xref: /openbmc/linux/arch/sh/kernel/dwarf.c (revision e8e0929d)
1 /*
2  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  *	- DWARF64 doesn't work.
14  *	- Registers with DWARF_VAL_OFFSET rules aren't handled properly.
15  */
16 
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <asm/dwarf.h>
24 #include <asm/unwinder.h>
25 #include <asm/sections.h>
26 #include <asm/unaligned.h>
27 #include <asm/stacktrace.h>
28 
29 /* Reserve enough memory for two stack frames */
30 #define DWARF_FRAME_MIN_REQ	2
31 /* ... with 4 registers per frame. */
32 #define DWARF_REG_MIN_REQ	(DWARF_FRAME_MIN_REQ * 4)
33 
34 static struct kmem_cache *dwarf_frame_cachep;
35 static mempool_t *dwarf_frame_pool;
36 
37 static struct kmem_cache *dwarf_reg_cachep;
38 static mempool_t *dwarf_reg_pool;
39 
40 static LIST_HEAD(dwarf_cie_list);
41 static DEFINE_SPINLOCK(dwarf_cie_lock);
42 
43 static LIST_HEAD(dwarf_fde_list);
44 static DEFINE_SPINLOCK(dwarf_fde_lock);
45 
46 static struct dwarf_cie *cached_cie;
47 
48 /**
49  *	dwarf_frame_alloc_reg - allocate memory for a DWARF register
50  *	@frame: the DWARF frame whose list of registers we insert on
51  *	@reg_num: the register number
52  *
53  *	Allocate space for, and initialise, a dwarf reg from
54  *	dwarf_reg_pool and insert it onto the (unsorted) linked-list of
55  *	dwarf registers for @frame.
56  *
57  *	Return the initialised DWARF reg.
58  */
59 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
60 					       unsigned int reg_num)
61 {
62 	struct dwarf_reg *reg;
63 
64 	reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
65 	if (!reg) {
66 		printk(KERN_WARNING "Unable to allocate a DWARF register\n");
67 		/*
68 		 * Let's just bomb hard here, we have no way to
69 		 * gracefully recover.
70 		 */
71 		UNWINDER_BUG();
72 	}
73 
74 	reg->number = reg_num;
75 	reg->addr = 0;
76 	reg->flags = 0;
77 
78 	list_add(&reg->link, &frame->reg_list);
79 
80 	return reg;
81 }
82 
83 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
84 {
85 	struct dwarf_reg *reg, *n;
86 
87 	list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
88 		list_del(&reg->link);
89 		mempool_free(reg, dwarf_reg_pool);
90 	}
91 }
92 
93 /**
94  *	dwarf_frame_reg - return a DWARF register
95  *	@frame: the DWARF frame to search in for @reg_num
96  *	@reg_num: the register number to search for
97  *
98  *	Lookup and return the dwarf reg @reg_num for this frame. Return
99  *	NULL if @reg_num is an register invalid number.
100  */
101 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
102 					 unsigned int reg_num)
103 {
104 	struct dwarf_reg *reg;
105 
106 	list_for_each_entry(reg, &frame->reg_list, link) {
107 		if (reg->number == reg_num)
108 			return reg;
109 	}
110 
111 	return NULL;
112 }
113 
114 /**
115  *	dwarf_read_addr - read dwarf data
116  *	@src: source address of data
117  *	@dst: destination address to store the data to
118  *
119  *	Read 'n' bytes from @src, where 'n' is the size of an address on
120  *	the native machine. We return the number of bytes read, which
121  *	should always be 'n'. We also have to be careful when reading
122  *	from @src and writing to @dst, because they can be arbitrarily
123  *	aligned. Return 'n' - the number of bytes read.
124  */
125 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
126 {
127 	u32 val = get_unaligned(src);
128 	put_unaligned(val, dst);
129 	return sizeof(unsigned long *);
130 }
131 
132 /**
133  *	dwarf_read_uleb128 - read unsigned LEB128 data
134  *	@addr: the address where the ULEB128 data is stored
135  *	@ret: address to store the result
136  *
137  *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
138  *	from Appendix C of the DWARF 3 spec. For information on the
139  *	encodings refer to section "7.6 - Variable Length Data". Return
140  *	the number of bytes read.
