1 // SPDX-License-Identifier: GPL-2.0 2 #define KMSG_COMPONENT "zpci" 3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 4 5 #include <linux/kernel.h> 6 #include <linux/irq.h> 7 #include <linux/kernel_stat.h> 8 #include <linux/pci.h> 9 #include <linux/msi.h> 10 #include <linux/smp.h> 11 12 #include <asm/isc.h> 13 #include <asm/airq.h> 14 15 static enum {FLOATING, DIRECTED} irq_delivery; 16 17 #define SIC_IRQ_MODE_ALL 0 18 #define SIC_IRQ_MODE_SINGLE 1 19 #define SIC_IRQ_MODE_DIRECT 4 20 #define SIC_IRQ_MODE_D_ALL 16 21 #define SIC_IRQ_MODE_D_SINGLE 17 22 #define SIC_IRQ_MODE_SET_CPU 18 23 24 /* 25 * summary bit vector 26 * FLOATING - summary bit per function 27 * DIRECTED - summary bit per cpu (only used in fallback path) 28 */ 29 static struct airq_iv *zpci_sbv; 30 31 /* 32 * interrupt bit vectors 33 * FLOATING - interrupt bit vector per function 34 * DIRECTED - interrupt bit vector per cpu 35 */ 36 static struct airq_iv **zpci_ibv; 37 38 /* Modify PCI: Register adapter interruptions */ 39 static int zpci_set_airq(struct zpci_dev *zdev) 40 { 41 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT); 42 struct zpci_fib fib = {0}; 43 u8 status; 44 45 fib.fmt0.isc = PCI_ISC; 46 fib.fmt0.sum = 1; /* enable summary notifications */ 47 fib.fmt0.noi = airq_iv_end(zdev->aibv); 48 fib.fmt0.aibv = (unsigned long) zdev->aibv->vector; 49 fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */ 50 fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8; 51 fib.fmt0.aisbo = zdev->aisb & 63; 52 53 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; 54 } 55 56 /* Modify PCI: Unregister adapter interruptions */ 57 static int zpci_clear_airq(struct zpci_dev *zdev) 58 { 59 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT); 60 struct zpci_fib fib = {0}; 61 u8 cc, status; 62 63 cc = zpci_mod_fc(req, &fib, &status); 64 if (cc == 3 || (cc == 1 && status == 24)) 65 /* Function already gone or IRQs already deregistered. */ 66 cc = 0; 67 68 return cc ? -EIO : 0; 69 } 70 71 /* Modify PCI: Register CPU directed interruptions */ 72 static int zpci_set_directed_irq(struct zpci_dev *zdev) 73 { 74 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D); 75 struct zpci_fib fib = {0}; 76 u8 status; 77 78 fib.fmt = 1; 79 fib.fmt1.noi = zdev->msi_nr_irqs; 80 fib.fmt1.dibvo = zdev->msi_first_bit; 81 82 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; 83 } 84 85 /* Modify PCI: Unregister CPU directed interruptions */ 86 static int zpci_clear_directed_irq(struct zpci_dev *zdev) 87 { 88 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D); 89 struct zpci_fib fib = {0}; 90 u8 cc, status; 91 92 fib.fmt = 1; 93 cc = zpci_mod_fc(req, &fib, &status); 94 if (cc == 3 || (cc == 1 && status == 24)) 95 /* Function already gone or IRQs already deregistered. */ 96 cc = 0; 97 98 return cc ? -EIO : 0; 99 } 100 101 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest, 102 bool force) 103 { 104 struct msi_desc *entry = irq_get_msi_desc(data->irq); 105 struct msi_msg msg = entry->msg; 106 107 msg.address_lo &= 0xff0000ff; 108 msg.address_lo |= (cpumask_first(dest) << 8); 109 pci_write_msi_msg(data->irq, &msg); 110 111 return IRQ_SET_MASK_OK; 112 } 