xref: /openbmc/linux/arch/s390/pci/pci_irq.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11 
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14 
15 static enum {FLOATING, DIRECTED} irq_delivery;
16 
17 #define	SIC_IRQ_MODE_ALL		0
18 #define	SIC_IRQ_MODE_SINGLE		1
19 #define	SIC_IRQ_MODE_DIRECT		4
20 #define	SIC_IRQ_MODE_D_ALL		16
21 #define	SIC_IRQ_MODE_D_SINGLE		17
22 #define	SIC_IRQ_MODE_SET_CPU		18
23 
24 /*
25  * summary bit vector
26  * FLOATING - summary bit per function
27  * DIRECTED - summary bit per cpu (only used in fallback path)
28  */
29 static struct airq_iv *zpci_sbv;
30 
31 /*
32  * interrupt bit vectors
33  * FLOATING - interrupt bit vector per function
34  * DIRECTED - interrupt bit vector per cpu
35  */
36 static struct airq_iv **zpci_ibv;
37 
38 /* Modify PCI: Register adapter interruptions */
39 static int zpci_set_airq(struct zpci_dev *zdev)
40 {
41 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
42 	struct zpci_fib fib = {0};
43 	u8 status;
44 
45 	fib.fmt0.isc = PCI_ISC;
46 	fib.fmt0.sum = 1;	/* enable summary notifications */
47 	fib.fmt0.noi = airq_iv_end(zdev->aibv);
48 	fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
49 	fib.fmt0.aibvo = 0;	/* each zdev has its own interrupt vector */
50 	fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
51 	fib.fmt0.aisbo = zdev->aisb & 63;
52 
53 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
54 }
55 
56 /* Modify PCI: Unregister adapter interruptions */
57 static int zpci_clear_airq(struct zpci_dev *zdev)
58 {
59 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
60 	struct zpci_fib fib = {0};
61 	u8 cc, status;
62 
63 	cc = zpci_mod_fc(req, &fib, &status);
64 	if (cc == 3 || (cc == 1 && status == 24))
65 		/* Function already gone or IRQs already deregistered. */
66 		cc = 0;
67 
68 	return cc ? -EIO : 0;
69 }
70 
71 /* Modify PCI: Register CPU directed interruptions */
72 static int zpci_set_directed_irq(struct zpci_dev *zdev)
73 {
74 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
75 	struct zpci_fib fib = {0};
76 	u8 status;
77 
78 	fib.fmt = 1;
79 	fib.fmt1.noi = zdev->msi_nr_irqs;
80 	fib.fmt1.dibvo = zdev->msi_first_bit;
81 
82 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
83 }
84 
85 /* Modify PCI: Unregister CPU directed interruptions */
86 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
87 {
88 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
89 	struct zpci_fib fib = {0};
90 	u8 cc, status;
91 
92 	fib.fmt = 1;
93 	cc = zpci_mod_fc(req, &fib, &status);
94 	if (cc == 3 || (cc == 1 && status == 24))
95 		/* Function already gone or IRQs already deregistered. */
96 		cc = 0;
97 
98 	return cc ? -EIO : 0;
99 }
100 
101 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
102 				 bool force)
103 {
104 	struct msi_desc *entry = irq_get_msi_desc(data->irq);
105 	struct msi_msg msg = entry->msg;
106 
107 	msg.address_lo &= 0xff0000ff;
108 	msg.address_lo |= (cpumask_first(dest) << 8);
109 	pci_write_msi_msg(data->irq, &msg);
110 
111 	return IRQ_SET_MASK_OK;
112 }
113 
114 static struct irq_chip zpci_irq_chip = {
115 	.name = "PCI-MSI",
116 	.irq_unmask = pci_msi_unmask_irq,
117 	.irq_mask = pci_msi_mask_irq,
118 };
119 
120 static void zpci_handle_cpu_local_irq(bool rescan)
121 {
122 	struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
123 	unsigned long bit;
124 	int irqs_on = 0;
125 
126 	for (bit = 0;;) {
127 		/* Scan the directed IRQ bit vector */
128 		bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
129 		if (bit == -1UL) {
130 			if (!rescan || irqs_on++)
131 				/* End of second scan with interrupts on. */
132 				break;
133 			/* First scan complete, reenable interrupts. */
134 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
135 				break;
136 			bit = 0;
137 			continue;
138 		}
139 		inc_irq_stat(IRQIO_MSI);
