xref: /openbmc/linux/arch/sh/kernel/kgdb.c (revision 6ea9a2b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH KGDB support
4  *
5  * Copyright (C) 2008 - 2012  Paul Mundt
6  *
7  * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
8  */
9 #include <linux/kgdb.h>
10 #include <linux/kdebug.h>
11 #include <linux/irq.h>
12 #include <linux/io.h>
13 #include <linux/sched.h>
14 #include <linux/sched/task_stack.h>
15 
16 #include <asm/cacheflush.h>
17 #include <asm/traps.h>
18 
19 /* Macros for single step instruction identification */
20 #define OPCODE_BT(op)		(((op) & 0xff00) == 0x8900)
21 #define OPCODE_BF(op)		(((op) & 0xff00) == 0x8b00)
22 #define OPCODE_BTF_DISP(op)	(((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
23 				 (((op) & 0x7f ) << 1))
24 #define OPCODE_BFS(op)		(((op) & 0xff00) == 0x8f00)
25 #define OPCODE_BTS(op)		(((op) & 0xff00) == 0x8d00)
26 #define OPCODE_BRA(op)		(((op) & 0xf000) == 0xa000)
27 #define OPCODE_BRA_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
28 				 (((op) & 0x7ff) << 1))
29 #define OPCODE_BRAF(op)		(((op) & 0xf0ff) == 0x0023)
30 #define OPCODE_BRAF_REG(op)	(((op) & 0x0f00) >> 8)
31 #define OPCODE_BSR(op)		(((op) & 0xf000) == 0xb000)
32 #define OPCODE_BSR_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
33 				 (((op) & 0x7ff) << 1))
34 #define OPCODE_BSRF(op)		(((op) & 0xf0ff) == 0x0003)
35 #define OPCODE_BSRF_REG(op)	(((op) >> 8) & 0xf)
36 #define OPCODE_JMP(op)		(((op) & 0xf0ff) == 0x402b)
37 #define OPCODE_JMP_REG(op)	(((op) >> 8) & 0xf)
38 #define OPCODE_JSR(op)		(((op) & 0xf0ff) == 0x400b)
39 #define OPCODE_JSR_REG(op)	(((op) >> 8) & 0xf)
40 #define OPCODE_RTS(op)		((op) == 0xb)
41 #define OPCODE_RTE(op)		((op) == 0x2b)
42 
43 #define SR_T_BIT_MASK           0x1
44 #define STEP_OPCODE             0xc33d
45 
46 /* Calculate the new address for after a step */
47 static short *get_step_address(struct pt_regs *linux_regs)
48 {
49 	insn_size_t op = __raw_readw(linux_regs->pc);
50 	long addr;
51 
52 	/* BT */
53 	if (OPCODE_BT(op)) {
54 		if (linux_regs->sr & SR_T_BIT_MASK)
55 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
56 		else
57 			addr = linux_regs->pc + 2;
58 	}
59 
60 	/* BTS */
61 	else if (OPCODE_BTS(op)) {
62 		if (linux_regs->sr & SR_T_BIT_MASK)
63 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
64 		else
65 			addr = linux_regs->pc + 4;	/* Not in delay slot */
66 	}
67 
68 	/* BF */
69 	else if (OPCODE_BF(op)) {
70 		if (!(linux_regs->sr & SR_T_BIT_MASK))
71 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
72 		else
73 			addr = linux_regs->pc + 2;
74 	}
75 
76 	/* BFS */
77 	else if (OPCODE_BFS(op)) {
78 		if (!(linux_regs->sr & SR_T_BIT_MASK))
79 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
80 		else
81 			addr = linux_regs->pc + 4;	/* Not in delay slot */
82 	}
83 
84 	/* BRA */
85 	else if (OPCODE_BRA(op))
86 		addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
87 
88 	/* BRAF */
89 	else if (OPCODE_BRAF(op))
90 		addr = linux_regs->pc + 4
91 		    + linux_regs->regs[OPCODE_BRAF_REG(op)];
92 
93 	/* BSR */
94 	else if (OPCODE_BSR(op))
95 		addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
96 
97 	/* BSRF */
98 	else if (OPCODE_BSRF(op))
99 		addr = linux_regs->pc + 4
100 		    + linux_regs->regs[OPCODE_BSRF_REG(op)];
101 
102 	/* JMP */
103 	else if (OPCODE_JMP(op))
104 		addr = linux_regs->regs[OPCODE_JMP_REG(op)];
105 
106 	/* JSR */
107 	else if (OPCODE_JSR(op))
108 		addr = linux_regs->regs[OPCODE_JSR_REG(op)];
109 
110 	/* RTS */
111 	else if (OPCODE_RTS(op))
112 		addr = linux_regs->pr;
113 
114 	/* RTE */
115 	else if (OPCODE_RTE(op))
116 		addr = linux_regs->regs[15];
117 
118 	/* Other */
119 	else
120 		addr = linux_regs->pc + instruction_size(op);
121 
122 	flush_icache_range(addr, addr + instruction_size(op));
123 	return (short *)addr;
124 }
125 
126 /*
127  * Replace the instruction immediately after the current instruction
128  * (i.e. next in the expected flow of control) with a trap instruction,
129  * so that returning will cause only a single instruction to be executed.
