xref: /openbmc/linux/arch/s390/pci/pci_dma.c (revision ecd25094)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/iommu-helper.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci.h>
16 #include <asm/pci_dma.h>
17 
18 static struct kmem_cache *dma_region_table_cache;
19 static struct kmem_cache *dma_page_table_cache;
20 static int s390_iommu_strict;
21 
22 static int zpci_refresh_global(struct zpci_dev *zdev)
23 {
24 	return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
25 				  zdev->iommu_pages * PAGE_SIZE);
26 }
27 
28 unsigned long *dma_alloc_cpu_table(void)
29 {
30 	unsigned long *table, *entry;
31 
32 	table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
33 	if (!table)
34 		return NULL;
35 
36 	for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
37 		*entry = ZPCI_TABLE_INVALID;
38 	return table;
39 }
40 
41 static void dma_free_cpu_table(void *table)
42 {
43 	kmem_cache_free(dma_region_table_cache, table);
44 }
45 
46 static unsigned long *dma_alloc_page_table(void)
47 {
48 	unsigned long *table, *entry;
49 
50 	table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
51 	if (!table)
52 		return NULL;
53 
54 	for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
55 		*entry = ZPCI_PTE_INVALID;
56 	return table;
57 }
58 
59 static void dma_free_page_table(void *table)
60 {
61 	kmem_cache_free(dma_page_table_cache, table);
62 }
63 
64 static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
65 {
66 	unsigned long *sto;
67 
68 	if (reg_entry_isvalid(*entry))
69 		sto = get_rt_sto(*entry);
70 	else {
71 		sto = dma_alloc_cpu_table();
72 		if (!sto)
73 			return NULL;
74 
75 		set_rt_sto(entry, sto);
76 		validate_rt_entry(entry);
77 		entry_clr_protected(entry);
78 	}
79 	return sto;
80 }
81 
82 static unsigned long *dma_get_page_table_origin(unsigned long *entry)
83 {
84 	unsigned long *pto;
85 
86 	if (reg_entry_isvalid(*entry))
87 		pto = get_st_pto(*entry);
88 	else {
89 		pto = dma_alloc_page_table();
90 		if (!pto)
91 			return NULL;
92 		set_st_pto(entry, pto);
93 		validate_st_entry(entry);
94 		entry_clr_protected(entry);
95 	}
96 	return pto;
97 }
98 
99 unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
100 {
101 	unsigned long *sto, *pto;
102 	unsigned int rtx, sx, px;
103 
104 	rtx = calc_rtx(dma_addr);
105 	sto = dma_get_seg_table_origin(&rto[rtx]);
106 	if (!sto)
107 		return NULL;
108 
109 	sx = calc_sx(dma_addr);
110 	pto = dma_get_page_table_origin(&sto[sx]);
111 	if (!pto)
112 		return NULL;
113 
114 	px = calc_px(dma_addr);
115 	return &pto[px];
116 }
117 
118 void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
119 {
120 	if (flags & ZPCI_PTE_INVALID) {
121 		invalidate_pt_entry(entry);
122 	} else {
123 		set_pt_pfaa(entry, page_addr);
124 		validate_pt_entry(entry);
125 	}
126 
127 	if (flags & ZPCI_TABLE_PROTECTED)
128 		entry_set_protected(entry);
129 	else
130 		entry_clr_protected(entry);
131 }
132 
133 static int __dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
134 			      dma_addr_t dma_addr, size_t size, int flags)
135 {
136 	unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
137 	u8 *page_addr = (u8 *) (pa & PAGE_MASK);
138 	unsigned long irq_flags;
139 	unsigned long *entry;
140 	int i, rc = 0;
141 
142 	if (!nr_pages)
143 		return -EINVAL;
144 
145 	spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
146 	if (!zdev->dma_table) {
147 		rc = -EINVAL;
148 		goto out_unlock;
149 	}
150 
151 	for (i = 0; i < nr_pages; i++) {
152 		entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
153 		if (!entry) {
154 			rc = -ENOMEM;
155 			goto undo_cpu_trans;
156 		}
157 		dma_update_cpu_trans(entry, page_addr, flags);
158 		page_addr += PAGE_SIZE;
159 		dma_addr += PAGE_SIZE;
160 	}
161 
162 undo_cpu_trans:
163 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
164 		flags = ZPCI_PTE_INVALID;
165 		while (i-- > 0) {
166 			page_addr -= PAGE_SIZE;
167 			dma_addr -= PAGE_SIZE;
168 			entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
169 			if (!entry)
170 				break;
171 			dma_update_cpu_trans(entry, page_addr, flags);
172 		}
173 	}
174 out_unlock:
175 	spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
176 	return rc;
177 }
178 
179 static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr,
180 			   size_t size, int flags)
181 {
182 	unsigned long irqflags;
183 	int ret;
184 
185 	/*
186 	 * With zdev->tlb_refresh == 0, rpcit is not required to establish new
187 	 * translations when previously invalid translation-table entries are
188 	 * validated. With lazy unmap, rpcit is skipped for previously valid
189 	 * entries, but a global rpcit is then required before any address can
190 	 * be re-used, i.e. after each iommu bitmap wrap-around.
