xref: /openbmc/linux/arch/sh/kernel/cpu/init.c (revision c21b37f6)
1 /*
2  * arch/sh/kernel/cpu/init.c
3  *
4  * CPU init code
5  *
6  * Copyright (C) 2002 - 2007  Paul Mundt
7  * Copyright (C) 2003  Richard Curnow
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <asm/mmu_context.h>
17 #include <asm/processor.h>
18 #include <asm/uaccess.h>
19 #include <asm/page.h>
20 #include <asm/system.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cache.h>
23 #include <asm/io.h>
24 #include <asm/ubc.h>
25 
26 /*
27  * Generic wrapper for command line arguments to disable on-chip
28  * peripherals (nofpu, nodsp, and so forth).
29  */
30 #define onchip_setup(x)				\
31 static int x##_disabled __initdata = 0;		\
32 						\
33 static int __init x##_setup(char *opts)		\
34 {						\
35 	x##_disabled = 1;			\
36 	return 1;				\
37 }						\
38 __setup("no" __stringify(x), x##_setup);
39 
40 onchip_setup(fpu);
41 onchip_setup(dsp);
42 
43 #ifdef CONFIG_SPECULATIVE_EXECUTION
44 #define CPUOPM		0xff2f0000
45 #define CPUOPM_RABD	(1 << 5)
46 
47 static void __init speculative_execution_init(void)
48 {
49 	/* Clear RABD */
50 	ctrl_outl(ctrl_inl(CPUOPM) & ~CPUOPM_RABD, CPUOPM);
51 
52 	/* Flush the update */
53 	(void)ctrl_inl(CPUOPM);
54 	ctrl_barrier();
55 }
56 #else
57 #define speculative_execution_init()	do { } while (0)
58 #endif
59 
60 /*
61  * Generic first-level cache init
62  */
63 static void __init cache_init(void)
64 {
65 	unsigned long ccr, flags;
66 
67 	/* First setup the rest of the I-cache info */
68 	current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr -
69 				      current_cpu_data.icache.linesz;
70 
71 	current_cpu_data.icache.way_size = current_cpu_data.icache.sets *
72 				    current_cpu_data.icache.linesz;
73 
74 	/* And the D-cache too */
75 	current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr -
76 				      current_cpu_data.dcache.linesz;
77 
78 	current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
79 				    current_cpu_data.dcache.linesz;
80 
81 	jump_to_P2();
82 	ccr = ctrl_inl(CCR);
83 
84 	/*
85 	 * At this point we don't know whether the cache is enabled or not - a
86 	 * bootloader may have enabled it.  There are at least 2 things that
87 	 * could be dirty in the cache at this point:
88 	 * 1. kernel command line set up by boot loader
89 	 * 2. spilled registers from the prolog of this function
90 	 * => before re-initialising the cache, we must do a purge of the whole
91 	 * cache out to memory for safety.  As long as nothing is spilled
92 	 * during the loop to lines that have already been done, this is safe.
93 	 * - RPC
94 	 */
95 	if (ccr & CCR_CACHE_ENABLE) {
96 		unsigned long ways, waysize, addrstart;
97 
98 		waysize = current_cpu_data.dcache.sets;
99 
100 #ifdef CCR_CACHE_ORA
101 		/*
102 		 * If the OC is already in RAM mode, we only have
103 		 * half of the entries to flush..
104 		 */
105 		if (ccr & CCR_CACHE_ORA)
106 			waysize >>= 1;
107 #endif
108 
109 		waysize <<= current_cpu_data.dcache.entry_shift;
110 
111 #ifdef CCR_CACHE_EMODE
112 		/* If EMODE is not set, we only have 1 way to flush. */
113 		if (!(ccr & CCR_CACHE_EMODE))
114 			ways = 1;
115 		else
116 #endif
117 			ways = current_cpu_data.dcache.ways;
118 
119 		addrstart = CACHE_OC_ADDRESS_ARRAY;
120 		do {
121 			unsigned long addr;
122 
123 			for (addr = addrstart;
124 			     addr < addrstart + waysize;
125 			     addr += current_cpu_data.dcache.linesz)
126 				ctrl_outl(0, addr);
127 
128 			addrstart += current_cpu_data.dcache.way_incr;
129 		} while (--ways);
130 	}
131 
132 	/*
133 	 * Default CCR values .. enable the caches
134 	 * and invalidate them immediately..