141  */
142 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
143 {
144 	unsigned int result;
145 	unsigned char byte;
146 	int shift, count;
147 
148 	result = 0;
149 	shift = 0;
150 	count = 0;
151 
152 	while (1) {
153 		byte = __raw_readb(addr);
154 		addr++;
155 		count++;
156 
157 		result |= (byte & 0x7f) << shift;
158 		shift += 7;
159 
160 		if (!(byte & 0x80))
161 			break;
162 	}
163 
164 	*ret = result;
165 
166 	return count;
167 }
168 
169 /**
170  *	dwarf_read_leb128 - read signed LEB128 data
171  *	@addr: the address of the LEB128 encoded data
172  *	@ret: address to store the result
173  *
174  *	Decode signed LEB128 data. The algorithm is taken from Appendix
175  *	C of the DWARF 3 spec. Return the number of bytes read.
176  */
177 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
178 {
179 	unsigned char byte;
180 	int result, shift;
181 	int num_bits;
182 	int count;
183 
184 	result = 0;
185 	shift = 0;
186 	count = 0;
187 
188 	while (1) {
189 		byte = __raw_readb(addr);
190 		addr++;
191 		result |= (byte & 0x7f) << shift;
192 		shift += 7;
193 		count++;
194 
195 		if (!(byte & 0x80))
196 			break;
197 	}
198 
199 	/* The number of bits in a signed integer. */
200 	num_bits = 8 * sizeof(result);
201 
202 	if ((shift < num_bits) && (byte & 0x40))
203 		result |= (-1 << shift);
204 
205 	*ret = result;
206 
207 	return count;
208 }
209 
210 /**
211  *	dwarf_read_encoded_value - return the decoded value at @addr
212  *	@addr: the address of the encoded value
213  *	@val: where to write the decoded value
214  *	@encoding: the encoding with which we can decode @addr
215  *
216  *	GCC emits encoded address in the .eh_frame FDE entries. Decode
217  *	the value at @addr using @encoding. The decoded value is written
218  *	to @val and the number of bytes read is returned.
219  */
220 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
221 				    char encoding)
222 {
223 	unsigned long decoded_addr = 0;
224 	int count = 0;
225 
226 	switch (encoding & 0x70) {
227 	case DW_EH_PE_absptr:
228 		break;
229 	case DW_EH_PE_pcrel:
230 		decoded_addr = (unsigned long)addr;
231 		break;
232 	default:
233 		pr_debug("encoding=0x%x\n", (encoding & 0x70));
234 		UNWINDER_BUG();
235 	}
236 
237 	if ((encoding & 0x07) == 0x00)
238 		encoding |= DW_EH_PE_udata4;
239 
240 	switch (encoding & 0x0f) {
241 	case DW_EH_PE_sdata4:
242 	case DW_EH_PE_udata4:
243 		count += 4;
244 		decoded_addr += get_unaligned((u32 *)addr);
245 		__raw_writel(decoded_addr, val);
246 		break;
247 	default:
248 		pr_debug("encoding=0x%x\n", encoding);
249 		UNWINDER_BUG();
250 	}
251 
252 	return count;
253 }
254 
255 /**
256  *	dwarf_entry_len - return the length of an FDE or CIE
257  *	@addr: the address of the entry
258  *	@len: the length of the entry
259  *
260  *	Read the initial_length field of the entry and store the size of
261  *	the entry in @len. We return the number of bytes read. Return a
262  *	count of 0 on error.
263  */
264 static inline int dwarf_entry_len(char *addr, unsigned long *len)
265 {
266 	u32 initial_len;
267 	int count;
268 
269 	initial_len = get_unaligned((u32 *)addr);
270 	count = 4;
271 
272 	/*
273 	 * An initial length field value in the range DW_LEN_EXT_LO -
274 	 * DW_LEN_EXT_HI indicates an extension, and should not be
275 	 * interpreted as a length. The only extension that we currently
276 	 * understand is the use of DWARF64 addresses.
277 	 */
278 	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
279 		/*
280 		 * The 64-bit length field immediately follows the
281 		 * compulsory 32-bit length field.
282 		 */
283 		if (initial_len == DW_EXT_DWARF64) {
284 			*len = get_unaligned((u64 *)addr + 4);
285 			count = 12;
286 		} else {
287 			printk(KERN_WARNING "Unknown DWARF extension\n");
288 			count = 0;
289 		}
290 	} else
291 		*len = initial_len;
292 
293 	return count;
294 }
295 
296 /**
297  *	dwarf_lookup_cie - locate the cie
298  *	@cie_ptr: pointer to help with lookup
299  */
300 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
301 {
302 	struct dwarf_cie *cie;
303 	unsigned long flags;
304 
305 	spin_lock_irqsave(&dwarf_cie_lock, flags);
306 
307 	/*
308 	 * We've cached the last CIE we looked up because chances are
309 	 * that the FDE wants this CIE.