191 	 */
192 	if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) {
193 		if (!zdev->tlb_refresh)
194 			return 0;
195 	} else {
196 		if (!s390_iommu_strict)
197 			return 0;
198 	}
199 
200 	ret = zpci_refresh_trans((u64) zdev->fh << 32, dma_addr,
201 				 PAGE_ALIGN(size));
202 	if (ret == -ENOMEM && !s390_iommu_strict) {
203 		/* enable the hypervisor to free some resources */
204 		if (zpci_refresh_global(zdev))
205 			goto out;
206 
207 		spin_lock_irqsave(&zdev->iommu_bitmap_lock, irqflags);
208 		bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
209 			      zdev->lazy_bitmap, zdev->iommu_pages);
210 		bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
211 		spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, irqflags);
212 		ret = 0;
213 	}
214 out:
215 	return ret;
216 }
217 
218 static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
219 			    dma_addr_t dma_addr, size_t size, int flags)
220 {
221 	int rc;
222 
223 	rc = __dma_update_trans(zdev, pa, dma_addr, size, flags);
224 	if (rc)
225 		return rc;
226 
227 	rc = __dma_purge_tlb(zdev, dma_addr, size, flags);
228 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
229 		__dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID);
230 
231 	return rc;
232 }
233 
234 void dma_free_seg_table(unsigned long entry)
235 {
236 	unsigned long *sto = get_rt_sto(entry);
237 	int sx;
238 
239 	for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
240 		if (reg_entry_isvalid(sto[sx]))
241 			dma_free_page_table(get_st_pto(sto[sx]));
242 
243 	dma_free_cpu_table(sto);
244 }
245 
246 void dma_cleanup_tables(unsigned long *table)
247 {
248 	int rtx;
249 
250 	if (!table)
251 		return;
252 
253 	for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
254 		if (reg_entry_isvalid(table[rtx]))
255 			dma_free_seg_table(table[rtx]);
256 
257 	dma_free_cpu_table(table);
258 }
259 
260 static unsigned long __dma_alloc_iommu(struct device *dev,
261 				       unsigned long start, int size)
262 {
263 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
264 	unsigned long boundary_size;
265 
266 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
267 			      PAGE_SIZE) >> PAGE_SHIFT;
268 	return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
269 				start, size, zdev->start_dma >> PAGE_SHIFT,
270 				boundary_size, 0);
271 }
272 
273 static dma_addr_t dma_alloc_address(struct device *dev, int size)
274 {
275 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
276 	unsigned long offset, flags;
277 
278 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
279 	offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
280 	if (offset == -1) {
281 		if (!s390_iommu_strict) {
282 			/* global flush before DMA addresses are reused */
283 			if (zpci_refresh_global(zdev))
284 				goto out_error;
285 
286 			bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
287 				      zdev->lazy_bitmap, zdev->iommu_pages);
288 			bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
289 		}
290 		/* wrap-around */
291 		offset = __dma_alloc_iommu(dev, 0, size);
292 		if (offset == -1)
293 			goto out_error;
294 	}
295 	zdev->next_bit = offset + size;
296 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
297 
298 	return zdev->start_dma + offset * PAGE_SIZE;
299 
300 out_error:
301 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
302 	return DMA_MAPPING_ERROR;
303 }
304 
305 static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size)
306 {
307 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
308 	unsigned long flags, offset;
309 
310 	offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
311 
312 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
313 	if (!zdev->iommu_bitmap)
314 		goto out;
315 
316 	if (s390_iommu_strict)
