xref: /openbmc/linux/arch/sh/kernel/kprobes.c (revision a36954f5)
1 /*
2  * Kernel probes (kprobes) for SuperH
3  *
4  * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
5  * Copyright (C) 2006 Lineo Solutions, Inc.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file "COPYING" in the main directory of this archive
9  * for more details.
10  */
11 #include <linux/kprobes.h>
12 #include <linux/extable.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/kdebug.h>
16 #include <linux/slab.h>
17 #include <asm/cacheflush.h>
18 #include <linux/uaccess.h>
19 
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22 
23 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
24 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
25 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
26 
27 #define OPCODE_JMP(x)	(((x) & 0xF0FF) == 0x402b)
28 #define OPCODE_JSR(x)	(((x) & 0xF0FF) == 0x400b)
29 #define OPCODE_BRA(x)	(((x) & 0xF000) == 0xa000)
30 #define OPCODE_BRAF(x)	(((x) & 0xF0FF) == 0x0023)
31 #define OPCODE_BSR(x)	(((x) & 0xF000) == 0xb000)
32 #define OPCODE_BSRF(x)	(((x) & 0xF0FF) == 0x0003)
33 
34 #define OPCODE_BF_S(x)	(((x) & 0xFF00) == 0x8f00)
35 #define OPCODE_BT_S(x)	(((x) & 0xFF00) == 0x8d00)
36 
37 #define OPCODE_BF(x)	(((x) & 0xFF00) == 0x8b00)
38 #define OPCODE_BT(x)	(((x) & 0xFF00) == 0x8900)
39 
40 #define OPCODE_RTS(x)	(((x) & 0x000F) == 0x000b)
41 #define OPCODE_RTE(x)	(((x) & 0xFFFF) == 0x002b)
42 
43 int __kprobes arch_prepare_kprobe(struct kprobe *p)
44 {
45 	kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
46 
47 	if (OPCODE_RTE(opcode))
48 		return -EFAULT;	/* Bad breakpoint */
49 
50 	p->opcode = opcode;
51 
52 	return 0;
53 }
54 
55 void __kprobes arch_copy_kprobe(struct kprobe *p)
56 {
57 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
58 	p->opcode = *p->addr;
59 }
60 
61 void __kprobes arch_arm_kprobe(struct kprobe *p)
62 {
63 	*p->addr = BREAKPOINT_INSTRUCTION;
64 	flush_icache_range((unsigned long)p->addr,
65 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
66 }
67 
68 void __kprobes arch_disarm_kprobe(struct kprobe *p)
69 {
70 	*p->addr = p->opcode;
71 	flush_icache_range((unsigned long)p->addr,
72 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
73 }
74 
75 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
76 {
77 	if (*p->addr == BREAKPOINT_INSTRUCTION)
78 		return 1;
79 
80 	return 0;
81 }
82 
83 /**
84  * If an illegal slot instruction exception occurs for an address
85  * containing a kprobe, remove the probe.
86  *
87  * Returns 0 if the exception was handled successfully, 1 otherwise.
88  */
89 int __kprobes kprobe_handle_illslot(unsigned long pc)
90 {
91 	struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
92 
93 	if (p != NULL) {
94 		printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
95 		       (unsigned int)pc + 2);
96 		unregister_kprobe(p);
97 		return 0;
98 	}
99 
100 	return 1;
101 }
102 
103 void __kprobes arch_remove_kprobe(struct kprobe *p)
104 {
105 	struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
106 
107 	if (saved->addr) {
108 		arch_disarm_kprobe(p);
109 		arch_disarm_kprobe(saved);
110 
111 		saved->addr = NULL;
112 		saved->opcode = 0;
113 
114 		saved = this_cpu_ptr(&saved_next_opcode2);
115 		if (saved->addr) {
116 			arch_disarm_kprobe(saved);
117 
118 			saved->addr = NULL;
119 			saved->opcode = 0;
120 		}
121 	}
122 }
123 
124 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
125 {
126 	kcb->prev_kprobe.kp = kprobe_running();
127 	kcb->prev_kprobe.status = kcb->kprobe_status;
128 }
129 
130 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
131 {
132 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
133 	kcb->kprobe_status = kcb->prev_kprobe.status;
134 }
135 
136 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
137 					 struct kprobe_ctlblk *kcb)
138 {
139 	__this_cpu_write(current_kprobe, p);
140 }
141 
142 /*
143  * Singlestep is implemented by disabling the current kprobe and setting one
144  * on the next instruction, following branches. Two probes are set if the
145  * branch is conditional.
