xref: /openbmc/linux/arch/s390/pci/pci_dma.c (revision ddc141e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/iommu-helper.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci.h>
16 #include <asm/pci_dma.h>
17 
18 #define S390_MAPPING_ERROR		(~(dma_addr_t) 0x0)
19 
20 static struct kmem_cache *dma_region_table_cache;
21 static struct kmem_cache *dma_page_table_cache;
22 static int s390_iommu_strict;
23 
24 static int zpci_refresh_global(struct zpci_dev *zdev)
25 {
26 	return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
27 				  zdev->iommu_pages * PAGE_SIZE);
28 }
29 
30 unsigned long *dma_alloc_cpu_table(void)
31 {
32 	unsigned long *table, *entry;
33 
34 	table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
35 	if (!table)
36 		return NULL;
37 
38 	for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
39 		*entry = ZPCI_TABLE_INVALID;
40 	return table;
41 }
42 
43 static void dma_free_cpu_table(void *table)
44 {
45 	kmem_cache_free(dma_region_table_cache, table);
46 }
47 
48 static unsigned long *dma_alloc_page_table(void)
49 {
50 	unsigned long *table, *entry;
51 
52 	table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
53 	if (!table)
54 		return NULL;
55 
56 	for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
57 		*entry = ZPCI_PTE_INVALID;
58 	return table;
59 }
60 
61 static void dma_free_page_table(void *table)
62 {
63 	kmem_cache_free(dma_page_table_cache, table);
64 }
65 
66 static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
67 {
68 	unsigned long *sto;
69 
70 	if (reg_entry_isvalid(*entry))
71 		sto = get_rt_sto(*entry);
72 	else {
73 		sto = dma_alloc_cpu_table();
74 		if (!sto)
75 			return NULL;
76 
77 		set_rt_sto(entry, sto);
78 		validate_rt_entry(entry);
79 		entry_clr_protected(entry);
80 	}
81 	return sto;
82 }
83 
84 static unsigned long *dma_get_page_table_origin(unsigned long *entry)
85 {
86 	unsigned long *pto;
87 
88 	if (reg_entry_isvalid(*entry))
89 		pto = get_st_pto(*entry);
90 	else {
91 		pto = dma_alloc_page_table();
92 		if (!pto)
93 			return NULL;
94 		set_st_pto(entry, pto);
95 		validate_st_entry(entry);
96 		entry_clr_protected(entry);
97 	}
98 	return pto;
99 }
100 
101 unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
102 {
103 	unsigned long *sto, *pto;
104 	unsigned int rtx, sx, px;
105 
106 	rtx = calc_rtx(dma_addr);
107 	sto = dma_get_seg_table_origin(&rto[rtx]);
108 	if (!sto)
109 		return NULL;
110 
111 	sx = calc_sx(dma_addr);
112 	pto = dma_get_page_table_origin(&sto[sx]);
113 	if (!pto)
114 		return NULL;
115 
116 	px = calc_px(dma_addr);
117 	return &pto[px];
118 }
119 
120 void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
121 {
122 	if (flags & ZPCI_PTE_INVALID) {
123 		invalidate_pt_entry(entry);
124 	} else {
125 		set_pt_pfaa(entry, page_addr);
126 		validate_pt_entry(entry);
127 	}
128 
129 	if (flags & ZPCI_TABLE_PROTECTED)
130 		entry_set_protected(entry);
131 	else
132 		entry_clr_protected(entry);
133 }
134 
135 static int __dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
136 			      dma_addr_t dma_addr, size_t size, int flags)
137 {
138 	unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
139 	u8 *page_addr = (u8 *) (pa & PAGE_MASK);
140 	unsigned long irq_flags;
141 	unsigned long *entry;
142 	int i, rc = 0;
143 
144 	if (!nr_pages)
145 		return -EINVAL;
146 
147 	spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
148 	if (!zdev->dma_table) {
149 		rc = -EINVAL;
150 		goto out_unlock;
151 	}
152 
153 	for (i = 0; i < nr_pages; i++) {
154 		entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
155 		if (!entry) {
156 			rc = -ENOMEM;
157 			goto undo_cpu_trans;
158 		}
159 		dma_update_cpu_trans(entry, page_addr, flags);
160 		page_addr += PAGE_SIZE;
161 		dma_addr += PAGE_SIZE;
162 	}
163 
164 undo_cpu_trans:
165 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
166 		flags = ZPCI_PTE_INVALID;
167 		while (i-- > 0) {
168 			page_addr -= PAGE_SIZE;
169 			dma_addr -= PAGE_SIZE;
170 			entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
171 			if (!entry)
172 				break;
173 			dma_update_cpu_trans(entry, page_addr, flags);
174 		}
175 	}
176 out_unlock:
177 	spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
178 	return rc;
179 }
180 
181 static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr,
182 			   size_t size, int flags)
183 {
184 	unsigned long irqflags;
185 	int ret;
186 
187 	/*
188 	 * With zdev->tlb_refresh == 0, rpcit is not required to establish new
189 	 * translations when previously invalid translation-table entries are
190 	 * validated. With lazy unmap, rpcit is skipped for previously valid
191 	 * entries, but a global rpcit is then required before any address can
192 	 * be re-used, i.e. after each iommu bitmap wrap-around.