317 		bitmap_clear(zdev->iommu_bitmap, offset, size);
318 	else
319 		bitmap_set(zdev->lazy_bitmap, offset, size);
320 
321 out:
322 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
323 }
324 
325 static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
326 {
327 	struct {
328 		unsigned long rc;
329 		unsigned long addr;
330 	} __packed data = {rc, addr};
331 
332 	zpci_err_hex(&data, sizeof(data));
333 }
334 
335 static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
336 				     unsigned long offset, size_t size,
337 				     enum dma_data_direction direction,
338 				     unsigned long attrs)
339 {
340 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
341 	unsigned long pa = page_to_phys(page) + offset;
342 	int flags = ZPCI_PTE_VALID;
343 	unsigned long nr_pages;
344 	dma_addr_t dma_addr;
345 	int ret;
346 
347 	/* This rounds up number of pages based on size and offset */
348 	nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
349 	dma_addr = dma_alloc_address(dev, nr_pages);
350 	if (dma_addr == DMA_MAPPING_ERROR) {
351 		ret = -ENOSPC;
352 		goto out_err;
353 	}
354 
355 	/* Use rounded up size */
356 	size = nr_pages * PAGE_SIZE;
357 
358 	if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
359 		flags |= ZPCI_TABLE_PROTECTED;
360 
361 	ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
362 	if (ret)
363 		goto out_free;
364 
365 	atomic64_add(nr_pages, &zdev->mapped_pages);
366 	return dma_addr + (offset & ~PAGE_MASK);
367 
368 out_free:
369 	dma_free_address(dev, dma_addr, nr_pages);
370 out_err:
371 	zpci_err("map error:\n");
372 	zpci_err_dma(ret, pa);
373 	return DMA_MAPPING_ERROR;
374 }
375 
376 static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
377 				 size_t size, enum dma_data_direction direction,
378 				 unsigned long attrs)
379 {
380 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
381 	int npages, ret;
382 
383 	npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
384 	dma_addr = dma_addr & PAGE_MASK;
385 	ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
386 			       ZPCI_PTE_INVALID);
387 	if (ret) {
388 		zpci_err("unmap error:\n");
389 		zpci_err_dma(ret, dma_addr);
390 		return;
391 	}
392 
393 	atomic64_add(npages, &zdev->unmapped_pages);
394 	dma_free_address(dev, dma_addr, npages);
395 }
396 
397 static void *s390_dma_alloc(struct device *dev, size_t size,
398 			    dma_addr_t *dma_handle, gfp_t flag,
399 			    unsigned long attrs)
400 {
401 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
402 	struct page *page;
403 	unsigned long pa;
404 	dma_addr_t map;
405 
406 	size = PAGE_ALIGN(size);
407 	page = alloc_pages(flag | __GFP_ZERO, get_order(size));
408 	if (!page)
409 		return NULL;
410 
411 	pa = page_to_phys(page);
412 	map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
413 	if (dma_mapping_error(dev, map)) {
414 		free_pages(pa, get_order(size));
415 		return NULL;
416 	}
417 
418 	atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
419 	if (dma_handle)
420 		*dma_handle = map;
421 	return (void *) pa;
422 }
423 
424 static void s390_dma_free(struct device *dev, size_t size,
425 			  void *pa, dma_addr_t dma_handle,
426 			  unsigned long attrs)
427 {
428 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
429 
430 	size = PAGE_ALIGN(size);
431 	atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
432 	s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
433 	free_pages((unsigned long) pa, get_order(size));
434 }
435 
436 /* Map a segment into a contiguous dma address area */
437 static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
438 			     size_t size, dma_addr_t *handle,
439 			     enum dma_data_direction dir)
440 {
441 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
442 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