135 	 */
136 	flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE;
137 
138 #ifdef CCR_CACHE_EMODE
139 	/* Force EMODE if possible */
140 	if (current_cpu_data.dcache.ways > 1)
141 		flags |= CCR_CACHE_EMODE;
142 	else
143 		flags &= ~CCR_CACHE_EMODE;
144 #endif
145 
146 #ifdef CONFIG_SH_WRITETHROUGH
147 	/* Turn on Write-through caching */
148 	flags |= CCR_CACHE_WT;
149 #else
150 	/* .. or default to Write-back */
151 	flags |= CCR_CACHE_CB;
152 #endif
153 
154 	ctrl_outl(flags, CCR);
155 	back_to_P1();
156 }
157 
158 #ifdef CONFIG_SH_DSP
159 static void __init release_dsp(void)
160 {
161 	unsigned long sr;
162 
163 	/* Clear SR.DSP bit */
164 	__asm__ __volatile__ (
165 		"stc\tsr, %0\n\t"
166 		"and\t%1, %0\n\t"
167 		"ldc\t%0, sr\n\t"
168 		: "=&r" (sr)
169 		: "r" (~SR_DSP)
170 	);
171 }
172 
173 static void __init dsp_init(void)
174 {
175 	unsigned long sr;
176 
177 	/*
178 	 * Set the SR.DSP bit, wait for one instruction, and then read
179 	 * back the SR value.
180 	 */
181 	__asm__ __volatile__ (
182 		"stc\tsr, %0\n\t"
183 		"or\t%1, %0\n\t"
184 		"ldc\t%0, sr\n\t"
185 		"nop\n\t"
186 		"stc\tsr, %0\n\t"
187 		: "=&r" (sr)
188 		: "r" (SR_DSP)
189 	);
190 
191 	/* If the DSP bit is still set, this CPU has a DSP */
192 	if (sr & SR_DSP)
193 		current_cpu_data.flags |= CPU_HAS_DSP;
194 
195 	/* Now that we've determined the DSP status, clear the DSP bit. */
196 	release_dsp();
197 }
198 #endif /* CONFIG_SH_DSP */
199 
200 /**
201  * sh_cpu_init
202  *
203  * This is our initial entry point for each CPU, and is invoked on the boot
204  * CPU prior to calling start_kernel(). For SMP, a combination of this and
205  * start_secondary() will bring up each processor to a ready state prior
206  * to hand forking the idle loop.
207  *
208  * We do all of the basic processor init here, including setting up the
209  * caches, FPU, DSP, kicking the UBC, etc. By the time start_kernel() is
210  * hit (and subsequently platform_setup()) things like determining the
211  * CPU subtype and initial configuration will all be done.
212  *
213  * Each processor family is still responsible for doing its own probing
214  * and cache configuration in detect_cpu_and_cache_system().
215  */
216 asmlinkage void __init sh_cpu_init(void)
217 {
218 	/* First, probe the CPU */
219 	detect_cpu_and_cache_system();
220 
221 	if (current_cpu_data.type == CPU_SH_NONE)
222 		panic("Unknown CPU");
223 
224 	/* Init the cache */
225 	cache_init();
226 
227 	shm_align_mask = max_t(unsigned long,
228 			       current_cpu_data.dcache.way_size - 1,
229 			       PAGE_SIZE - 1);
230 
231 	/* Disable the FPU */
232 	if (fpu_disabled) {
233 		printk("FPU Disabled\n");
234 		current_cpu_data.flags &= ~CPU_HAS_FPU;
235 		disable_fpu();
236 	}
237 
238 	/* FPU initialization */
239 	if ((current_cpu_data.flags & CPU_HAS_FPU)) {
240 		clear_thread_flag(TIF_USEDFPU);
241 		clear_used_math();
242 	}
243 
244 	/*
245 	 * Initialize the per-CPU ASID cache very early, since the
246 	 * TLB flushing routines depend on this being setup.
247 	 */
248 	current_cpu_data.asid_cache = NO_CONTEXT;
249 
250 #ifdef CONFIG_SH_DSP
251 	/* Probe for DSP */
252 	dsp_init();
253 
254 	/* Disable the DSP */
255 	if (dsp_disabled) {
256 		printk("DSP Disabled\n");
257 		current_cpu_data.flags &= ~CPU_HAS_DSP;
258 		release_dsp();
259 	}
260 #endif
261 
262 	/*
263 	 * Some brain-damaged loaders decided it would be a good idea to put
264 	 * the UBC to sleep. This causes some issues when it comes to things
265 	 * like PTRACE_SINGLESTEP or doing hardware watchpoints in GDB.  So ..
266 	 * we wake it up and hope that all is well.
267 	 */
268 	ubc_wakeup();
269 	speculative_execution_init();
270 }
271