140 		generic_handle_irq(airq_iv_get_data(dibv, bit));
141 	}
142 }
143 
144 struct cpu_irq_data {
145 	call_single_data_t csd;
146 	atomic_t scheduled;
147 };
148 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
149 
150 static void zpci_handle_remote_irq(void *data)
151 {
152 	atomic_t *scheduled = data;
153 
154 	do {
155 		zpci_handle_cpu_local_irq(false);
156 	} while (atomic_dec_return(scheduled));
157 }
158 
159 static void zpci_handle_fallback_irq(void)
160 {
161 	struct cpu_irq_data *cpu_data;
162 	unsigned long cpu;
163 	int irqs_on = 0;
164 
165 	for (cpu = 0;;) {
166 		cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
167 		if (cpu == -1UL) {
168 			if (irqs_on++)
169 				/* End of second scan with interrupts on. */
170 				break;
171 			/* First scan complete, reenable interrupts. */
172 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
173 				break;
174 			cpu = 0;
175 			continue;
176 		}
177 		cpu_data = &per_cpu(irq_data, cpu);
178 		if (atomic_inc_return(&cpu_data->scheduled) > 1)
179 			continue;
180 
181 		cpu_data->csd.func = zpci_handle_remote_irq;
182 		cpu_data->csd.info = &cpu_data->scheduled;
183 		cpu_data->csd.flags = 0;
184 		smp_call_function_single_async(cpu, &cpu_data->csd);
185 	}
186 }
187 
188 static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
189 {
190 	if (floating) {
191 		inc_irq_stat(IRQIO_PCF);
192 		zpci_handle_fallback_irq();
193 	} else {
194 		inc_irq_stat(IRQIO_PCD);
195 		zpci_handle_cpu_local_irq(true);
196 	}
197 }
198 
199 static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
200 {
201 	unsigned long si, ai;
202 	struct airq_iv *aibv;
203 	int irqs_on = 0;
204 
205 	inc_irq_stat(IRQIO_PCF);
206 	for (si = 0;;) {
207 		/* Scan adapter summary indicator bit vector */
208 		si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
209 		if (si == -1UL) {
210 			if (irqs_on++)
211 				/* End of second scan with interrupts on. */
212 				break;
213 			/* First scan complete, reenable interrupts. */
214 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
215 				break;
216 			si = 0;
217 			continue;
218 		}
219 
220 		/* Scan the adapter interrupt vector for this device. */
221 		aibv = zpci_ibv[si];
222 		for (ai = 0;;) {
223 			ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
224 			if (ai == -1UL)
225 				break;
226 			inc_irq_stat(IRQIO_MSI);
227 			airq_iv_lock(aibv, ai);
228 			generic_handle_irq(airq_iv_get_data(aibv, ai));
229 			airq_iv_unlock(aibv, ai);
230 		}
231 	}
232 }
233 
234 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
235 {
236 	struct zpci_dev *zdev = to_zpci(pdev);
237 	unsigned int hwirq, msi_vecs, cpu;
238 	unsigned long bit;
239 	struct msi_desc *msi;
240 	struct msi_msg msg;
241 	int rc, irq;
242 
243 	zdev->aisb = -1UL;
244 	zdev->msi_first_bit = -1U;
245 	if (type == PCI_CAP_ID_MSI && nvec > 1)
246 		return 1;
247 	msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
248 
249 	if (irq_delivery == DIRECTED) {
250 		/* Allocate cpu vector bits */
251 		bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
252 		if (bit == -1UL)
253 			return -EIO;
254 	} else {
255 		/* Allocate adapter summary indicator bit */
256 		bit = airq_iv_alloc_bit(zpci_sbv);
257 		if (bit == -1UL)
258 			return -EIO;
259 		zdev->aisb = bit;
260 
261 		/* Create adapter interrupt vector */
262 		zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
263 		if (!zdev->aibv)
264 			return -ENOMEM;
265 
266 		/* Wire up shortcut pointer */
267 		zpci_ibv[bit] = zdev->aibv;
268 		/* Each function has its own interrupt vector */
269 		bit = 0;
270 	}
271 
272 	/* Request MSI interrupts */
273 	hwirq = bit;
274 	for_each_pci_msi_entry(msi, pdev) {
275 		rc = -EIO;
276 		if (hwirq - bit >= msi_vecs)
277 			break;
278 		irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
279 				(irq_delivery == DIRECTED) ?