113 114 static struct irq_chip zpci_irq_chip = { 115 .name = "PCI-MSI", 116 .irq_unmask = pci_msi_unmask_irq, 117 .irq_mask = pci_msi_mask_irq, 118 .irq_set_affinity = zpci_set_irq_affinity, 119 }; 120 121 static void zpci_handle_cpu_local_irq(bool rescan) 122 { 123 struct airq_iv *dibv = zpci_ibv[smp_processor_id()]; 124 unsigned long bit; 125 int irqs_on = 0; 126 127 for (bit = 0;;) { 128 /* Scan the directed IRQ bit vector */ 129 bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv)); 130 if (bit == -1UL) { 131 if (!rescan || irqs_on++) 132 /* End of second scan with interrupts on. */ 133 break; 134 /* First scan complete, reenable interrupts. */ 135 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC)) 136 break; 137 bit = 0; 138 continue; 139 } 140 inc_irq_stat(IRQIO_MSI); 141 generic_handle_irq(airq_iv_get_data(dibv, bit)); 142 } 143 } 144 145 struct cpu_irq_data { 146 call_single_data_t csd; 147 atomic_t scheduled; 148 }; 149 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data); 150 151 static void zpci_handle_remote_irq(void *data) 152 { 153 atomic_t *scheduled = data; 154 155 do { 156 zpci_handle_cpu_local_irq(false); 157 } while (atomic_dec_return(scheduled)); 158 } 159 160 static void zpci_handle_fallback_irq(void) 161 { 162 struct cpu_irq_data *cpu_data; 163 unsigned long cpu; 164 int irqs_on = 0; 165 166 for (cpu = 0;;) { 167 cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv)); 168 if (cpu == -1UL) { 169 if (irqs_on++) 170 /* End of second scan with interrupts on. */ 171 break; 172 /* First scan complete, reenable interrupts. */ 173 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC)) 174 break; 175 cpu = 0; 176 continue; 177 } 178 cpu_data = &per_cpu(irq_data, cpu); 179 if (atomic_inc_return(&cpu_data->scheduled) > 1) 180 continue; 181 182 cpu_data->csd.func = zpci_handle_remote_irq; 183 cpu_data->csd.info = &cpu_data->scheduled; 184 cpu_data->csd.flags = 0; 185 smp_call_function_single_async(cpu, &cpu_data->csd); 186 } 187 } 188 189 static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating) 190 { 191 if (floating) { 192 inc_irq_stat(IRQIO_PCF); 193 zpci_handle_fallback_irq(); 194 } else { 195 inc_irq_stat(IRQIO_PCD); 196 zpci_handle_cpu_local_irq(true); 197 } 198 } 199 200 static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating) 201 { 202 unsigned long si, ai; 203 struct airq_iv *aibv; 204 int irqs_on = 0; 205 206 inc_irq_stat(IRQIO_PCF); 207 for (si = 0;;) { 208 /* Scan adapter summary indicator bit vector */ 209 si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv)); 210 if (si == -1UL) { 211 if (irqs_on++) 212 /* End of second scan with interrupts on. */ 213 break; 214 /* First scan complete, reenable interrupts. */ 215 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC)) 216 break; 217 si = 0; 218 continue; 219 } 220 221 /* Scan the adapter interrupt vector for this device. */ 222 aibv = zpci_ibv[si]; 223 for (ai = 0;;) { 224 ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv)); 225 if (ai == -1UL) 226 break; 227 inc_irq_stat(IRQIO_MSI); 228 airq_iv_lock(aibv, ai); 229 generic_handle_irq(airq_iv_get_data(aibv, ai)); 230 airq_iv_unlock(aibv, ai); 231 } 