xref: /openbmc/linux/arch/s390/pci/pci_dma.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/iommu-helper.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci.h>
16 #include <asm/pci_dma.h>
17 
18 static struct kmem_cache *dma_region_table_cache;
19 static struct kmem_cache *dma_page_table_cache;
20 static int s390_iommu_strict;
21 
22 static int zpci_refresh_global(struct zpci_dev *zdev)
23 {
24 	return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
25 				  zdev->iommu_pages * PAGE_SIZE);
26 }
27 
28 unsigned long *dma_alloc_cpu_table(void)
29 {
30 	unsigned long *table, *entry;
31 
32 	table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
33 	if (!table)
34 		return NULL;
35 
36 	for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
37 		*entry = ZPCI_TABLE_INVALID;
38 	return table;
39 }
40 
41 static void dma_free_cpu_table(void *table)
42 {
43 	kmem_cache_free(dma_region_table_cache, table);
44 }
45 
46 static unsigned long *dma_alloc_page_table(void)
47 {
48 	unsigned long *table, *entry;
49 
50 	table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
51 	if (!table)
52 		return NULL;
53 
54 	for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
55 		*entry = ZPCI_PTE_INVALID;
56 	return table;
57 }
58 
59 static void dma_free_page_table(void *table)
60 {
61 	kmem_cache_free(dma_page_table_cache, table);
62 }
63 
64 static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
65 {
66 	unsigned long *sto;
67 
68 	if (reg_entry_isvalid(*entry))
69 		sto = get_rt_sto(*entry);
70 	else {
71 		sto = dma_alloc_cpu_table();
72 		if (!sto)
73 			return NULL;
74 
75 		set_rt_sto(entry, sto);
76 		validate_rt_entry(entry);
77 		entry_clr_protected(entry);
78 	}
79 	return sto;
80 }
81 
82 static unsigned long *dma_get_page_table_origin(unsigned long *entry)
83 {
84 	unsigned long *pto;
85 
86 	if (reg_entry_isvalid(*entry))
87 		pto = get_st_pto(*entry);
88 	else {
89 		pto = dma_alloc_page_table();
90 		if (!pto)
91 			return NULL;
92 		set_st_pto(entry, pto);
93 		validate_st_entry(entry);
94 		entry_clr_protected(entry);
95 	}
96 	return pto;
97 }
98 
99 unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
100 {
101 	unsigned long *sto, *pto;
102 	unsigned int rtx, sx, px;
103 
104 	rtx = calc_rtx(dma_addr);
105 	sto = dma_get_seg_table_origin(&rto[rtx]);
106 	if (!sto)
107 		return NULL;
108 
109 	sx = calc_sx(dma_addr);
110 	pto = dma_get_page_table_origin(&sto[sx]);
111 	if (!pto)
112 		return NULL;
113 
114 	px = calc_px(dma_addr);
115 	return &pto[px];
116 }
117 
118 void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
119 {
120 	if (flags & ZPCI_PTE_INVALID) {
121 		invalidate_pt_entry(entry);
122 	} else {
123 		set_pt_pfaa(entry, page_addr);
124 		validate_pt_entry(entry);
125 	}
126 
127 	if (flags & ZPCI_TABLE_PROTECTED)
128 		entry_set_protected(entry);
129 	else
130 		entry_clr_protected(entry);
131 }
132 
133 static int __dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
134 			      dma_addr_t dma_addr, size_t size, int flags)
135 {
136 	unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
137 	u8 *page_addr = (u8 *) (pa & PAGE_MASK);
138 	unsigned long irq_flags;
139 	unsigned long *entry;
140 	int i, rc = 0;
141 
142 	if (!nr_pages)
143 		return -EINVAL;
144 
145 	spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
146 	if (!zdev->dma_table) {
147 		rc = -EINVAL;
148 		goto out_unlock;
149 	}
150 
151 	for (i = 0; i < nr_pages; i++) {
152 		entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
153 		if (!entry) {
154 			rc = -ENOMEM;
155 			goto undo_cpu_trans;
156 		}
157 		dma_update_cpu_trans(entry, page_addr, flags);
158 		page_addr += PAGE_SIZE;
159 		dma_addr += PAGE_SIZE;
160 	}
161 
162 undo_cpu_trans:
163 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
164 		flags = ZPCI_PTE_INVALID;
165 		while (i-- > 0) {
166 			page_addr -= PAGE_SIZE;
167 			dma_addr -= PAGE_SIZE;
168 			entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
169 			if (!entry)
170 				break;
171 			dma_update_cpu_trans(entry, page_addr, flags);
172 		}
173 	}
174 out_unlock:
175 	spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
176 	return rc;
177 }
178 
179 static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr,
180 			   size_t size, int flags)
181 {
182 	unsigned long irqflags;
183 	int ret;
184 
185 	/*
186 	 * With zdev->tlb_refresh == 0, rpcit is not required to establish new
187 	 * translations when previously invalid translation-table entries are
188 	 * validated. With lazy unmap, rpcit is skipped for previously valid
189 	 * entries, but a global rpcit is then required before any address can
190 	 * be re-used, i.e. after each iommu bitmap wrap-around.