146  */
147 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
148 {
149 	__this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
150 
151 	if (p != NULL) {
152 		struct kprobe *op1, *op2;
153 
154 		arch_disarm_kprobe(p);
155 
156 		op1 = this_cpu_ptr(&saved_next_opcode);
157 		op2 = this_cpu_ptr(&saved_next_opcode2);
158 
159 		if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
160 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
161 			op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
162 		} else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
163 			unsigned long disp = (p->opcode & 0x0FFF);
164 			op1->addr =
165 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
166 
167 		} else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
168 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
169 			op1->addr =
170 			    (kprobe_opcode_t *) (regs->pc + 4 +
171 						 regs->regs[reg_nr]);
172 
173 		} else if (OPCODE_RTS(p->opcode)) {
174 			op1->addr = (kprobe_opcode_t *) regs->pr;
175 
176 		} else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
177 			unsigned long disp = (p->opcode & 0x00FF);
178 			/* case 1 */
179 			op1->addr = p->addr + 1;
180 			/* case 2 */
181 			op2->addr =
182 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
183 			op2->opcode = *(op2->addr);
184 			arch_arm_kprobe(op2);
185 
186 		} else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
187 			unsigned long disp = (p->opcode & 0x00FF);
188 			/* case 1 */
189 			op1->addr = p->addr + 2;
190 			/* case 2 */
191 			op2->addr =
192 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
193 			op2->opcode = *(op2->addr);
194 			arch_arm_kprobe(op2);
195 
196 		} else {
197 			op1->addr = p->addr + 1;
198 		}
199 
200 		op1->opcode = *(op1->addr);
201 		arch_arm_kprobe(op1);
202 	}
203 }
204 
205 /* Called with kretprobe_lock held */
206 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
207 				      struct pt_regs *regs)
208 {
209 	ri->ret_addr = (kprobe_opcode_t *) regs->pr;
210 
211 	/* Replace the return addr with trampoline addr */
212 	regs->pr = (unsigned long)kretprobe_trampoline;
213 }
214 
215 static int __kprobes kprobe_handler(struct pt_regs *regs)
216 {
217 	struct kprobe *p;
218 	int ret = 0;
219 	kprobe_opcode_t *addr = NULL;
220 	struct kprobe_ctlblk *kcb;
221 
222 	/*
223 	 * We don't want to be preempted for the entire
224 	 * duration of kprobe processing
225 	 */
226 	preempt_disable();
227 	kcb = get_kprobe_ctlblk();
228 
229 	addr = (kprobe_opcode_t *) (regs->pc);
230 
231 	/* Check we're not actually recursing */
232 	if (kprobe_running()) {
233 		p = get_kprobe(addr);
234 		if (p) {
235 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
236 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
237 				goto no_kprobe;
238 			}
239 			/* We have reentered the kprobe_handler(), since
240 			 * another probe was hit while within the handler.
241 			 * We here save the original kprobes variables and
242 			 * just single step on the instruction of the new probe
243 			 * without calling any user handlers.
244 			 */
245 			save_previous_kprobe(kcb);
246 			set_current_kprobe(p, regs, kcb);
247 			kprobes_inc_nmissed_count(p);
248 			prepare_singlestep(p, regs);
249 			kcb->kprobe_status = KPROBE_REENTER;
250 			return 1;
251 		} else {
252 			p = __this_cpu_read(current_kprobe);
253 			if (p->break_handler && p->break_handler(p, regs)) {
254 				goto ss_probe;
255 			}
256 		}
257 		goto no_kprobe;
258 	}
259 
260 	p = get_kprobe(addr);
261 	if (!p) {
262 		/* Not one of ours: let kernel handle it */
263 		if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
264 			/*
265 			 * The breakpoint instruction was removed right
266 			 * after we hit it. Another cpu has removed
267 			 * either a probepoint or a debugger breakpoint
268 			 * at this address. In either case, no further
269 			 * handling of this interrupt is appropriate.
270 			 */
271 			ret = 1;
272 		}
273 
274 		goto no_kprobe;
275 	}
276 
277 	set_current_kprobe(p, regs, kcb);
278 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
279 
280 	if (p->pre_handler && p->pre_handler(p, regs))
281 		/* handler has already set things up, so skip ss setup */
282 		return 1;
283 
284 ss_probe:
285 	prepare_singlestep(p, regs);
286 	kcb->kprobe_status = KPROBE_HIT_SS;
287 	return 1;
288 
289 no_kprobe:
290 	preempt_enable_no_resched();
291 	return ret;
292 }
293 
294 /*
295  * For function-return probes, init_kprobes() establishes a probepoint
296  * here. When a retprobed function returns, this probe is hit and
297  * trampoline_probe_handler() runs, calling the kretprobe's handler.