193 	 */
194 	if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) {
195 		if (!zdev->tlb_refresh)
196 			return 0;
197 	} else {
198 		if (!s390_iommu_strict)
199 			return 0;
200 	}
201 
202 	ret = zpci_refresh_trans((u64) zdev->fh << 32, dma_addr,
203 				 PAGE_ALIGN(size));
204 	if (ret == -ENOMEM && !s390_iommu_strict) {
205 		/* enable the hypervisor to free some resources */
206 		if (zpci_refresh_global(zdev))
207 			goto out;
208 
209 		spin_lock_irqsave(&zdev->iommu_bitmap_lock, irqflags);
210 		bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
211 			      zdev->lazy_bitmap, zdev->iommu_pages);
212 		bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
213 		spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, irqflags);
214 		ret = 0;
215 	}
216 out:
217 	return ret;
218 }
219 
220 static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
221 			    dma_addr_t dma_addr, size_t size, int flags)
222 {
223 	int rc;
224 
225 	rc = __dma_update_trans(zdev, pa, dma_addr, size, flags);
226 	if (rc)
227 		return rc;
228 
229 	rc = __dma_purge_tlb(zdev, dma_addr, size, flags);
230 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
231 		__dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID);
232 
233 	return rc;
234 }
235 
236 void dma_free_seg_table(unsigned long entry)
237 {
238 	unsigned long *sto = get_rt_sto(entry);
239 	int sx;
240 
241 	for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
242 		if (reg_entry_isvalid(sto[sx]))
243 			dma_free_page_table(get_st_pto(sto[sx]));
244 
245 	dma_free_cpu_table(sto);
246 }
247 
248 void dma_cleanup_tables(unsigned long *table)
249 {
250 	int rtx;
251 
252 	if (!table)
253 		return;
254 
255 	for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
256 		if (reg_entry_isvalid(table[rtx]))
257 			dma_free_seg_table(table[rtx]);
258 
259 	dma_free_cpu_table(table);
260 }
261 
262 static unsigned long __dma_alloc_iommu(struct device *dev,
263 				       unsigned long start, int size)
264 {
265 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
266 	unsigned long boundary_size;
267 
268 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
269 			      PAGE_SIZE) >> PAGE_SHIFT;
270 	return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
271 				start, size, zdev->start_dma >> PAGE_SHIFT,
272 				boundary_size, 0);
273 }
274 
275 static dma_addr_t dma_alloc_address(struct device *dev, int size)
276 {
277 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
278 	unsigned long offset, flags;
279 
280 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
281 	offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
282 	if (offset == -1) {
283 		if (!s390_iommu_strict) {
284 			/* global flush before DMA addresses are reused */
285 			if (zpci_refresh_global(zdev))
286 				goto out_error;
287 
288 			bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
289 				      zdev->lazy_bitmap, zdev->iommu_pages);
290 			bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
291 		}
292 		/* wrap-around */
293 		offset = __dma_alloc_iommu(dev, 0, size);
294 		if (offset == -1)
295 			goto out_error;
296 	}
297 	zdev->next_bit = offset + size;
298 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
299 
300 	return zdev->start_dma + offset * PAGE_SIZE;
301 
302 out_error:
303 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
304 	return S390_MAPPING_ERROR;
305 }
306 
307 static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size)
308 {
309 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
310 	unsigned long flags, offset;
311 
312 	offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
313 
314 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
315 	if (!zdev->iommu_bitmap)
316 		goto out;
317 
318 	if (s390_iommu_strict)
319 		bitmap_clear(zdev->iommu_bitmap, offset, size);
