch_disarm_kprobe(p); 106 arch_disarm_kprobe(saved); 107 108 saved->addr = NULL; 109 saved->opcode = 0; 110 111 saved = this_cpu_ptr(&saved_next_opcode2); 112 if (saved->addr) { 113 arch_disarm_kprobe(saved); 114 115 saved->addr = NULL; 116 saved->opcode = 0; 117 } 118 } 119 } 120 121 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 122 { 123 kcb->prev_kprobe.kp = kprobe_running(); 124 kcb->prev_kprobe.status = kcb->kprobe_status; 125 } 126 127 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 128 { 129 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 130 kcb->kprobe_status = kcb->prev_kprobe.status; 131 } 132 133 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 134 struct kprobe_ctlblk *kcb) 135 { 136 __this_cpu_write(current_kprobe, p); 137 } 138 139 /* 140 * Singlestep is implemented by disabling the current kprobe and setting one 141 * on the next instruction, following branches. Two probes are set if the 142 * branch is conditional. 143 */ 144 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 145 { 146 __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc); 147 148 if (p != NULL) { 149 struct kprobe *op1, *op2; 150 151 arch_disarm_kprobe(p); 152 153 op1 = this_cpu_ptr(&saved_next_opcode); 154 op2 = this_cpu_ptr(&saved_next_opcode2); 155 156 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) { 157 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); 158 op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr]; 159 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) { 160 unsigned long disp = (p->opcode & 0x0FFF); 161 op1->addr = 162 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); 163 164 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) { 165 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); 166 op1->addr = 167 (kprobe_opcode_t *) (regs->pc + 4 + 168 regs->regs[reg_nr]); 169 170 } else if (OPCODE_RTS(p->opcode)) { 171 op1->addr = (kprobe_opcode_t *) regs->pr; 172 173 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) { 174 unsigned long disp = (p->opcode & 0x00FF); 175 /* case 1 */ 176 op1->addr = p->addr + 1; 177 /* case 2 */ 178 op2->addr = 179 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); 180 op2->opcode = *(op2->addr); 181 arch_arm_kprobe(op2); 182 183 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) { 184 unsigned long disp = (p->opcode & 0x00FF); 185 /* case 1 */ 186 op1->addr = p->addr + 2; 187 /* case 2 */ 188 op2->addr = 189 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); 190 op2->opcode = *(op2->addr); 191 arch_arm_kprobe(op2); 192 193 } else { 194 op1->addr = p->addr + 1; 195 } 196 197 op1->opcode = *(op1->addr); 198 arch_arm_kprobe(op1); 199 } 200 } 201 202 /* Called with kretprobe_lock held */ 203 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 204 struct pt_regs *regs) 205 { 206 ri->ret_addr = (kprobe_opcode_t *) regs->pr; 207 ri->fp = NULL; 208 209 /* Replace the return addr with trampoline addr */ 210 regs->pr = (unsigned long)kretprobe_trampoline; 211 } 212 213 static int __kprobes kprobe_handler(struct pt_regs *regs) 214 { 215 struct kprobe *p; 216 int ret = 0; 217 kprobe_opcode_t *addr = NULL; 218 struct kprobe_ctlblk *kcb; 219 220 /* 221 * We don't want to be preempted for the entire 222 * duration of kprobe processing 223 */ 224 preempt_disable(); 225 kcb = get_kprobe_ctlblk(); 226 227 addr = (kprobe_opcode_t *) (regs->pc); 228 229 /* Check we're not actually recursing */ 230 if (kprobe_running()) { 231 p = get_kprobe(addr); 232 if (p) { 233 if (kcb->kprobe_status == KPROBE_HIT_SS && 234 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { 235 goto no_kprobe; 236 } 237 /* We have reentered the kprobe_handler(), since 238 * another probe was hit while within the handler. 239 * We here save the original kprobes variables and 240 * just single step on the instruction of the new probe 241 * without calling any user handlers. 242 */ 243 save_previous_kprobe(kcb); 244 set_current_kprobe(p, regs, kcb); 245 kprobes_inc_nmissed_count(p); 246 prepare_singlestep(p, regs); 247 kcb->kprobe_status = KPROBE_REENTER; 248 return 1; 249 } 250 goto no_kprobe; 251 } 252 253 p = get_kprobe(addr); 254 if (!p) { 255 /* Not one of ours: let kernel handle it */ 256 if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) { 257 /* 258 * The breakpoint instruction was removed right 259 * after we hit it. Another cpu has removed 260 * either a probepoint or a debugger breakpoint 261 * at this address. In either case, no further 262 * handling of this interrupt is appropriate. 