xref: /openbmc/linux/arch/s390/pci/pci_irq.c (revision 6cc23ed2)
1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11 
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14 
15 static enum {FLOATING, DIRECTED} irq_delivery;
16 
17 #define	SIC_IRQ_MODE_ALL		0
18 #define	SIC_IRQ_MODE_SINGLE		1
19 #define	SIC_IRQ_MODE_DIRECT		4
20 #define	SIC_IRQ_MODE_D_ALL		16
21 #define	SIC_IRQ_MODE_D_SINGLE		17
22 #define	SIC_IRQ_MODE_SET_CPU		18
23 
24 /*
25  * summary bit vector
26  * FLOATING - summary bit per function
27  * DIRECTED - summary bit per cpu (only used in fallback path)
28  */
29 static struct airq_iv *zpci_sbv;
30 
31 /*
32  * interrupt bit vectors
33  * FLOATING - interrupt bit vector per function
34  * DIRECTED - interrupt bit vector per cpu
35  */
36 static struct airq_iv **zpci_ibv;
37 
38 /* Modify PCI: Register adapter interruptions */
39 static int zpci_set_airq(struct zpci_dev *zdev)
40 {
41 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
42 	struct zpci_fib fib = {0};
43 	u8 status;
44 
45 	fib.fmt0.isc = PCI_ISC;
46 	fib.fmt0.sum = 1;	/* enable summary notifications */
47 	fib.fmt0.noi = airq_iv_end(zdev->aibv);
48 	fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
49 	fib.fmt0.aibvo = 0;	/* each zdev has its own interrupt vector */
50 	fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
51 	fib.fmt0.aisbo = zdev->aisb & 63;
52 
53 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
54 }
55 
56 /* Modify PCI: Unregister adapter interruptions */
57 static int zpci_clear_airq(struct zpci_dev *zdev)
58 {
59 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
60 	struct zpci_fib fib = {0};
61 	u8 cc, status;
62 
63 	cc = zpci_mod_fc(req, &fib, &status);
64 	if (cc == 3 || (cc == 1 && status == 24))
65 		/* Function already gone or IRQs already deregistered. */
66 		cc = 0;
67 
68 	return cc ? -EIO : 0;
69 }
70 
71 /* Modify PCI: Register CPU directed interruptions */
72 static int zpci_set_directed_irq(struct zpci_dev *zdev)
73 {
74 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
75 	struct zpci_fib fib = {0};
76 	u8 status;
77 
78 	fib.fmt = 1;
79 	fib.fmt1.noi = zdev->msi_nr_irqs;
80 	fib.fmt1.dibvo = zdev->msi_first_bit;
81 
82 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
83 }
84 
85 /* Modify PCI: Unregister CPU directed interruptions */
86 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
87 {
88 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
89 	struct zpci_fib fib = {0};
90 	u8 cc, status;
91 
92 	fib.fmt = 1;
93 	cc = zpci_mod_fc(req, &fib, &status);
94 	if (cc == 3 || (cc == 1 && status == 24))
95 		/* Function already gone or IRQs already deregistered. */
96 		cc = 0;
97 
98 	return cc ? -EIO : 0;
99 }
100 
101 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
102 				 bool force)
103 {
104 	struct msi_desc *entry = irq_get_msi_desc(data->irq);
105 	struct msi_msg msg = entry->msg;
106 
107 	msg.address_lo &= 0xff0000ff;
108 	msg.address_lo |= (cpumask_first(dest) << 8);
109 	pci_write_msi_msg(data->irq, &msg);
110 
111 	return IRQ_SET_MASK_OK;
112 }
113 
114 static struct irq_chip zpci_irq_chip = {
115 	.name = "PCI-MSI",
116 	.irq_unmask = pci_msi_unmask_irq,
117 	.irq_mask = pci_msi_mask_irq,
118 	.irq_set_affinity = zpci_set_irq_affinity,
119 };