280 				msi->affinity : NULL);
281 		if (irq < 0)
282 			return -ENOMEM;
283 		rc = irq_set_msi_desc(irq, msi);
284 		if (rc)
285 			return rc;
286 		irq_set_chip_and_handler(irq, &zpci_irq_chip,
287 					 handle_percpu_irq);
288 		msg.data = hwirq - bit;
289 		if (irq_delivery == DIRECTED) {
290 			msg.address_lo = zdev->msi_addr & 0xff0000ff;
291 			msg.address_lo |= msi->affinity ?
292 				(cpumask_first(&msi->affinity->mask) << 8) : 0;
293 			for_each_possible_cpu(cpu) {
294 				airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
295 			}
296 		} else {
297 			msg.address_lo = zdev->msi_addr & 0xffffffff;
298 			airq_iv_set_data(zdev->aibv, hwirq, irq);
299 		}
300 		msg.address_hi = zdev->msi_addr >> 32;
301 		pci_write_msi_msg(irq, &msg);
302 		hwirq++;
303 	}
304 
305 	zdev->msi_first_bit = bit;
306 	zdev->msi_nr_irqs = msi_vecs;
307 
308 	if (irq_delivery == DIRECTED)
309 		rc = zpci_set_directed_irq(zdev);
310 	else
311 		rc = zpci_set_airq(zdev);
312 	if (rc)
313 		return rc;
314 
315 	return (msi_vecs == nvec) ? 0 : msi_vecs;
316 }
317 
318 void arch_teardown_msi_irqs(struct pci_dev *pdev)
319 {
320 	struct zpci_dev *zdev = to_zpci(pdev);
321 	struct msi_desc *msi;
322 	int rc;
323 
324 	/* Disable interrupts */
325 	if (irq_delivery == DIRECTED)
326 		rc = zpci_clear_directed_irq(zdev);
327 	else
328 		rc = zpci_clear_airq(zdev);
329 	if (rc)
330 		return;
331 
332 	/* Release MSI interrupts */
333 	for_each_pci_msi_entry(msi, pdev) {
334 		if (!msi->irq)
335 			continue;
336 		if (msi->msi_attrib.is_msix)
337 			__pci_msix_desc_mask_irq(msi, 1);
338 		else
339 			__pci_msi_desc_mask_irq(msi, 1, 1);
340 		irq_set_msi_desc(msi->irq, NULL);
341 		irq_free_desc(msi->irq);
342 		msi->msg.address_lo = 0;
343 		msi->msg.address_hi = 0;
344 		msi->msg.data = 0;
345 		msi->irq = 0;
346 	}
347 
348 	if (zdev->aisb != -1UL) {
349 		zpci_ibv[zdev->aisb] = NULL;
350 		airq_iv_free_bit(zpci_sbv, zdev->aisb);
351 		zdev->aisb = -1UL;
352 	}
353 	if (zdev->aibv) {
354 		airq_iv_release(zdev->aibv);
355 		zdev->aibv = NULL;
356 	}
357 
358 	if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
359 		airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
360 }
361 
362 static struct airq_struct zpci_airq = {
363 	.handler = zpci_floating_irq_handler,
364 	.isc = PCI_ISC,
365 };
366 
367 static void __init cpu_enable_directed_irq(void *unused)
368 {
369 	union zpci_sic_iib iib = {{0}};
370 
371 	iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
372 
373 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
374 	zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
375 }
376 
377 static int __init zpci_directed_irq_init(void)
378 {