310 	 */
311 	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
312 		cie = cached_cie;
313 		goto out;
314 	}
315 
316 	list_for_each_entry(cie, &dwarf_cie_list, link) {
317 		if (cie->cie_pointer == cie_ptr) {
318 			cached_cie = cie;
319 			break;
320 		}
321 	}
322 
323 	/* Couldn't find the entry in the list. */
324 	if (&cie->link == &dwarf_cie_list)
325 		cie = NULL;
326 out:
327 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
328 	return cie;
329 }
330 
331 /**
332  *	dwarf_lookup_fde - locate the FDE that covers pc
333  *	@pc: the program counter
334  */
335 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
336 {
337 	struct dwarf_fde *fde;
338 	unsigned long flags;
339 
340 	spin_lock_irqsave(&dwarf_fde_lock, flags);
341 
342 	list_for_each_entry(fde, &dwarf_fde_list, link) {
343 		unsigned long start, end;
344 
345 		start = fde->initial_location;
346 		end = fde->initial_location + fde->address_range;
347 
348 		if (pc >= start && pc < end)
349 			break;
350 	}
351 
352 	/* Couldn't find the entry in the list. */
353 	if (&fde->link == &dwarf_fde_list)
354 		fde = NULL;
355 
356 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
357 
358 	return fde;
359 }
360 
361 /**
362  *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
363  *	@insn_start: address of the first instruction
364  *	@insn_end: address of the last instruction
365  *	@cie: the CIE for this function
366  *	@fde: the FDE for this function
367  *	@frame: the instructions calculate the CFA for this frame
368  *	@pc: the program counter of the address we're interested in
369  *
370  *	Execute the Call Frame instruction sequence starting at
371  *	@insn_start and ending at @insn_end. The instructions describe
372  *	how to calculate the Canonical Frame Address of a stackframe.
373  *	Store the results in @frame.
374  */
375 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
376 				   unsigned char *insn_end,
377 				   struct dwarf_cie *cie,
378 				   struct dwarf_fde *fde,
379 				   struct dwarf_frame *frame,
380 				   unsigned long pc)
381 {
382 	unsigned char insn;
383 	unsigned char *current_insn;
384 	unsigned int count, delta, reg, expr_len, offset;
385 	struct dwarf_reg *regp;
386 
387 	current_insn = insn_start;
388 
389 	while (current_insn < insn_end && frame->pc <= pc) {
390 		insn = __raw_readb(current_insn++);
391 
392 		/*
393 		 * Firstly, handle the opcodes that embed their operands
394 		 * in the instructions.
395 		 */
396 		switch (DW_CFA_opcode(insn)) {
397 		case DW_CFA_advance_loc:
398 			delta = DW_CFA_operand(insn);
399 			delta *= cie->code_alignment_factor;
400 			frame->pc += delta;
401 			continue;
402 			/* NOTREACHED */
403 		case DW_CFA_offset:
404 			reg = DW_CFA_operand(insn);
405 			count = dwarf_read_uleb128(current_insn, &offset);
406 			current_insn += count;
407 			offset *= cie->data_alignment_factor;
408 			regp = dwarf_frame_alloc_reg(frame, reg);
409 			regp->addr = offset;
410 			regp->flags |= DWARF_REG_OFFSET;
411 			continue;
412 			/* NOTREACHED */
413 		case DW_CFA_restore:
414 			reg = DW_CFA_operand(insn);
415 			continue;
416 			/* NOTREACHED */
417 		}
418 
419 		/*
420 		 * Secondly, handle the opcodes that don't embed their
421 		 * operands in the instruction.