443 	dma_addr_t dma_addr_base, dma_addr;
444 	int flags = ZPCI_PTE_VALID;
445 	struct scatterlist *s;
446 	unsigned long pa = 0;
447 	int ret;
448 
449 	dma_addr_base = dma_alloc_address(dev, nr_pages);
450 	if (dma_addr_base == DMA_MAPPING_ERROR)
451 		return -ENOMEM;
452 
453 	dma_addr = dma_addr_base;
454 	if (dir == DMA_NONE || dir == DMA_TO_DEVICE)
455 		flags |= ZPCI_TABLE_PROTECTED;
456 
457 	for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) {
458 		pa = page_to_phys(sg_page(s));
459 		ret = __dma_update_trans(zdev, pa, dma_addr,
460 					 s->offset + s->length, flags);
461 		if (ret)
462 			goto unmap;
463 
464 		dma_addr += s->offset + s->length;
465 	}
466 	ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags);
467 	if (ret)
468 		goto unmap;
469 
470 	*handle = dma_addr_base;
471 	atomic64_add(nr_pages, &zdev->mapped_pages);
472 
473 	return ret;
474 
475 unmap:
476 	dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base,
477 			 ZPCI_PTE_INVALID);
478 	dma_free_address(dev, dma_addr_base, nr_pages);
479 	zpci_err("map error:\n");
480 	zpci_err_dma(ret, pa);
481 	return ret;
482 }
483 
484 static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
485 			   int nr_elements, enum dma_data_direction dir,
486 			   unsigned long attrs)
487 {
488 	struct scatterlist *s = sg, *start = sg, *dma = sg;
489 	unsigned int max = dma_get_max_seg_size(dev);
490 	unsigned int size = s->offset + s->length;
491 	unsigned int offset = s->offset;
492 	int count = 0, i;
493 
494 	for (i = 1; i < nr_elements; i++) {
495 		s = sg_next(s);
496 
497 		s->dma_address = DMA_MAPPING_ERROR;
498 		s->dma_length = 0;
499 
500 		if (s->offset || (size & ~PAGE_MASK) ||
501 		    size + s->length > max) {
502 			if (__s390_dma_map_sg(dev, start, size,
503 					      &dma->dma_address, dir))
504 				goto unmap;
505 
506 			dma->dma_address += offset;
507 			dma->dma_length = size - offset;
508 
509 			size = offset = s->offset;
510 			start = s;
511 			dma = sg_next(dma);
512 			count++;
513 		}
514 		size += s->length;
515 	}
516 	if (__s390_dma_map_sg(dev, start, size, &dma->dma_address, dir))
517 		goto unmap;
518 
519 	dma->dma_address += offset;
520 	dma->dma_length = size - offset;
521 
522 	return count + 1;
523 unmap:
524 	for_each_sg(sg, s, count, i)
525 		s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s),
526 				     dir, attrs);
527 
528 	return 0;
529 }
530 
531 static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
532 			      int nr_elements, enum dma_data_direction dir,
533 			      unsigned long attrs)
534 {
535 	struct scatterlist *s;
536 	int i;
537 
538 	for_each_sg(sg, s, nr_elements, i) {
539 		if (s->dma_length)
540 			s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
541 					     dir, attrs);
542 		s->dma_address = 0;
543 		s->dma_length = 0;
544 	}
545 }
546 
547 int zpci_dma_init_device(struct zpci_dev *zdev)
548 {
549 	int rc;
550 
551 	/*
552 	 * At this point, if the device is part of an IOMMU domain, this would
553 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
554 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
555 	 */
556 	WARN_ON(zdev->s390_domain);
557 
558 	spin_lock_init(&zdev->iommu_bitmap_lock);
559 	spin_lock_init(&zdev->dma_table_lock);
560 
561 	zdev->dma_table = dma_alloc_cpu_table();
562 	if (!zdev->dma_table) {
563 		rc = -ENOMEM;
564 		goto out;
565 	}
566 
567 	/*
568 	 * Restrict the iommu bitmap size to the minimum of the following:
569 	 * - main memory size
570 	 * - 3-level pagetable address limit minus start_dma offset
571 	 * - DMA address range allowed by the hardware (clp query pci fn)
572 	 *
573 	 * Also set zdev->end_dma to the actual end address of the usable
574 	 * range, instead of the theoretical maximum as reported by hardware.