298  */
299 static void __used kretprobe_trampoline_holder(void)
300 {
301 	asm volatile (".globl kretprobe_trampoline\n"
302 		      "kretprobe_trampoline:\n\t"
303 		      "nop\n");
304 }
305 
306 /*
307  * Called when we hit the probe point at kretprobe_trampoline
308  */
309 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
310 {
311 	struct kretprobe_instance *ri = NULL;
312 	struct hlist_head *head, empty_rp;
313 	struct hlist_node *tmp;
314 	unsigned long flags, orig_ret_address = 0;
315 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
316 
317 	INIT_HLIST_HEAD(&empty_rp);
318 	kretprobe_hash_lock(current, &head, &flags);
319 
320 	/*
321 	 * It is possible to have multiple instances associated with a given
322 	 * task either because an multiple functions in the call path
323 	 * have a return probe installed on them, and/or more then one return
324 	 * return probe was registered for a target function.
325 	 *
326 	 * We can handle this because:
327 	 *     - instances are always inserted at the head of the list
328 	 *     - when multiple return probes are registered for the same
329 	 *       function, the first instance's ret_addr will point to the
330 	 *       real return address, and all the rest will point to
331 	 *       kretprobe_trampoline
332 	 */
333 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
334 		if (ri->task != current)
335 			/* another task is sharing our hash bucket */
336 			continue;
337 
338 		if (ri->rp && ri->rp->handler) {
339 			__this_cpu_write(current_kprobe, &ri->rp->kp);
340 			ri->rp->handler(ri, regs);
341 			__this_cpu_write(current_kprobe, NULL);
342 		}
343 
344 		orig_ret_address = (unsigned long)ri->ret_addr;
345 		recycle_rp_inst(ri, &empty_rp);
346 
347 		if (orig_ret_address != trampoline_address)
348 			/*
349 			 * This is the real return address. Any other
350 			 * instances associated with this task are for
351 			 * other calls deeper on the call stack
352 			 */
353 			break;
354 	}
355 
356 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
357 
358 	regs->pc = orig_ret_address;
359 	kretprobe_hash_unlock(current, &flags);
360 
361 	preempt_enable_no_resched();
362 
363 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
364 		hlist_del(&ri->hlist);
365 		kfree(ri);
366 	}
367 
368 	return orig_ret_address;
369 }
370 
371 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
372 {
373 	struct kprobe *cur = kprobe_running();
374 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
375 	kprobe_opcode_t *addr = NULL;
376 	struct kprobe *p = NULL;
377 
378 	if (!cur)
379 		return 0;
380 
381 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
382 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
383 		cur->post_handler(cur, regs, 0);
384 	}
385 
386 	p = this_cpu_ptr(&saved_next_opcode);
387 	if (p->addr) {
388 		arch_disarm_kprobe(p);
389 		p->addr = NULL;
390 		p->opcode = 0;
391 
392 		addr = __this_cpu_read(saved_current_opcode.addr);
393 		__this_cpu_write(saved_current_opcode.addr, NULL);
394 
395 		p = get_kprobe(addr);
396 		arch_arm_kprobe(p);
397 
398 		p = this_cpu_ptr(&saved_next_opcode2);
399 		if (p->addr) {
400 			arch_disarm_kprobe(p);
401 			p->addr = NULL;
402 			p->opcode = 0;
403 		}
404 	}
405 
406 	/* Restore back the original saved kprobes variables and continue. */
407 	if (kcb->kprobe_status == KPROBE_REENTER) {
408 		restore_previous_kprobe(kcb);
409 		goto out;
410 	}
411 
412 	reset_current_kprobe();
413 
414 out:
415 	preempt_enable_no_resched();
416 
417 	return 1;
418 }
419 
420 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
421 {
422 	struct kprobe *cur = kprobe_running();
423 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
424 	const struct exception_table_entry *entry;
425 
426 	switch (kcb->kprobe_status) {
427 	case KPROBE_HIT_SS:
428 	case KPROBE_REENTER:
429 		/*
430 		 * We are here because the instruction being single
431 		 * stepped caused a page fault. We reset the current
432 		 * kprobe, point the pc back to the probe address
433 		 * and allow the page fault handler to continue as a
434 		 * normal page fault.