422 		 */
423 		switch (insn) {
424 		case DW_CFA_nop:
425 			continue;
426 		case DW_CFA_advance_loc1:
427 			delta = *current_insn++;
428 			frame->pc += delta * cie->code_alignment_factor;
429 			break;
430 		case DW_CFA_advance_loc2:
431 			delta = get_unaligned((u16 *)current_insn);
432 			current_insn += 2;
433 			frame->pc += delta * cie->code_alignment_factor;
434 			break;
435 		case DW_CFA_advance_loc4:
436 			delta = get_unaligned((u32 *)current_insn);
437 			current_insn += 4;
438 			frame->pc += delta * cie->code_alignment_factor;
439 			break;
440 		case DW_CFA_offset_extended:
441 			count = dwarf_read_uleb128(current_insn, &reg);
442 			current_insn += count;
443 			count = dwarf_read_uleb128(current_insn, &offset);
444 			current_insn += count;
445 			offset *= cie->data_alignment_factor;
446 			break;
447 		case DW_CFA_restore_extended:
448 			count = dwarf_read_uleb128(current_insn, &reg);
449 			current_insn += count;
450 			break;
451 		case DW_CFA_undefined:
452 			count = dwarf_read_uleb128(current_insn, &reg);
453 			current_insn += count;
454 			regp = dwarf_frame_alloc_reg(frame, reg);
455 			regp->flags |= DWARF_UNDEFINED;
456 			break;
457 		case DW_CFA_def_cfa:
458 			count = dwarf_read_uleb128(current_insn,
459 						   &frame->cfa_register);
460 			current_insn += count;
461 			count = dwarf_read_uleb128(current_insn,
462 						   &frame->cfa_offset);
463 			current_insn += count;
464 
465 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
466 			break;
467 		case DW_CFA_def_cfa_register:
468 			count = dwarf_read_uleb128(current_insn,
469 						   &frame->cfa_register);
470 			current_insn += count;
471 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
472 			break;
473 		case DW_CFA_def_cfa_offset:
474 			count = dwarf_read_uleb128(current_insn, &offset);
475 			current_insn += count;
476 			frame->cfa_offset = offset;
477 			break;
478 		case DW_CFA_def_cfa_expression:
479 			count = dwarf_read_uleb128(current_insn, &expr_len);
480 			current_insn += count;
481 
482 			frame->cfa_expr = current_insn;
483 			frame->cfa_expr_len = expr_len;
484 			current_insn += expr_len;
485 
486 			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
487 			break;
488 		case DW_CFA_offset_extended_sf:
489 			count = dwarf_read_uleb128(current_insn, &reg);
490 			current_insn += count;
491 			count = dwarf_read_leb128(current_insn, &offset);
492 			current_insn += count;
493 			offset *= cie->data_alignment_factor;
494 			regp = dwarf_frame_alloc_reg(frame, reg);
495 			regp->flags |= DWARF_REG_OFFSET;
496 			regp->addr = offset;
497 			break;
498 		case DW_CFA_val_offset:
499 			count = dwarf_read_uleb128(current_insn, &reg);
500 			current_insn += count;
501 			count = dwarf_read_leb128(current_insn, &offset);
502 			offset *= cie->data_alignment_factor;
503 			regp = dwarf_frame_alloc_reg(frame, reg);
504 			regp->flags |= DWARF_VAL_OFFSET;
505 			regp->addr = offset;
506 			break;
507 		case DW_CFA_GNU_args_size:
508 			count = dwarf_read_uleb128(current_insn, &offset);
509 			current_insn += count;
510 			break;
511 		case DW_CFA_GNU_negative_offset_extended:
512 			count = dwarf_read_uleb128(current_insn, &reg);
513 			current_insn += count;
514 			count = dwarf_read_uleb128(current_insn, &offset);
515 			offset *= cie->data_alignment_factor;
516 
517 			regp = dwarf_frame_alloc_reg(frame, reg);
518 			regp->flags |= DWARF_REG_OFFSET;
519 			regp->addr = -offset;
520 			break;
521 		default:
522 			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
523 			UNWINDER_BUG();
524 			break;
525 		}
526 	}
527 
528 	return 0;
529 }
530 
531 /**
532  *	dwarf_unwind_stack - recursively unwind the stack
533  *	@pc: address of the function to unwind
534  *	@prev: struct dwarf_frame of the previous stackframe on the callstack
535  *
536  *	Return a struct dwarf_frame representing the most recent frame
537  *	on the callstack. Each of the lower (older) stack frames are
538  *	linked via the "prev" member.