320 	else
321 		bitmap_set(zdev->lazy_bitmap, offset, size);
322 
323 out:
324 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
325 }
326 
327 static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
328 {
329 	struct {
330 		unsigned long rc;
331 		unsigned long addr;
332 	} __packed data = {rc, addr};
333 
334 	zpci_err_hex(&data, sizeof(data));
335 }
336 
337 static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
338 				     unsigned long offset, size_t size,
339 				     enum dma_data_direction direction,
340 				     unsigned long attrs)
341 {
342 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
343 	unsigned long pa = page_to_phys(page) + offset;
344 	int flags = ZPCI_PTE_VALID;
345 	unsigned long nr_pages;
346 	dma_addr_t dma_addr;
347 	int ret;
348 
349 	/* This rounds up number of pages based on size and offset */
350 	nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
351 	dma_addr = dma_alloc_address(dev, nr_pages);
352 	if (dma_addr == S390_MAPPING_ERROR) {
353 		ret = -ENOSPC;
354 		goto out_err;
355 	}
356 
357 	/* Use rounded up size */
358 	size = nr_pages * PAGE_SIZE;
359 
360 	if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
361 		flags |= ZPCI_TABLE_PROTECTED;
362 
363 	ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
364 	if (ret)
365 		goto out_free;
366 
367 	atomic64_add(nr_pages, &zdev->mapped_pages);
368 	return dma_addr + (offset & ~PAGE_MASK);
369 
370 out_free:
371 	dma_free_address(dev, dma_addr, nr_pages);
372 out_err:
373 	zpci_err("map error:\n");
374 	zpci_err_dma(ret, pa);
375 	return S390_MAPPING_ERROR;
376 }
377 
378 static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
379 				 size_t size, enum dma_data_direction direction,
380 				 unsigned long attrs)
381 {
382 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
383 	int npages, ret;
384 
385 	npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
386 	dma_addr = dma_addr & PAGE_MASK;
387 	ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
388 			       ZPCI_PTE_INVALID);
389 	if (ret) {
390 		zpci_err("unmap error:\n");
391 		zpci_err_dma(ret, dma_addr);
392 		return;
393 	}
394 
395 	atomic64_add(npages, &zdev->unmapped_pages);
396 	dma_free_address(dev, dma_addr, npages);
397 }
398 
399 static void *s390_dma_alloc(struct device *dev, size_t size,
400 			    dma_addr_t *dma_handle, gfp_t flag,
401 			    unsigned long attrs)
402 {
403 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
404 	struct page *page;
405 	unsigned long pa;
406 	dma_addr_t map;
407 
408 	size = PAGE_ALIGN(size);
409 	page = alloc_pages(flag, get_order(size));
410 	if (!page)
411 		return NULL;
412 
413 	pa = page_to_phys(page);
414 	map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
415 	if (dma_mapping_error(dev, map)) {
416 		free_pages(pa, get_order(size));
417 		return NULL;
418 	}
419 
420 	atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
421 	if (dma_handle)
422 		*dma_handle = map;
423 	return (void *) pa;
424 }
425 
426 static void s390_dma_free(struct device *dev, size_t size,
427 			  void *pa, dma_addr_t dma_handle,
428 			  unsigned long attrs)
429 {
430 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
431 
432 	size = PAGE_ALIGN(size);
433 	atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
434 	s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
435 	free_pages((unsigned long) pa, get_order(size));
436 }
437 
438 /* Map a segment into a contiguous dma address area */
439 static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
440 			     size_t size, dma_addr_t *handle,
441 			     enum dma_data_direction dir)
442 {
443 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
444 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
445 	dma_addr_t dma_addr_base, dma_addr;
446 	int flags = ZPCI_PTE_VALID;
