1 /* 2 * Performance events support for SH-4A performance counters 3 * 4 * Copyright (C) 2009 Paul Mundt 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/irq.h> 14 #include <linux/perf_event.h> 15 #include <asm/processor.h> 16 17 #define PPC_CCBR(idx) (0xff200800 + (sizeof(u32) * idx)) 18 #define PPC_PMCTR(idx) (0xfc100000 + (sizeof(u32) * idx)) 19 20 #define CCBR_CIT_MASK (0x7ff << 6) 21 #define CCBR_DUC (1 << 3) 22 #define CCBR_CMDS (1 << 1) 23 #define CCBR_PPCE (1 << 0) 24 25 #define PPC_PMCAT 0xfc100080 26 27 #define PMCAT_OVF3 (1 << 27) 28 #define PMCAT_CNN3 (1 << 26) 29 #define PMCAT_CLR3 (1 << 25) 30 #define PMCAT_OVF2 (1 << 19) 31 #define PMCAT_CLR2 (1 << 17) 32 #define PMCAT_OVF1 (1 << 11) 33 #define PMCAT_CNN1 (1 << 10) 34 #define PMCAT_CLR1 (1 << 9) 35 #define PMCAT_OVF0 (1 << 3) 36 #define PMCAT_CLR0 (1 << 1) 37 38 static struct sh_pmu sh4a_pmu; 39 40 /* 41 * Supported raw event codes: 42 * 43 * Event Code Description 44 * ---------- ----------- 45 * 46 * 0x0000 number of elapsed cycles 47 * 0x0200 number of elapsed cycles in privileged mode 48 * 0x0280 number of elapsed cycles while SR.BL is asserted 49 * 0x0202 instruction execution 50 * 0x0203 instruction execution in parallel 51 * 0x0204 number of unconditional branches 52 * 0x0208 number of exceptions 53 * 0x0209 number of interrupts 54 * 0x0220 UTLB miss caused by instruction fetch 55 * 0x0222 UTLB miss caused by operand access 56 * 0x02a0 number of ITLB misses 57 * 0x0028 number of accesses to instruction memories 58 * 0x0029 number of accesses to instruction cache 59 * 0x002a instruction cache miss 60 * 0x022e number of access to instruction X/Y memory 61 * 0x0030 number of reads to operand memories 62 * 0x0038 number of writes to operand memories 63 * 0x0031 number of operand cache read accesses 64 * 0x0039 number of operand cache write accesses 65 * 0x0032 operand cache read miss 66 * 0x003a operand cache write miss 67 * 0x0236 number of reads to operand X/Y memory 68 * 0x023e number of writes to operand X/Y memory 69 * 0x0237 number of reads to operand U memory 70 * 0x023f number of writes to operand U memory 71 * 0x0337 number of U memory read buffer misses 72 * 0x02b4 number of wait cycles due to operand read access 73 * 0x02bc number of wait cycles due to operand write access 74 * 0x0033 number of wait cycles due to operand cache read miss 75 * 0x003b number of wait cycles due to operand cache write miss 76 */ 77 78 /* 79 * Special reserved bits used by hardware emulators, read values will 80 * vary, but writes must always be 0. 81 */ 82 #define PMCAT_EMU_CLR_MASK ((1 << 24) | (1 << 16) | (1 << 8) | (1 << 0)) 83 84 static const int sh4a_general_events[] = { 85 [PERF_COUNT_HW_CPU_CYCLES] = 0x0000, 86 [PERF_COUNT_HW_INSTRUCTIONS] = 0x0202, 87 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0029, /* I-cache */ 88 [PERF_COUNT_HW_CACHE_MISSES] = 0x002a, /* I-cache */ 89 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x0204, 90 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 91 [PERF_COUNT_HW_BUS_CYCLES] = -1, 92 }; 93 94 #define C(x) PERF_COUNT_HW_CACHE_##x 95 96 static const int sh4a_cache_events 97 [PERF_COUNT_HW_CACHE_MAX] 98 [PERF_COUNT_HW_CACHE_OP_MAX] 99 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 100 { 101 [ C(L1D) ] = { 102 [ C(OP_READ) ] = { 103 [ C(RESULT_ACCESS) ] = 0x0031, 104 [ C(RESULT_MISS) ] = 0x0032, 105 }, 106 [ C(OP_WRITE) ] = { 107 [ C(RESULT_ACCESS) ] = 0x0039, 108 [ C(RESULT_MISS) ] = 0x003a, 109 }, 110 [ C(OP_PREFETCH) ] = { 111 [ C(RESULT_ACCESS) ] = 0, 112 [ C(RESULT_MISS) ] = 0, 113 }, 114 }, 115 116 [ C(L1I) ] = { 117 [ C(OP_READ) ] = { 118 [ C(RESULT_ACCESS) ] = 0x0029, 119 [ C(RESULT_MISS) ] = 0x002a, 120 }, 121 [ C(OP_WRITE) ] = { 122 [ C(RESULT_ACCESS) ] = -1, 123 [ C(RESULT_MISS) ] = -1, 124 }, 125 [ C(OP_PREFETCH) ] = { 126 [ C(RESULT_ACCESS) ] = 0, 127 [ C(RESULT_MISS) ] = 0, 128 }, 129 }, 130 131 [ C(LL) ] = { 132 [ C(OP_READ) ] = { 133 [ C(RESULT_ACCESS) ] = 0x0030, 134 [ C(RESULT_MISS) ] = 0, 135 }, 136 [ C(OP_WRITE) ] = { 137 [ C(RESULT_ACCESS) ] = 0x0038, 138 [ C(RESULT_MISS) ] = 0, 139 }, 140 [ C(OP_PREFETCH) ] = { 141 [ C(RESULT_ACCESS) ] = 0, 142 [ C(RESULT_MISS) ] = 0, 143 }, 144 }, 145 146 [ C(DTLB) ] = { 147 [ C(OP_READ) ] = { 148 [ C(RESULT_ACCESS) ] = 0x0222, 149 [ C(RESULT_MISS) ] = 0x0220, 150 }, 151 [ C(OP_WRITE) ] = { 152 [ C(RESULT_ACCESS) ] = 0, 153 [ C(RESULT_MISS) ] = 0, 154 }, 155 [ C(OP_PREFETCH) ] = { 156 [ C(RESULT_ACCESS) ] = 0, 157 [ C(RESULT_MISS) ] = 0, 158 }, 159 }, 160 161 [ C(ITLB) ] = { 162 [ C(OP_READ) ] = { 163 [ C(RESULT_ACCESS) ] = 0, 164 [ C(RESULT_MISS) ] = 0x02a0, 165 }, 166 [ C(OP_WRITE) ] = { 167 [ C(RESULT_ACCESS) ] = -1, 168 [ C(RESULT_MISS) ] = -1, 169 }, 170 [ C(OP_PREFETCH) ] = { 171 [ C(RESULT_ACCESS) ] = -1, 172 [ C(RESULT_MISS) ] = -1, 173 }, 174 }, 175 176 [ C(BPU) ] = { 177 [ C(OP_READ) ] = { 178 [ C(RESULT_ACCESS) ] = -1, 179 [ C(RESULT_MISS) ] = -1, 180 }, 181 [ C(OP_WRITE) ] = { 182 [ C(RESULT_ACCESS) ] = -1, 183 [ C(RESULT_MISS) ] = -1, 184 }, 185 [ C(OP_PREFETCH) ] = { 186 [ C(RESULT_ACCESS) ] = -1, 187 [ C(RESULT_MISS) ] = -1, 188 }, 189 }, 190 }; 191 192 static int sh4a_event_map(int event) 193 { 194 return sh4a_general_events[event]; 195 } 196 197 static u64 sh4a_pmu_read(int idx) 198 { 199 return __raw_readl(PPC_PMCTR(idx)); 200 } 201 202 static void sh4a_pmu_disable(struct hw_perf_event *hwc, int idx) 203 { 204 unsigned int tmp; 205 206 tmp = __raw_readl(PPC_CCBR(idx)); 207 tmp &= ~(CCBR_CIT_MASK | CCBR_DUC); 208 __raw_writel(tmp, PPC_CCBR(idx)); 209 } 210 211 static void sh4a_pmu_enable(struct hw_perf_event *hwc, int idx) 212 { 213 unsigned int tmp; 214 215 tmp = __raw_readl(PPC_PMCAT); 216 tmp &= ~PMCAT_EMU_CLR_MASK; 217 tmp |= idx ? PMCAT_CLR1 : PMCAT_CLR0; 218 __raw_writel(tmp, PPC_PMCAT); 219 220 tmp = __raw_readl(PPC_CCBR(idx)); 221 tmp |= (hwc->config << 6) | CCBR_CMDS | CCBR_PPCE; 222 __raw_writel(tmp, PPC_CCBR(idx)); 223 224 __raw_writel(__raw_readl(PPC_CCBR(idx)) | CCBR_DUC, PPC_CCBR(idx)); 225 } 226 227 static void sh4a_pmu_disable_all(void) 228 { 229 int i; 230 231 for (i = 0; i < sh4a_pmu.num_events; i++) 232 __raw_writel(__raw_readl(PPC_CCBR(i)) & ~CCBR_DUC, PPC_CCBR(i)); 233 } 234 235 static void sh4a_pmu_enable_all(void) 236 { 237 int i; 238 239 for (i = 0; i < sh4a_pmu.num_events; i++) 240 __raw_writel(__raw_readl(PPC_CCBR(i)) | CCBR_DUC, PPC_CCBR(i)); 241 } 242 243 static struct sh_pmu sh4a_pmu = { 244 .name = "SH-4A", 245 .num_events = 2, 246 .event_map = sh4a_event_map, 247 .max_events = ARRAY_SIZE(sh4a_general_events), 248 .raw_event_mask = 0x3ff, 249 .cache_events = &sh4a_cache_events, 250 .read = sh4a_pmu_read, 251 .disable = sh4a_pmu_disable, 252 .enable = sh4a_pmu_enable, 253 .disable_all = sh4a_pmu_disable_all, 254 .enable_all = sh4a_pmu_enable_all, 255 }; 256 257 static int __init sh4a_pmu_init(void) 258 { 259 /* 260 * Make sure this CPU actually has perf counters. 261 */ 262 if (!(boot_cpu_data.flags & CPU_HAS_PERF_COUNTER)) { 263 pr_notice("HW perf events unsupported, software events only.\n"); 264 return -ENODEV; 265 } 266 267 return register_sh_pmu(&sh4a_pmu); 268 } 269 arch_initcall(sh4a_pmu_init); 270