130  * Note that this model is slightly broken for instructions with delay
131  * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
132  * instruction in the delay slot will be executed.
133  */
134 
135 static unsigned long stepped_address;
136 static insn_size_t stepped_opcode;
137 
138 static void do_single_step(struct pt_regs *linux_regs)
139 {
140 	/* Determine where the target instruction will send us to */
141 	unsigned short *addr = get_step_address(linux_regs);
142 
143 	stepped_address = (int)addr;
144 
145 	/* Replace it */
146 	stepped_opcode = __raw_readw((long)addr);
147 	*addr = STEP_OPCODE;
148 
149 	/* Flush and return */
150 	flush_icache_range((long)addr, (long)addr +
151 			   instruction_size(stepped_opcode));
152 }
153 
154 /* Undo a single step */
155 static void undo_single_step(struct pt_regs *linux_regs)
156 {
157 	/* If we have stepped, put back the old instruction */
158 	/* Use stepped_address in case we stopped elsewhere */
159 	if (stepped_opcode != 0) {
160 		__raw_writew(stepped_opcode, stepped_address);
161 		flush_icache_range(stepped_address, stepped_address + 2);
162 	}
163 
164 	stepped_opcode = 0;
165 }
166 
167 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
168 	{ "r0",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
169 	{ "r1",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
170 	{ "r2",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
171 	{ "r3",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
172 	{ "r4",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
173 	{ "r5",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
174 	{ "r6",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
175 	{ "r7",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
176 	{ "r8",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
177 	{ "r9",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
178 	{ "r10",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
179 	{ "r11",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
180 	{ "r12",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
181 	{ "r13",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
182 	{ "r14",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
183 	{ "r15",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
184 	{ "pc",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
185 	{ "pr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
186 	{ "sr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
187 	{ "gbr",	GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
188 	{ "mach",	GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
189 	{ "macl",	GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
190 	{ "vbr",	GDB_SIZEOF_REG, -1 },
191 };
192 
193 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
194 {
195 	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
196 		return -EINVAL;
197 
198 	if (dbg_reg_def[regno].offset != -1)
199 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
200 		       dbg_reg_def[regno].size);
201 
202 	return 0;
203 }
204 
205 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
206 {
207 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
208 		return NULL;
209 
210 	if (dbg_reg_def[regno].size != -1)
211 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
212 		       dbg_reg_def[regno].size);
213 
214 	switch (regno) {
215 	case GDB_VBR:
216 		__asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
217 		break;
218 	}
219 
220 	return dbg_reg_def[regno].name;
221 }
222 
223 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
224 {
225 	struct pt_regs *thread_regs = task_pt_regs(p);
226 	int reg;
227 
228 	/* Initialize to zero */
229 	for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
230 		gdb_regs[reg] = 0;
231 
232 	/*
233 	 * Copy out GP regs 8 to 14.
234 	 *
235 	 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
236 	 * and need privileged instructions to get to. The r15 value we
237 	 * fetch from the thread info directly.