120 
121 static void zpci_handle_cpu_local_irq(bool rescan)
122 {
123 	struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
124 	unsigned long bit;
125 	int irqs_on = 0;
126 
127 	for (bit = 0;;) {
128 		/* Scan the directed IRQ bit vector */
129 		bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
130 		if (bit == -1UL) {
131 			if (!rescan || irqs_on++)
132 				/* End of second scan with interrupts on. */
133 				break;
134 			/* First scan complete, reenable interrupts. */
135 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
136 				break;
137 			bit = 0;
138 			continue;
139 		}
140 		inc_irq_stat(IRQIO_MSI);
141 		generic_handle_irq(airq_iv_get_data(dibv, bit));
142 	}
143 }
144 
145 struct cpu_irq_data {
146 	call_single_data_t csd;
147 	atomic_t scheduled;
148 };
149 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
150 
151 static void zpci_handle_remote_irq(void *data)
152 {
153 	atomic_t *scheduled = data;
154 
155 	do {
156 		zpci_handle_cpu_local_irq(false);
157 	} while (atomic_dec_return(scheduled));
158 }
159 
160 static void zpci_handle_fallback_irq(void)
161 {
162 	struct cpu_irq_data *cpu_data;
163 	unsigned long cpu;
164 	int irqs_on = 0;
165 
166 	for (cpu = 0;;) {
167 		cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
168 		if (cpu == -1UL) {
169 			if (irqs_on++)
170 				/* End of second scan with interrupts on. */
171 				break;
172 			/* First scan complete, reenable interrupts. */
173 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
174 				break;
175 			cpu = 0;
176 			continue;
177 		}
178 		cpu_data = &per_cpu(irq_data, cpu);
179 		if (atomic_inc_return(&cpu_data->scheduled) > 1)
180 			continue;
181 
182 		cpu_data->csd.func = zpci_handle_remote_irq;
183 		cpu_data->csd.info = &cpu_data->scheduled;
184 		cpu_data->csd.flags = 0;
185 		smp_call_function_single_async(cpu, &cpu_data->csd);
186 	}
187 }
188 
189 static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
190 {
191 	if (floating) {
192 		inc_irq_stat(IRQIO_PCF);
193 		zpci_handle_fallback_irq();
194 	} else {
195 		inc_irq_stat(IRQIO_PCD);
196 		zpci_handle_cpu_local_irq(true);
197 	}
198 }
199 
200 static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
201 {
202 	unsigned long si, ai;
203 	struct airq_iv *aibv;
204 	int irqs_on = 0;
205 
206 	inc_irq_stat(IRQIO_PCF);
207 	for (si = 0;;) {
208 		/* Scan adapter summary indicator bit vector */
209 		si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
210 		if (si == -1UL) {
211 			if (irqs_on++)
212 				/* End of second scan with interrupts on. */
213 				break;
214 			/* First scan complete, reenable interrupts. */
215 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
216 				break;
217 			si = 0;
218 			continue;
219 		}
220 
221 		/* Scan the adapter interrupt vector for this device. */
222 		aibv = zpci_ibv[si];
223 		for (ai = 0;;) {
224 			ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
225 			if (ai == -1UL)
226 				break;
227 			inc_irq_stat(IRQIO_MSI);
228 			airq_iv_lock(aibv, ai);
229 			generic_handle_irq(airq_iv_get_data(aibv, ai));
230 			airq_iv_unlock(aibv, ai);
231 		}
232 	}
233 }
234 
235 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
236 {
237 	struct zpci_dev *zdev = to_zpci(pdev);
238 	unsigned int hwirq, msi_vecs, cpu;