539  */
540 struct dwarf_frame * dwarf_unwind_stack(unsigned long pc,
541 					struct dwarf_frame *prev)
542 {
543 	struct dwarf_frame *frame;
544 	struct dwarf_cie *cie;
545 	struct dwarf_fde *fde;
546 	struct dwarf_reg *reg;
547 	unsigned long addr;
548 
549 	/*
550 	 * If this is the first invocation of this recursive function we
551 	 * need get the contents of a physical register to get the CFA
552 	 * in order to begin the virtual unwinding of the stack.
553 	 *
554 	 * NOTE: the return address is guaranteed to be setup by the
555 	 * time this function makes its first function call.
556 	 */
557 	if (!pc && !prev)
558 		pc = (unsigned long)current_text_addr();
559 
560 	frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
561 	if (!frame) {
562 		printk(KERN_ERR "Unable to allocate a dwarf frame\n");
563 		UNWINDER_BUG();
564 	}
565 
566 	INIT_LIST_HEAD(&frame->reg_list);
567 	frame->flags = 0;
568 	frame->prev = prev;
569 	frame->return_addr = 0;
570 
571 	fde = dwarf_lookup_fde(pc);
572 	if (!fde) {
573 		/*
574 		 * This is our normal exit path - the one that stops the
575 		 * recursion. There's two reasons why we might exit
576 		 * here,
577 		 *
578 		 *	a) pc has no asscociated DWARF frame info and so
579 		 *	we don't know how to unwind this frame. This is
580 		 *	usually the case when we're trying to unwind a
581 		 *	frame that was called from some assembly code
582 		 *	that has no DWARF info, e.g. syscalls.
583 		 *
584 		 *	b) the DEBUG info for pc is bogus. There's
585 		 *	really no way to distinguish this case from the
586 		 *	case above, which sucks because we could print a
587 		 *	warning here.
588 		 */
589 		goto bail;
590 	}
591 
592 	cie = dwarf_lookup_cie(fde->cie_pointer);
593 
594 	frame->pc = fde->initial_location;
595 
596 	/* CIE initial instructions */
597 	dwarf_cfa_execute_insns(cie->initial_instructions,
598 				cie->instructions_end, cie, fde,
599 				frame, pc);
600 
601 	/* FDE instructions */
602 	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
603 				fde, frame, pc);
604 
605 	/* Calculate the CFA */
606 	switch (frame->flags) {
607 	case DWARF_FRAME_CFA_REG_OFFSET:
608 		if (prev) {
609 			reg = dwarf_frame_reg(prev, frame->cfa_register);
610 			UNWINDER_BUG_ON(!reg);
611 			UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
612 
613 			addr = prev->cfa + reg->addr;
614 			frame->cfa = __raw_readl(addr);
615 
616 		} else {
617 			/*
618 			 * Again, this is the first invocation of this
619 			 * recurisve function. We need to physically
620 			 * read the contents of a register in order to
621 			 * get the Canonical Frame Address for this
622 			 * function.
623 			 */
624 			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
625 		}
626 
627 		frame->cfa += frame->cfa_offset;
628 		break;
629 	default:
630 		UNWINDER_BUG();
631 	}
632 
633 	reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
634 
635 	/*
636 	 * If we haven't seen the return address register or the return
637 	 * address column is undefined then we must assume that this is
638 	 * the end of the callstack.
639 	 */
640 	if (!reg || reg->flags == DWARF_UNDEFINED)
641 		goto bail;
642 
643 	UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
644 
645 	addr = frame->cfa + reg->addr;
646 	frame->return_addr = __raw_readl(addr);
647 
648 	return frame;
649 
650 bail:
651 	dwarf_frame_free_regs(frame);
652 	mempool_free(frame, dwarf_frame_pool);
653 	return NULL;
654 }
655 
656 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
657 			   unsigned char *end)
658 {
659 	struct dwarf_cie *cie;
660 	unsigned long flags;
661 	int count;
662 
663 	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
664 	if (!cie)
665 		return -ENOMEM;
666 
667 	cie->length = len;
668 
669 	/*
670 	 * Record the offset into the .eh_frame section
671 	 * for this CIE. It allows this CIE to be
672 	 * quickly and easily looked up from the
673 	 * corresponding FDE.
674 	 */
675 	cie->cie_pointer = (unsigned long)entry;
676 
677 	cie->version = *(char *)p++;
678 	UNWINDER_BUG_ON(cie->version != 1);
679 
680 	cie->augmentation = p;
681 	p += strlen(cie->augmentation) + 1;
682 
683 	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
684 	p += count;
685 
686 	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
687 	p += count;
688 
689 	/*
690 	 * Which column in the rule table contains the
691 	 * return address?