238 	 */
239 	for (reg = GDB_R8; reg < GDB_R15; reg++)
240 		gdb_regs[reg] = thread_regs->regs[reg];
241 
242 	gdb_regs[GDB_R15] = p->thread.sp;
243 	gdb_regs[GDB_PC] = p->thread.pc;
244 
245 	/*
246 	 * Additional registers we have context for
247 	 */
248 	gdb_regs[GDB_PR] = thread_regs->pr;
249 	gdb_regs[GDB_GBR] = thread_regs->gbr;
250 }
251 
252 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
253 			       char *remcomInBuffer, char *remcomOutBuffer,
254 			       struct pt_regs *linux_regs)
255 {
256 	unsigned long addr;
257 	char *ptr;
258 
259 	/* Undo any stepping we may have done */
260 	undo_single_step(linux_regs);
261 
262 	switch (remcomInBuffer[0]) {
263 	case 'c':
264 	case 's':
265 		/* try to read optional parameter, pc unchanged if no parm */
266 		ptr = &remcomInBuffer[1];
267 		if (kgdb_hex2long(&ptr, &addr))
268 			linux_regs->pc = addr;
269 		fallthrough;
270 	case 'D':
271 	case 'k':
272 		atomic_set(&kgdb_cpu_doing_single_step, -1);
273 
274 		if (remcomInBuffer[0] == 's') {
275 			do_single_step(linux_regs);
276 			kgdb_single_step = 1;
277 
278 			atomic_set(&kgdb_cpu_doing_single_step,
279 				   raw_smp_processor_id());
280 		}
281 
282 		return 0;
283 	}
284 
285 	/* this means that we do not want to exit from the handler: */
286 	return -1;
287 }
288 
289 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
290 {
291 	if (exception == 60)
292 		return instruction_pointer(regs) - 2;
293 	return instruction_pointer(regs);
294 }
295 
296 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
297 {
298 	regs->pc = ip;
299 }
300 
301 /*
302  * The primary entry points for the kgdb debug trap table entries.
303  */
304 BUILD_TRAP_HANDLER(singlestep)
305 {
306 	unsigned long flags;
307 	TRAP_HANDLER_DECL;
308 
309 	local_irq_save(flags);
310 	regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311 	kgdb_handle_exception(0, SIGTRAP, 0, regs);
312 	local_irq_restore(flags);
313 }
314 
315 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
316 {
317 	int ret;
318 
319 	switch (cmd) {
320 	case DIE_BREAKPOINT:
321 		/*
322 		 * This means a user thread is single stepping
323 		 * a system call which should be ignored
324 		 */
325 		if (test_thread_flag(TIF_SINGLESTEP))
326 			return NOTIFY_DONE;
327 
328 		ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
329 					    args->err, args->regs);
330 		if (ret)
331 			return NOTIFY_DONE;
332 
333 		break;
334 	}
335 
336 	return NOTIFY_STOP;
337 }
338 
339 static int
340 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
341 {
342 	unsigned long flags;
343 	int ret;
344 
345 	local_irq_save(flags);
346 	ret = __kgdb_notify(ptr, cmd);
347 	local_irq_restore(flags);
348 
349 	return ret;
350 }
351 
352 static struct notifier_block kgdb_notifier = {
353 	.notifier_call	= kgdb_notify,
354 
355 	/*
356 	 * Lowest-prio notifier priority, we want to be notified last:
357 	 */
358 	.priority	= -INT_MAX,
359 };
360 
361 int kgdb_arch_init(void)
362 {
363 	return register_die_notifier(&kgdb_notifier);
364 }
365 
366 void kgdb_arch_exit(void)
367 {
368 	unregister_die_notifier(&kgdb_notifier);
369 }
370 
371 const struct kgdb_arch arch_kgdb_ops = {
372 	/* Breakpoint instruction: trapa #0x3c */
373 #ifdef CONFIG_CPU_LITTLE_ENDIAN
374 	.gdb_bpt_instr		= { 0x3c, 0xc3 },
375 #else
376 	.gdb_bpt_instr		= { 0xc3, 0x3c },
377 #endif
378 };
379