379 	union zpci_sic_iib iib = {{0}};
380 	unsigned int cpu;
381 
382 	zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
383 	if (!zpci_sbv)
384 		return -ENOMEM;
385 
386 	iib.diib.isc = PCI_ISC;
387 	iib.diib.nr_cpus = num_possible_cpus();
388 	iib.diib.disb_addr = (u64) zpci_sbv->vector;
389 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
390 
391 	zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
392 			   GFP_KERNEL);
393 	if (!zpci_ibv)
394 		return -ENOMEM;
395 
396 	for_each_possible_cpu(cpu) {
397 		/*
398 		 * Per CPU IRQ vectors look the same but bit-allocation
399 		 * is only done on the first vector.
400 		 */
401 		zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
402 					       AIRQ_IV_DATA |
403 					       AIRQ_IV_CACHELINE |
404 					       (!cpu ? AIRQ_IV_ALLOC : 0));
405 		if (!zpci_ibv[cpu])
406 			return -ENOMEM;
407 	}
408 	on_each_cpu(cpu_enable_directed_irq, NULL, 1);
409 
410 	zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
411 
412 	return 0;
413 }
414 
415 static int __init zpci_floating_irq_init(void)
416 {
417 	zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
418 	if (!zpci_ibv)
419 		return -ENOMEM;
420 
421 	zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
422 	if (!zpci_sbv)
423 		goto out_free;
424 
425 	return 0;
426 
427 out_free:
428 	kfree(zpci_ibv);
429 	return -ENOMEM;
430 }
431 
432 int __init zpci_irq_init(void)
433 {
434 	int rc;
435 
436 	irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
437 	if (s390_pci_force_floating)
438 		irq_delivery = FLOATING;
439 
440 	if (irq_delivery == DIRECTED)
441 		zpci_airq.handler = zpci_directed_irq_handler;
442 
443 	rc = register_adapter_interrupt(&zpci_airq);
444 	if (rc)
445 		goto out;
446 	/* Set summary to 1 to be called every time for the ISC. */
447 	*zpci_airq.lsi_ptr = 1;
448 
449 	switch (irq_delivery) {
450 	case FLOATING:
451 		rc = zpci_floating_irq_init();
452 		break;
453 	case DIRECTED:
454 		rc = zpci_directed_irq_init();
455 		break;
456 	}
457 
458 	if (rc)
459 		goto out_airq;
460 
461 	/*
462 	 * Enable floating IRQs (with suppression after one IRQ). When using
463 	 * directed IRQs this enables the fallback path.
464 	 */
465 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
466 
467 	return 0;
468 out_airq:
469 	unregister_adapter_interrupt(&zpci_airq);
470 out:
471 	return rc;
472 }
473 
474 void __init zpci_irq_exit(void)
475 {
476 	unsigned int cpu;
477 
478 	if (irq_delivery == DIRECTED) {
479 		for_each_possible_cpu(cpu) {
480 			airq_iv_release(zpci_ibv[cpu]);
481 		}
482 	}
483 	kfree(zpci_ibv);
484 	if (zpci_sbv)
485 		airq_iv_release(zpci_sbv);
486 	unregister_adapter_interrupt(&zpci_airq);
487 }
488