232 } 233 } 234 235 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) 236 { 237 struct zpci_dev *zdev = to_zpci(pdev); 238 unsigned int hwirq, msi_vecs, cpu; 239 unsigned long bit; 240 struct msi_desc *msi; 241 struct msi_msg msg; 242 int rc, irq; 243 244 zdev->aisb = -1UL; 245 zdev->msi_first_bit = -1U; 246 if (type == PCI_CAP_ID_MSI && nvec > 1) 247 return 1; 248 msi_vecs = min_t(unsigned int, nvec, zdev->max_msi); 249 250 if (irq_delivery == DIRECTED) { 251 /* Allocate cpu vector bits */ 252 bit = airq_iv_alloc(zpci_ibv[0], msi_vecs); 253 if (bit == -1UL) 254 return -EIO; 255 } else { 256 /* Allocate adapter summary indicator bit */ 257 bit = airq_iv_alloc_bit(zpci_sbv); 258 if (bit == -1UL) 259 return -EIO; 260 zdev->aisb = bit; 261 262 /* Create adapter interrupt vector */ 263 zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK); 264 if (!zdev->aibv) 265 return -ENOMEM; 266 267 /* Wire up shortcut pointer */ 268 zpci_ibv[bit] = zdev->aibv; 269 /* Each function has its own interrupt vector */ 270 bit = 0; 271 } 272 273 /* Request MSI interrupts */ 274 hwirq = bit; 275 for_each_pci_msi_entry(msi, pdev) { 276 rc = -EIO; 277 if (hwirq - bit >= msi_vecs) 278 break; 279 irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE, msi->affinity); 280 if (irq < 0) 281 return -ENOMEM; 282 rc = irq_set_msi_desc(irq, msi); 283 if (rc) 284 return rc; 285 irq_set_chip_and_handler(irq, &zpci_irq_chip, 286 handle_percpu_irq); 287 msg.data = hwirq - bit; 288 if (irq_delivery == DIRECTED) { 289 msg.address_lo = zdev->msi_addr & 0xff0000ff; 290 msg.address_lo |= msi->affinity ? 291 (cpumask_first(&msi->affinity->mask) << 8) : 0; 292 for_each_possible_cpu(cpu) { 293 airq_iv_set_data(zpci_ibv[cpu], hwirq, irq); 294 } 295 } else { 296 msg.address_lo = zdev->msi_addr & 0xffffffff; 297 airq_iv_set_data(zdev->aibv, hwirq, irq); 298 } 299 msg.address_hi = zdev->msi_addr >> 32; 300 pci_write_msi_msg(irq, &msg); 301 hwirq++; 302 } 303 304 zdev->msi_first_bit = bit; 305 zdev->msi_nr_irqs = msi_vecs; 306 307 if (irq_delivery == DIRECTED) 308 rc = zpci_set_directed_irq(zdev); 309 else 310 rc = zpci_set_airq(zdev); 311 if (rc) 312 return rc; 313 314 return (msi_vecs == nvec) ? 0 : msi_vecs; 315 } 316 317 void arch_teardown_msi_irqs(struct pci_dev *pdev) 318 { 319 struct zpci_dev *zdev = to_zpci(pdev); 320 struct msi_desc *msi; 321 int rc; 322 323 /* Disable interrupts */ 324 if (irq_delivery == DIRECTED) 325 rc = zpci_clear_directed_irq(zdev); 326 else 327 rc = zpci_clear_airq(zdev); 328 if (rc) 329 return; 330 331 /* Release MSI interrupts */ 332 for_each_pci_msi_entry(msi, pdev) { 333 if (!msi->irq) 334 continue; 335 if (msi->msi_attrib.is_msix) 336 __pci_msix_desc_mask_irq(msi, 1); 337 else 338 __pci_msi_desc_mask_irq(msi, 1, 1); 339 irq_set_msi_desc(msi->irq, NULL); 340 irq_free_desc(msi->irq); 341 msi->msg.address_lo = 0; 342 msi->msg.address_hi = 0; 343 msi->msg.data = 0; 344 msi->irq = 0; 345 } 346 347 if (zdev->aisb != -1UL) { 348 zpci_ibv[zdev->aisb] = NULL; 349 airq_iv_free_bit(zpci_sbv, zdev->aisb); 350 zdev->aisb = -1UL; 351 } 352 if (zdev->aibv) { 353 airq_iv_release(zdev->aibv); 354 zdev->aibv = NULL; 355 } 356 357 