435 		 */
436 		regs->pc = (unsigned long)cur->addr;
437 		if (kcb->kprobe_status == KPROBE_REENTER)
438 			restore_previous_kprobe(kcb);
439 		else
440 			reset_current_kprobe();
441 		preempt_enable_no_resched();
442 		break;
443 	case KPROBE_HIT_ACTIVE:
444 	case KPROBE_HIT_SSDONE:
445 		/*
446 		 * We increment the nmissed count for accounting,
447 		 * we can also use npre/npostfault count for accounting
448 		 * these specific fault cases.
449 		 */
450 		kprobes_inc_nmissed_count(cur);
451 
452 		/*
453 		 * We come here because instructions in the pre/post
454 		 * handler caused the page_fault, this could happen
455 		 * if handler tries to access user space by
456 		 * copy_from_user(), get_user() etc. Let the
457 		 * user-specified handler try to fix it first.
458 		 */
459 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
460 			return 1;
461 
462 		/*
463 		 * In case the user-specified fault handler returned
464 		 * zero, try to fix up.
465 		 */
466 		if ((entry = search_exception_tables(regs->pc)) != NULL) {
467 			regs->pc = entry->fixup;
468 			return 1;
469 		}
470 
471 		/*
472 		 * fixup_exception() could not handle it,
473 		 * Let do_page_fault() fix it.
474 		 */
475 		break;
476 	default:
477 		break;
478 	}
479 
480 	return 0;
481 }
482 
483 /*
484  * Wrapper routine to for handling exceptions.
485  */
486 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
487 				       unsigned long val, void *data)
488 {
489 	struct kprobe *p = NULL;
490 	struct die_args *args = (struct die_args *)data;
491 	int ret = NOTIFY_DONE;
492 	kprobe_opcode_t *addr = NULL;
493 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
494 
495 	addr = (kprobe_opcode_t *) (args->regs->pc);
496 	if (val == DIE_TRAP) {
497 		if (!kprobe_running()) {
498 			if (kprobe_handler(args->regs)) {
499 				ret = NOTIFY_STOP;
500 			} else {
501 				/* Not a kprobe trap */
502 				ret = NOTIFY_DONE;
503 			}
504 		} else {
505 			p = get_kprobe(addr);
506 			if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
507 			    (kcb->kprobe_status == KPROBE_REENTER)) {
508 				if (post_kprobe_handler(args->regs))
509 					ret = NOTIFY_STOP;
510 			} else {
511 				if (kprobe_handler(args->regs)) {
512 					ret = NOTIFY_STOP;
513 				} else {
514 					p = __this_cpu_read(current_kprobe);
515 					if (p->break_handler &&
516 					    p->break_handler(p, args->regs))
517 						ret = NOTIFY_STOP;
518 				}
519 			}
520 		}
521 	}
522 
523 	return ret;
524 }
525 
526 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
527 {
528 	struct jprobe *jp = container_of(p, struct jprobe, kp);
529 	unsigned long addr;
530 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
531 
532 	kcb->jprobe_saved_regs = *regs;
533 	kcb->jprobe_saved_r15 = regs->regs[15];
534 	addr = kcb->jprobe_saved_r15;
535 
536 	/*
537 	 * TBD: As Linus pointed out, gcc assumes that the callee
538 	 * owns the argument space and could overwrite it, e.g.
539 	 * tailcall optimization. So, to be absolutely safe
540 	 * we also save and restore enough stack bytes to cover
541 	 * the argument area.
542 	 */
543 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
544 	       MIN_STACK_SIZE(addr));
545 
546 	regs->pc = (unsigned long)(jp->entry);
547 
548 	return 1;
549 }
550 
551 void __kprobes jprobe_return(void)
552 {
553 	asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t");
554 }
555 
556 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
557 {
558 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
559 	unsigned long stack_addr = kcb->jprobe_saved_r15;
560 	u8 *addr = (u8 *)regs->pc;
561 
562 	if ((addr >= (u8 *)jprobe_return) &&
563 	    (addr <= (u8 *)jprobe_return_end)) {
564 		*regs = kcb->jprobe_saved_regs;
565 
566 		memcpy((kprobe_opcode_t *)stack_addr, kcb->jprobes_stack,
567 		       MIN_STACK_SIZE(stack_addr));
568 
569 		kcb->kprobe_status = KPROBE_HIT_SS;
570 		preempt_enable_no_resched();
571 		return 1;
572 	}
573 
574 	return 0;
575 }
576 
577 static struct kprobe trampoline_p = {
578 	.addr = (kprobe_opcode_t *)&kretprobe_trampoline,
579 	.pre_handler = trampoline_probe_handler
580 };
581 
582 int __init arch_init_kprobes(void)
583 {
584 	return register_kprobe(&trampoline_p);
585 }
586