447 	struct scatterlist *s;
448 	unsigned long pa = 0;
449 	int ret;
450 
451 	dma_addr_base = dma_alloc_address(dev, nr_pages);
452 	if (dma_addr_base == S390_MAPPING_ERROR)
453 		return -ENOMEM;
454 
455 	dma_addr = dma_addr_base;
456 	if (dir == DMA_NONE || dir == DMA_TO_DEVICE)
457 		flags |= ZPCI_TABLE_PROTECTED;
458 
459 	for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) {
460 		pa = page_to_phys(sg_page(s));
461 		ret = __dma_update_trans(zdev, pa, dma_addr,
462 					 s->offset + s->length, flags);
463 		if (ret)
464 			goto unmap;
465 
466 		dma_addr += s->offset + s->length;
467 	}
468 	ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags);
469 	if (ret)
470 		goto unmap;
471 
472 	*handle = dma_addr_base;
473 	atomic64_add(nr_pages, &zdev->mapped_pages);
474 
475 	return ret;
476 
477 unmap:
478 	dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base,
479 			 ZPCI_PTE_INVALID);
480 	dma_free_address(dev, dma_addr_base, nr_pages);
481 	zpci_err("map error:\n");
482 	zpci_err_dma(ret, pa);
483 	return ret;
484 }
485 
486 static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
487 			   int nr_elements, enum dma_data_direction dir,
488 			   unsigned long attrs)
489 {
490 	struct scatterlist *s = sg, *start = sg, *dma = sg;
491 	unsigned int max = dma_get_max_seg_size(dev);
492 	unsigned int size = s->offset + s->length;
493 	unsigned int offset = s->offset;
494 	int count = 0, i;
495 
496 	for (i = 1; i < nr_elements; i++) {
497 		s = sg_next(s);
498 
499 		s->dma_address = S390_MAPPING_ERROR;
500 		s->dma_length = 0;
501 
502 		if (s->offset || (size & ~PAGE_MASK) ||
503 		    size + s->length > max) {
504 			if (__s390_dma_map_sg(dev, start, size,
505 					      &dma->dma_address, dir))
506 				goto unmap;
507 
508 			dma->dma_address += offset;
509 			dma->dma_length = size - offset;
510 
511 			size = offset = s->offset;
512 			start = s;
513 			dma = sg_next(dma);
514 			count++;
515 		}
516 		size += s->length;
517 	}
518 	if (__s390_dma_map_sg(dev, start, size, &dma->dma_address, dir))
519 		goto unmap;
520 
521 	dma->dma_address += offset;
522 	dma->dma_length = size - offset;
523 
524 	return count + 1;
525 unmap:
526 	for_each_sg(sg, s, count, i)
527 		s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s),
528 				     dir, attrs);
529 
530 	return 0;
531 }
532 
533 static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
534 			      int nr_elements, enum dma_data_direction dir,
535 			      unsigned long attrs)
536 {
537 	struct scatterlist *s;
538 	int i;
539 
540 	for_each_sg(sg, s, nr_elements, i) {
541 		if (s->dma_length)
542 			s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
543 					     dir, attrs);
544 		s->dma_address = 0;
545 		s->dma_length = 0;
546 	}
547 }
548 
549 static int s390_mapping_error(struct device *dev, dma_addr_t dma_addr)
550 {
551 	return dma_addr == S390_MAPPING_ERROR;
552 }
553 
554 int zpci_dma_init_device(struct zpci_dev *zdev)
555 {
556 	int rc;
557 
558 	/*
559 	 * At this point, if the device is part of an IOMMU domain, this would
560 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
561 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
562 	 */
563 	WARN_ON(zdev->s390_domain);
564 
565 	spin_lock_init(&zdev->iommu_bitmap_lock);
566 	spin_lock_init(&zdev->dma_table_lock);
567 
568 	zdev->dma_table = dma_alloc_cpu_table();
569 	if (!zdev->dma_table) {
570 		rc = -ENOMEM;
571 		goto out;
572 	}
573 
574 	/*
575 	 * Restrict the iommu bitmap size to the minimum of the following:
576 	 * - main memory size
577 	 * - 3-level pagetable address limit minus start_dma offset
578 	 * - DMA address range allowed by the hardware (clp query pci fn)
579 	 *
580 	 * Also set zdev->end_dma to the actual end address of the usable
581 	 * range, instead of the theoretical maximum as reported by hardware.