239 	unsigned long bit;
240 	struct msi_desc *msi;
241 	struct msi_msg msg;
242 	int rc, irq;
243 
244 	zdev->aisb = -1UL;
245 	zdev->msi_first_bit = -1U;
246 	if (type == PCI_CAP_ID_MSI && nvec > 1)
247 		return 1;
248 	msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
249 
250 	if (irq_delivery == DIRECTED) {
251 		/* Allocate cpu vector bits */
252 		bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
253 		if (bit == -1UL)
254 			return -EIO;
255 	} else {
256 		/* Allocate adapter summary indicator bit */
257 		bit = airq_iv_alloc_bit(zpci_sbv);
258 		if (bit == -1UL)
259 			return -EIO;
260 		zdev->aisb = bit;
261 
262 		/* Create adapter interrupt vector */
263 		zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
264 		if (!zdev->aibv)
265 			return -ENOMEM;
266 
267 		/* Wire up shortcut pointer */
268 		zpci_ibv[bit] = zdev->aibv;
269 		/* Each function has its own interrupt vector */
270 		bit = 0;
271 	}
272 
273 	/* Request MSI interrupts */
274 	hwirq = bit;
275 	for_each_pci_msi_entry(msi, pdev) {
276 		rc = -EIO;
277 		if (hwirq - bit >= msi_vecs)
278 			break;
279 		irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE, msi->affinity);
280 		if (irq < 0)
281 			return -ENOMEM;
282 		rc = irq_set_msi_desc(irq, msi);
283 		if (rc)
284 			return rc;
285 		irq_set_chip_and_handler(irq, &zpci_irq_chip,
286 					 handle_percpu_irq);
287 		msg.data = hwirq - bit;
288 		if (irq_delivery == DIRECTED) {
289 			msg.address_lo = zdev->msi_addr & 0xff0000ff;
290 			msg.address_lo |= msi->affinity ?
291 				(cpumask_first(&msi->affinity->mask) << 8) : 0;
292 			for_each_possible_cpu(cpu) {
293 				airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
294 			}
295 		} else {
296 			msg.address_lo = zdev->msi_addr & 0xffffffff;
297 			airq_iv_set_data(zdev->aibv, hwirq, irq);
298 		}
299 		msg.address_hi = zdev->msi_addr >> 32;
300 		pci_write_msi_msg(irq, &msg);
301 		hwirq++;
302 	}
303 
304 	zdev->msi_first_bit = bit;
305 	zdev->msi_nr_irqs = msi_vecs;
306 
307 	if (irq_delivery == DIRECTED)
308 		rc = zpci_set_directed_irq(zdev);
309 	else
310 		rc = zpci_set_airq(zdev);
311 	if (rc)
312 		return rc;
313 
314 	return (msi_vecs == nvec) ? 0 : msi_vecs;
315 }
316 
317 void arch_teardown_msi_irqs(struct pci_dev *pdev)
318 {
319 	struct zpci_dev *zdev = to_zpci(pdev);
320 	struct msi_desc *msi;
321 	int rc;
322 
323 	/* Disable interrupts */
324 	if (irq_delivery == DIRECTED)
325 		rc = zpci_clear_directed_irq(zdev);
326 	else
327 		rc = zpci_clear_airq(zdev);
328 	if (rc)
329 		return;
330 
331 	/* Release MSI interrupts */
332 	for_each_pci_msi_entry(msi, pdev) {
333 		if (!msi->irq)
334 			continue;
335 		if (msi->msi_attrib.is_msix)
336 			__pci_msix_desc_mask_irq(msi, 1);
337 		else
338 			__pci_msi_desc_mask_irq(msi, 1, 1);
339 		irq_set_msi_desc(msi->irq, NULL);
340 		irq_free_desc(msi->irq);
341 		msi->msg.address_lo = 0;
342 		msi->msg.address_hi = 0;
343 		msi->msg.data = 0;
344 		msi->irq = 0;
345 	}
346 
347 	if (zdev->aisb != -1UL) {
348 		zpci_ibv[zdev->aisb] = NULL;
349 		airq_iv_free_bit(zpci_sbv, zdev->aisb);
350 		zdev->aisb = -1UL;
351 	}
352 	if (zdev->aibv) {
353 		airq_iv_release(zdev->aibv);
354 		zdev->aibv = NULL;
355 	}
356 
357 	if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