692 	 */
693 	if (cie->version == 1) {
694 		cie->return_address_reg = __raw_readb(p);
695 		p++;
696 	} else {
697 		count = dwarf_read_uleb128(p, &cie->return_address_reg);
698 		p += count;
699 	}
700 
701 	if (cie->augmentation[0] == 'z') {
702 		unsigned int length, count;
703 		cie->flags |= DWARF_CIE_Z_AUGMENTATION;
704 
705 		count = dwarf_read_uleb128(p, &length);
706 		p += count;
707 
708 		UNWINDER_BUG_ON((unsigned char *)p > end);
709 
710 		cie->initial_instructions = p + length;
711 		cie->augmentation++;
712 	}
713 
714 	while (*cie->augmentation) {
715 		/*
716 		 * "L" indicates a byte showing how the
717 		 * LSDA pointer is encoded. Skip it.
718 		 */
719 		if (*cie->augmentation == 'L') {
720 			p++;
721 			cie->augmentation++;
722 		} else if (*cie->augmentation == 'R') {
723 			/*
724 			 * "R" indicates a byte showing
725 			 * how FDE addresses are
726 			 * encoded.
727 			 */
728 			cie->encoding = *(char *)p++;
729 			cie->augmentation++;
730 		} else if (*cie->augmentation == 'P') {
731 			/*
732 			 * "R" indicates a personality
733 			 * routine in the CIE
734 			 * augmentation.
735 			 */
736 			UNWINDER_BUG();
737 		} else if (*cie->augmentation == 'S') {
738 			UNWINDER_BUG();
739 		} else {
740 			/*
741 			 * Unknown augmentation. Assume
742 			 * 'z' augmentation.
743 			 */
744 			p = cie->initial_instructions;
745 			UNWINDER_BUG_ON(!p);
746 			break;
747 		}
748 	}
749 
750 	cie->initial_instructions = p;
751 	cie->instructions_end = end;
752 
753 	/* Add to list */
754 	spin_lock_irqsave(&dwarf_cie_lock, flags);
755 	list_add_tail(&cie->link, &dwarf_cie_list);
756 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
757 
758 	return 0;
759 }
760 
761 static int dwarf_parse_fde(void *entry, u32 entry_type,
762 			   void *start, unsigned long len,
763 			   unsigned char *end)
764 {
765 	struct dwarf_fde *fde;
766 	struct dwarf_cie *cie;
767 	unsigned long flags;
768 	int count;
769 	void *p = start;
770 
771 	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
772 	if (!fde)
773 		return -ENOMEM;
774 
775 	fde->length = len;
776 
777 	/*
778 	 * In a .eh_frame section the CIE pointer is the
779 	 * delta between the address within the FDE
780 	 */
781 	fde->cie_pointer = (unsigned long)(p - entry_type - 4);
782 
783 	cie = dwarf_lookup_cie(fde->cie_pointer);
784 	fde->cie = cie;
785 
786 	if (cie->encoding)
787 		count = dwarf_read_encoded_value(p, &fde->initial_location,
788 						 cie->encoding);
789 	else
790 		count = dwarf_read_addr(p, &fde->initial_location);
791 
792 	p += count;
793 
794 	if (cie->encoding)
795 		count = dwarf_read_encoded_value(p, &fde->address_range,
796 						 cie->encoding & 0x0f);
797 	else
798 		count = dwarf_read_addr(p, &fde->address_range);
799 
800 	p += count;
801 
802 	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
803 		unsigned int length;
804 		count = dwarf_read_uleb128(p, &length);
805 		p += count + length;
806 	}
807 
808 	/* Call frame instructions. */
809 	fde->instructions = p;
810 	fde->end = end;
811 
812 	/* Add to list. */
813 	spin_lock_irqsave(&dwarf_fde_lock, flags);
814 	list_add_tail(&fde->link, &dwarf_fde_list);
815 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
816 
817 	return 0;
818 }
819 
820 static void dwarf_unwinder_dump(struct task_struct *task,
821 				struct pt_regs *regs,
822 				unsigned long *sp,
823 				const struct stacktrace_ops *ops,
824 				void *data)
825 {
826 	struct dwarf_frame *frame, *_frame;
827 	unsigned long return_addr;
828 
829 	_frame = NULL;
830 	return_addr = 0;
831 
832 	while (1) {
833 		frame = dwarf_unwind_stack(return_addr, _frame);
834 
835 		if (_frame) {
836 			dwarf_frame_free_regs(_frame);
837 			mempool_free(_frame, dwarf_frame_pool);
838 		}
839 
840 		_frame = frame;
841 
842 		if (!frame || !frame->return_addr)
843 			break;
844 
845 		return_addr = frame->return_addr;
846 		ops->address(data, return_addr, 1);
847 	}
848 }
849 
850 static struct unwinder dwarf_unwinder = {
851 	.name = "dwarf-unwinder",
852 	.dump = dwarf_unwinder_dump,
853 	.rating = 150,
854 };
855 
856 static void dwarf_unwinder_cleanup(void)
857 {
858 	struct dwarf_cie *cie;
859 	struct dwarf_fde *fde;
860 
861 	/*
862 	 * Deallocate all the memory allocated for the DWARF unwinder.