582 	 */
583 	zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
584 	zdev->iommu_size = min3((u64) high_memory,
585 				ZPCI_TABLE_SIZE_RT - zdev->start_dma,
586 				zdev->end_dma - zdev->start_dma + 1);
587 	zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
588 	zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
589 	zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
590 	if (!zdev->iommu_bitmap) {
591 		rc = -ENOMEM;
592 		goto free_dma_table;
593 	}
594 	if (!s390_iommu_strict) {
595 		zdev->lazy_bitmap = vzalloc(zdev->iommu_pages / 8);
596 		if (!zdev->lazy_bitmap) {
597 			rc = -ENOMEM;
598 			goto free_bitmap;
599 		}
600 
601 	}
602 	rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
603 				(u64) zdev->dma_table);
604 	if (rc)
605 		goto free_bitmap;
606 
607 	return 0;
608 free_bitmap:
609 	vfree(zdev->iommu_bitmap);
610 	zdev->iommu_bitmap = NULL;
611 	vfree(zdev->lazy_bitmap);
612 	zdev->lazy_bitmap = NULL;
613 free_dma_table:
614 	dma_free_cpu_table(zdev->dma_table);
615 	zdev->dma_table = NULL;
616 out:
617 	return rc;
618 }
619 
620 void zpci_dma_exit_device(struct zpci_dev *zdev)
621 {
622 	/*
623 	 * At this point, if the device is part of an IOMMU domain, this would
624 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
625 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
626 	 */
627 	WARN_ON(zdev->s390_domain);
628 
629 	if (zpci_unregister_ioat(zdev, 0))
630 		return;
631 
632 	dma_cleanup_tables(zdev->dma_table);
633 	zdev->dma_table = NULL;
634 	vfree(zdev->iommu_bitmap);
635 	zdev->iommu_bitmap = NULL;
636 	vfree(zdev->lazy_bitmap);
637 	zdev->lazy_bitmap = NULL;
638 
639 	zdev->next_bit = 0;
640 }
641 
642 static int __init dma_alloc_cpu_table_caches(void)
643 {
644 	dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
645 					ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
646 					0, NULL);
647 	if (!dma_region_table_cache)
648 		return -ENOMEM;
649 
650 	dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
651 					ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
652 					0, NULL);
653 	if (!dma_page_table_cache) {
654 		kmem_cache_destroy(dma_region_table_cache);
655 		return -ENOMEM;
656 	}
657 	return 0;
658 }
659 
660 int __init zpci_dma_init(void)
661 {
662 	return dma_alloc_cpu_table_caches();
663 }
664 
665 void zpci_dma_exit(void)
666 {
667 	kmem_cache_destroy(dma_page_table_cache);
668 	kmem_cache_destroy(dma_region_table_cache);
669 }
670 
671 #define PREALLOC_DMA_DEBUG_ENTRIES	(1 << 16)
672 
673 static int __init dma_debug_do_init(void)
674 {
675 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
676 	return 0;
677 }
678 fs_initcall(dma_debug_do_init);
679 
680 const struct dma_map_ops s390_pci_dma_ops = {
681 	.alloc		= s390_dma_alloc,
682 	.free		= s390_dma_free,
683 	.map_sg		= s390_dma_map_sg,
684 	.unmap_sg	= s390_dma_unmap_sg,
685 	.map_page	= s390_dma_map_pages,
686 	.unmap_page	= s390_dma_unmap_pages,
687 	.mapping_error	= s390_mapping_error,
688 	/* if we support direct DMA this must be conditional */
689 	.is_phys	= 0,
690 	/* dma_supported is unconditionally true without a callback */
691 };
692 EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
693 
694 static int __init s390_iommu_setup(char *str)
695 {
696 	if (!strncmp(str, "strict", 6))
697 		s390_iommu_strict = 1;
698 	return 0;
699 }
700 
701 __setup("s390_iommu=", s390_iommu_setup);
702