263 */ 264 ret = 1; 265 } 266 267 goto no_kprobe; 268 } 269 270 set_current_kprobe(p, regs, kcb); 271 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 272 273 if (p->pre_handler && p->pre_handler(p, regs)) { 274 /* handler has already set things up, so skip ss setup */ 275 reset_current_kprobe(); 276 preempt_enable_no_resched(); 277 return 1; 278 } 279 280 prepare_singlestep(p, regs); 281 kcb->kprobe_status = KPROBE_HIT_SS; 282 return 1; 283 284 no_kprobe: 285 preempt_enable_no_resched(); 286 return ret; 287 } 288 289 /* 290 * For function-return probes, init_kprobes() establishes a probepoint 291 * here. When a retprobed function returns, this probe is hit and 292 * trampoline_probe_handler() runs, calling the kretprobe's handler. 293 */ 294 static void __used kretprobe_trampoline_holder(void) 295 { 296 asm volatile (".globl kretprobe_trampoline\n" 297 "kretprobe_trampoline:\n\t" 298 "nop\n"); 299 } 300 301 /* 302 * Called when we hit the probe point at kretprobe_trampoline 303 */ 304 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 305 { 306 regs->pc = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL); 307 308 return 1; 309 } 310 311 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 312 { 313 struct kprobe *cur = kprobe_running(); 314 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 315 kprobe_opcode_t *addr = NULL; 316 struct kprobe *p = NULL; 317 318 if (!cur) 319 return 0; 320 321 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 322 kcb->kprobe_status = KPROBE_HIT_SSDONE; 323 cur->post_handler(cur, regs, 0); 324 } 325 326 p = this_cpu_ptr(&saved_next_opcode); 327 if (p->addr) { 328 arch_disarm_kprobe(p); 329 p->addr = NULL; 330 p->opcode = 0; 331 332 addr = __this_cpu_read(saved_current_opcode.addr); 333 __this_cpu_write(saved_current_opcode.addr, NULL); 334 335 p = get_kprobe(addr); 336 arch_arm_kprobe(p); 337 338 p = this_cpu_ptr(&saved_next_opcode2); 339 if (p->addr) { 340 arch_disarm_kprobe(p); 341 p->addr = NULL; 342 p->opcode = 0; 343 } 344 } 345 346 /* Restore back the original saved kprobes variables and continue. */ 347 if (kcb->kprobe_status == KPROBE_REENTER) { 348 restore_previous_kprobe(kcb); 349 goto out; 350 } 351 352 reset_current_kprobe(); 353 354 out: 355 preempt_enable_no_resched(); 356 357 return 1; 358 } 359 360 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 361 { 362 struct kprobe *cur = kprobe_running(); 363 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 364 const struct exception_table_entry *entry; 365 366 switch (kcb->kprobe_status) { 367 case KPROBE_HIT_SS: 368 case KPROBE_REENTER: 369 /* 370 * We are here because the instruction being single 371 * stepped caused a page fault. We reset the current 372 * kprobe, point the pc back to the probe address 373 * and allow the page fault handler to continue as a 374 * normal page fault. 375 */ 376 regs->pc = (unsigned long)cur->addr; 377 if (kcb->kprobe_status == KPROBE_REENTER) 378 restore_previous_kprobe(kcb); 379 else 380 reset_current_kprobe(); 381 preempt_enable_no_resched(); 382 break; 383 case KPROBE_HIT_ACTIVE: 384 case KPROBE_HIT_SSDONE: 385 /* 386 * We increment the nmissed count for accounting, 387 * we can also use npre/npostfault count for accounting 388 * these specific fault cases. 389 */ 390 kprobes_inc_nmissed_count(cur); 391 392 /* 393 * We come here because instructions in the pre/post 394 * handler caused the page_fault, this could happen 395 * if handler tries to access user space by 396 * copy_from_user(), get_user() etc. Let the 397 * user-specified handler try to fix it first. 398 */ 399 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 400 return 1; 401 402 /* 403 * In case the user-specified fault handler returned 404 * zero, try to fix up. 405 */ 406 if ((entry = search_exception_tables(regs->pc)) != NULL) { 407 regs->pc = entry->fixup; 408 return 1; 409 } 410 411 /* 412 * fixup_exception() could not handle it, 413 * Let do_page_fault() fix it. 414 */ 415 break; 416 default: 417 break; 418 } 419 420 return 0; 421 } 422 423 /* 424 * Wrapper routine to for handling exceptions. 425 */ 426 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 427 unsigned long val, void *data) 428 { 429 struct kprobe *p = NULL; 430 struct die_args *args = (struct die_args *)data; 431 int ret = NOTIFY_DONE; 432 kprobe_opcode_t *addr = NULL; 433 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 434 435 addr = (kprobe_opcode_t *) (args->regs->pc); 436 if (val == DIE_TRAP && 437 args->trapnr == (BREAKPOINT_INSTRUCTION & 0xff)) { 438 if (!kprobe_running()) { 439 if (kprobe_handler(args->regs)) { 440 ret = NOTIFY_STOP; 441 } else { 442 /* Not a kprobe trap */ 443 ret = NOTIFY_DONE; 444 } 445 } else { 446 p = get_kprobe(addr); 447 if ((kcb->kprobe_status == KPROBE_HIT_SS) || 448 (kcb->kprobe_status == KPROBE_REENTER)) { 449 if (post_kprobe_handler(args->regs)) 450 ret = NOTIFY_STOP; 451 } else { 452 if (kprobe_handler(args->regs)) 453 ret = NOTIFY_STOP; 454 } 455 } 456 } 457 458 return ret; 459 } 460 461 static struct kprobe trampoline_p = { 462 .addr = (kprobe_opcode_t *)&kretprobe_trampoline, 463 .pre_handler = trampoline_probe_handler 464 }; 465 466 int __init arch_init_kprobes(void) 467 { 468 return register_kprobe(&trampoline_p); 469 } 470