575 	 */
576 	zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
577 	zdev->iommu_size = min3((u64) high_memory,
578 				ZPCI_TABLE_SIZE_RT - zdev->start_dma,
579 				zdev->end_dma - zdev->start_dma + 1);
580 	zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
581 	zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
582 	zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
583 	if (!zdev->iommu_bitmap) {
584 		rc = -ENOMEM;
585 		goto free_dma_table;
586 	}
587 	if (!s390_iommu_strict) {
588 		zdev->lazy_bitmap = vzalloc(zdev->iommu_pages / 8);
589 		if (!zdev->lazy_bitmap) {
590 			rc = -ENOMEM;
591 			goto free_bitmap;
592 		}
593 
594 	}
595 	rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
596 				(u64) zdev->dma_table);
597 	if (rc)
598 		goto free_bitmap;
599 
600 	return 0;
601 free_bitmap:
602 	vfree(zdev->iommu_bitmap);
603 	zdev->iommu_bitmap = NULL;
604 	vfree(zdev->lazy_bitmap);
605 	zdev->lazy_bitmap = NULL;
606 free_dma_table:
607 	dma_free_cpu_table(zdev->dma_table);
608 	zdev->dma_table = NULL;
609 out:
610 	return rc;
611 }
612 
613 void zpci_dma_exit_device(struct zpci_dev *zdev)
614 {
615 	/*
616 	 * At this point, if the device is part of an IOMMU domain, this would
617 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
618 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
619 	 */
620 	WARN_ON(zdev->s390_domain);
621 
622 	if (zpci_unregister_ioat(zdev, 0))
623 		return;
624 
625 	dma_cleanup_tables(zdev->dma_table);
626 	zdev->dma_table = NULL;
627 	vfree(zdev->iommu_bitmap);
628 	zdev->iommu_bitmap = NULL;
629 	vfree(zdev->lazy_bitmap);
630 	zdev->lazy_bitmap = NULL;
631 
632 	zdev->next_bit = 0;
633 }
634 
635 static int __init dma_alloc_cpu_table_caches(void)
636 {
637 	dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
638 					ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
639 					0, NULL);
640 	if (!dma_region_table_cache)
641 		return -ENOMEM;
642 
643 	dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
644 					ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
645 					0, NULL);
646 	if (!dma_page_table_cache) {
647 		kmem_cache_destroy(dma_region_table_cache);
648 		return -ENOMEM;
649 	}
650 	return 0;
651 }
652 
653 int __init zpci_dma_init(void)
654 {
655 	return dma_alloc_cpu_table_caches();
656 }
657 
658 void zpci_dma_exit(void)
659 {
660 	kmem_cache_destroy(dma_page_table_cache);
661 	kmem_cache_destroy(dma_region_table_cache);
662 }
663 
664 const struct dma_map_ops s390_pci_dma_ops = {
665 	.alloc		= s390_dma_alloc,
666 	.free		= s390_dma_free,
667 	.map_sg		= s390_dma_map_sg,
668 	.unmap_sg	= s390_dma_unmap_sg,
669 	.map_page	= s390_dma_map_pages,
670 	.unmap_page	= s390_dma_unmap_pages,
671 	.mmap		= dma_common_mmap,
672 	.get_sgtable	= dma_common_get_sgtable,
673 	/* dma_supported is unconditionally true without a callback */
674 };
675 EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
676 
677 static int __init s390_iommu_setup(char *str)
678 {
679 	if (!strcmp(str, "strict"))
680 		s390_iommu_strict = 1;
681 	return 1;
682 }
683 
684 __setup("s390_iommu=", s390_iommu_setup);
685