if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U) 358 airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs); 359 } 360 361 static struct airq_struct zpci_airq = { 362 .handler = zpci_floating_irq_handler, 363 .isc = PCI_ISC, 364 }; 365 366 static void __init cpu_enable_directed_irq(void *unused) 367 { 368 union zpci_sic_iib iib = {{0}}; 369 370 iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector; 371 372 __zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib); 373 zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC); 374 } 375 376 static int __init zpci_directed_irq_init(void) 377 { 378 union zpci_sic_iib iib = {{0}}; 379 unsigned int cpu; 380 381 zpci_sbv = airq_iv_create(num_possible_cpus(), 0); 382 if (!zpci_sbv) 383 return -ENOMEM; 384 385 iib.diib.isc = PCI_ISC; 386 iib.diib.nr_cpus = num_possible_cpus(); 387 iib.diib.disb_addr = (u64) zpci_sbv->vector; 388 __zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib); 389 390 zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv), 391 GFP_KERNEL); 392 if (!zpci_ibv) 393 return -ENOMEM; 394 395 for_each_possible_cpu(cpu) { 396 /* 397 * Per CPU IRQ vectors look the same but bit-allocation 398 * is only done on the first vector. 399 */ 400 zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE, 401 AIRQ_IV_DATA | 402 AIRQ_IV_CACHELINE | 403 (!cpu ? AIRQ_IV_ALLOC : 0)); 404 if (!zpci_ibv[cpu]) 405 return -ENOMEM; 406 } 407 on_each_cpu(cpu_enable_directed_irq, NULL, 1); 408 409 zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity; 410 411 return 0; 412 } 413 414 static int __init zpci_floating_irq_init(void) 415 { 416 zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL); 417 if (!zpci_ibv) 418 return -ENOMEM; 419 420 zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC); 421 if (!zpci_sbv) 422 goto out_free; 423 424 return 0; 425 426 out_free: 427 kfree(zpci_ibv); 428 return -ENOMEM; 429 } 430 431 int __init zpci_irq_init(void) 432 { 433 int rc; 434 435 irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING; 436 if (s390_pci_force_floating) 437 irq_delivery = FLOATING; 438 439 if (irq_delivery == DIRECTED) 440 zpci_airq.handler = zpci_directed_irq_handler; 441 442 rc = register_adapter_interrupt(&zpci_airq); 443 if (rc) 444 goto out; 445 /* Set summary to 1 to be called every time for the ISC. */ 446 *zpci_airq.lsi_ptr = 1; 447 448 switch (irq_delivery) { 449 case FLOATING: 450 rc = zpci_floating_irq_init(); 451 break; 452 case DIRECTED: 453 rc = zpci_directed_irq_init(); 454 break; 455 } 456 457 if (rc) 458 goto out_airq; 459 460 /* 461 * Enable floating IRQs (with suppression after one IRQ). When using 462 * directed IRQs this enables the fallback path. 463 */ 464 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC); 465 466 return 0; 467 out_airq: 468 unregister_adapter_interrupt(&zpci_airq); 469 out: 470 return rc; 471 } 472 473 void __init zpci_irq_exit(void) 474 { 475 unsigned int cpu; 476 477 if (irq_delivery == DIRECTED) { 478 for_each_possible_cpu(cpu) { 479 airq_iv_release(zpci_ibv[cpu]); 480 } 481 } 482 kfree(zpci_ibv); 483 if (zpci_sbv) 484 airq_iv_release(zpci_sbv); 485 unregister_adapter_interrupt(&zpci_airq); 486 } 487