358 		airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
359 }
360 
361 static struct airq_struct zpci_airq = {
362 	.handler = zpci_floating_irq_handler,
363 	.isc = PCI_ISC,
364 };
365 
366 static void __init cpu_enable_directed_irq(void *unused)
367 {
368 	union zpci_sic_iib iib = {{0}};
369 
370 	iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
371 
372 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
373 	zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
374 }
375 
376 static int __init zpci_directed_irq_init(void)
377 {
378 	union zpci_sic_iib iib = {{0}};
379 	unsigned int cpu;
380 
381 	zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
382 	if (!zpci_sbv)
383 		return -ENOMEM;
384 
385 	iib.diib.isc = PCI_ISC;
386 	iib.diib.nr_cpus = num_possible_cpus();
387 	iib.diib.disb_addr = (u64) zpci_sbv->vector;
388 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
389 
390 	zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
391 			   GFP_KERNEL);
392 	if (!zpci_ibv)
393 		return -ENOMEM;
394 
395 	for_each_possible_cpu(cpu) {
396 		/*
397 		 * Per CPU IRQ vectors look the same but bit-allocation
398 		 * is only done on the first vector.
399 		 */
400 		zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
401 					       AIRQ_IV_DATA |
402 					       AIRQ_IV_CACHELINE |
403 					       (!cpu ? AIRQ_IV_ALLOC : 0));
404 		if (!zpci_ibv[cpu])
405 			return -ENOMEM;
406 	}
407 	on_each_cpu(cpu_enable_directed_irq, NULL, 1);
408 
409 	zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
410 
411 	return 0;
412 }
413 
414 static int __init zpci_floating_irq_init(void)
415 {
416 	zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
417 	if (!zpci_ibv)
418 		return -ENOMEM;
419 
420 	zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
421 	if (!zpci_sbv)
422 		goto out_free;
423 
424 	return 0;
425 
426 out_free:
427 	kfree(zpci_ibv);
428 	return -ENOMEM;
429 }
430 
431 int __init zpci_irq_init(void)
432 {
433 	int rc;
434 
435 	irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
436 	if (s390_pci_force_floating)
437 		irq_delivery = FLOATING;
438 
439 	if (irq_delivery == DIRECTED)
440 		zpci_airq.handler = zpci_directed_irq_handler;
441 
442 	rc = register_adapter_interrupt(&zpci_airq);
443 	if (rc)
444 		goto out;
445 	/* Set summary to 1 to be called every time for the ISC. */
446 	*zpci_airq.lsi_ptr = 1;
447 
448 	switch (irq_delivery) {
449 	case FLOATING:
450 		rc = zpci_floating_irq_init();
451 		break;
452 	case DIRECTED:
453 		rc = zpci_directed_irq_init();
454 		break;
455 	}
456 
457 	if (rc)
458 		goto out_airq;
459 
460 	/*
461 	 * Enable floating IRQs (with suppression after one IRQ). When using
462 	 * directed IRQs this enables the fallback path.
463 	 */
464 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
465 
466 	return 0;
467 out_airq:
468 	unregister_adapter_interrupt(&zpci_airq);
469 out:
470 	return rc;
471 }
472 
473 void __init zpci_irq_exit(void)
474 {
475 	unsigned int cpu;
476 
477 	if (irq_delivery == DIRECTED) {
478 		for_each_possible_cpu(cpu) {
479 			airq_iv_release(zpci_ibv[cpu]);
480 		}
481 	}
482 	kfree(zpci_ibv);
483 	if (zpci_sbv)
484 		airq_iv_release(zpci_sbv);
485 	unregister_adapter_interrupt(&zpci_airq);
486 }
487