863 	 * Traverse all the FDE/CIE lists and remove and free all the
864 	 * memory associated with those data structures.
865 	 */
866 	list_for_each_entry(cie, &dwarf_cie_list, link)
867 		kfree(cie);
868 
869 	list_for_each_entry(fde, &dwarf_fde_list, link)
870 		kfree(fde);
871 
872 	kmem_cache_destroy(dwarf_reg_cachep);
873 	kmem_cache_destroy(dwarf_frame_cachep);
874 }
875 
876 /**
877  *	dwarf_unwinder_init - initialise the dwarf unwinder
878  *
879  *	Build the data structures describing the .dwarf_frame section to
880  *	make it easier to lookup CIE and FDE entries. Because the
881  *	.eh_frame section is packed as tightly as possible it is not
882  *	easy to lookup the FDE for a given PC, so we build a list of FDE
883  *	and CIE entries that make it easier.
884  */
885 static int __init dwarf_unwinder_init(void)
886 {
887 	u32 entry_type;
888 	void *p, *entry;
889 	int count, err = 0;
890 	unsigned long len;
891 	unsigned int c_entries, f_entries;
892 	unsigned char *end;
893 	INIT_LIST_HEAD(&dwarf_cie_list);
894 	INIT_LIST_HEAD(&dwarf_fde_list);
895 
896 	c_entries = 0;
897 	f_entries = 0;
898 	entry = &__start_eh_frame;
899 
900 	dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
901 			sizeof(struct dwarf_frame), 0,
902 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
903 
904 	dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
905 			sizeof(struct dwarf_reg), 0,
906 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
907 
908 	dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
909 					  mempool_alloc_slab,
910 					  mempool_free_slab,
911 					  dwarf_frame_cachep);
912 
913 	dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
914 					 mempool_alloc_slab,
915 					 mempool_free_slab,
916 					 dwarf_reg_cachep);
917 
918 	while ((char *)entry < __stop_eh_frame) {
919 		p = entry;
920 
921 		count = dwarf_entry_len(p, &len);
922 		if (count == 0) {
923 			/*
924 			 * We read a bogus length field value. There is
925 			 * nothing we can do here apart from disabling
926 			 * the DWARF unwinder. We can't even skip this
927 			 * entry and move to the next one because 'len'
928 			 * tells us where our next entry is.
929 			 */
930 			goto out;
931 		} else
932 			p += count;
933 
934 		/* initial length does not include itself */
935 		end = p + len;
936 
937 		entry_type = get_unaligned((u32 *)p);
938 		p += 4;
939 
940 		if (entry_type == DW_EH_FRAME_CIE) {
941 			err = dwarf_parse_cie(entry, p, len, end);
942 			if (err < 0)
943 				goto out;
944 			else
945 				c_entries++;
946 		} else {
947 			err = dwarf_parse_fde(entry, entry_type, p, len, end);
948 			if (err < 0)
949 				goto out;
950 			else
951 				f_entries++;
952 		}
953 
954 		entry = (char *)entry + len + 4;
955 	}
956 
957 	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
958 	       c_entries, f_entries);
959 
960 	err = unwinder_register(&dwarf_unwinder);
961 	if (err)
962 		goto out;
963 
964 	return 0;
965 
966 out:
967 	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
968 	dwarf_unwinder_cleanup();
969 	return -EINVAL;
970 }
971 early_initcall(dwarf_unwinder_init);
972