191 	 */
192 	if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) {
193 		if (!zdev->tlb_refresh)
194 			return 0;
195 	} else {
196 		if (!s390_iommu_strict)
197 			return 0;
198 	}
199 
200 	ret = zpci_refresh_trans((u64) zdev->fh << 32, dma_addr,
201 				 PAGE_ALIGN(size));
202 	if (ret == -ENOMEM && !s390_iommu_strict) {
203 		/* enable the hypervisor to free some resources */
204 		if (zpci_refresh_global(zdev))
205 			goto out;
206 
207 		spin_lock_irqsave(&zdev->iommu_bitmap_lock, irqflags);
208 		bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
209 			      zdev->lazy_bitmap, zdev->iommu_pages);
210 		bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
211 		spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, irqflags);
212 		ret = 0;
213 	}
214 out:
215 	return ret;
216 }
217 
218 static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
219 			    dma_addr_t dma_addr, size_t size, int flags)
220 {
221 	int rc;
222 
223 	rc = __dma_update_trans(zdev, pa, dma_addr, size, flags);
224 	if (rc)
225 		return rc;
226 
227 	rc = __dma_purge_tlb(zdev, dma_addr, size, flags);
228 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
229 		__dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID);
230 
231 	return rc;
232 }
233 
234 void dma_free_seg_table(unsigned long entry)
235 {
236 	unsigned long *sto = get_rt_sto(entry);
237 	int sx;
238 
239 	for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
240 		if (reg_entry_isvalid(sto[sx]))
241 			dma_free_page_table(get_st_pto(sto[sx]));
242 
243 	dma_free_cpu_table(sto);
244 }
245 
246 void dma_cleanup_tables(unsigned long *table)
247 {
248 	int rtx;
249 
250 	if (!table)
251 		return;
252 
253 	for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
254 		if (reg_entry_isvalid(table[rtx]))
255 			dma_free_seg_table(table[rtx]);
256 
257 	dma_free_cpu_table(table);
258 }
259 
260 static unsigned long __dma_alloc_iommu(struct device *dev,
261 				       unsigned long start, int size)
262 {
263 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
264 
265 	return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
266 				start, size, zdev->start_dma >> PAGE_SHIFT,
267 				dma_get_seg_boundary_nr_pages(dev, PAGE_SHIFT),
268 				0);
269 }
270 
271 static dma_addr_t dma_alloc_address(struct device *dev, int size)
272 {
273 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
274 	unsigned long offset, flags;
275 
276 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
277 	offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
278 	if (offset == -1) {
279 		if (!s390_iommu_strict) {
280 			/* global flush before DMA addresses are reused */
281 			if (zpci_refresh_global(zdev))
282 				goto out_error;
283 
284 			bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
285 				      zdev->lazy_bitmap, zdev->iommu_pages);
286 			bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
287 		}
288 		/* wrap-around */
289 		offset = __dma_alloc_iommu(dev, 0, size);
290 		if (offset == -1)
291 			goto out_error;
292 	}
293 	zdev->next_bit = offset + size;
294 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
295 
296 	return zdev->start_dma + offset * PAGE_SIZE;
297 
298 out_error:
299 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
300 	return DMA_MAPPING_ERROR;
301 }
302 
303 static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size)
304 {
305 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
306 	unsigned long flags, offset;
307 
308 	offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
309 
310 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
311 	if (!zdev->iommu_bitmap)
312 		goto out;
313 
314 	if (s390_iommu_strict)
315 		bitmap_clear(zdev->iommu_bitmap, offset, size);
316 	else
317 		bitmap_set(zdev->lazy_bitmap, offset, size);
318 
319 out:
320 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
321 }
322 
323 static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
324 {
325 	struct {
326 		unsigned long rc;
327 		unsigned long addr;
328 	} __packed data = {rc, addr};
329 
330 	zpci_err_hex(&data, sizeof(data));
331 }
332 
333 static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
334 				     unsigned long offset, size_t size,
335 				     enum dma_data_direction direction,
336 				     unsigned long attrs)
337 {
338 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
339 	unsigned long pa = page_to_phys(page) + offset;
340 	int flags = ZPCI_PTE_VALID;
341 	unsigned long nr_pages;
342 	dma_addr_t dma_addr;
343 	int ret;
344 
345 	/* This rounds up number of pages based on size and offset */
346 	nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
347 	dma_addr = dma_alloc_address(dev, nr_pages);
348 	if (dma_addr == DMA_MAPPING_ERROR) {
349 		ret = -ENOSPC;
350 		goto out_err;
351 	}
352 
353 	/* Use rounded up size */
354 	size = nr_pages * PAGE_SIZE;
355 
356 	if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
357 		flags |= ZPCI_TABLE_PROTECTED;
358 
359 	ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
360 	if (ret)
361 		goto out_free;
362 
363 	atomic64_add(nr_pages, &zdev->mapped_pages);
364 	return dma_addr + (offset & ~PAGE_MASK);
365 
366 out_free:
367 	dma_free_address(dev, dma_addr, nr_pages);
368 out_err:
369 	zpci_err("map error:\n");
370 	zpci_err_dma(ret, pa);
371 	return DMA_MAPPING_ERROR;
372 }
373 
374 static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
375 				 size_t size, enum dma_data_direction direction,
376 				 unsigned long attrs)
377 {
378 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
379 	int npages, ret;
380 
381 	npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
382 	dma_addr = dma_addr & PAGE_MASK;
383 	ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
384 			       ZPCI_PTE_INVALID);
385 	if (ret) {
386 		zpci_err("unmap error:\n");
387 		zpci_err_dma(ret, dma_addr);
388 		return;
389 	}
390 
391 	atomic64_add(npages, &zdev->unmapped_pages);
392 	dma_free_address(dev, dma_addr, npages);
393 }
394 
395 static void *s390_dma_alloc(struct device *dev, size_t size,
396 			    dma_addr_t *dma_handle, gfp_t flag,
397 			    unsigned long attrs)
398 {
399 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
400 	struct page *page;
401 	unsigned long pa;
402 	dma_addr_t map;
403 
404 	size = PAGE_ALIGN(size);
405 	page = alloc_pages(flag | __GFP_ZERO, get_order(size));
406 	if (!page)
407 		return NULL;
408 
409 	pa = page_to_phys(page);
410 	map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
411 	if (dma_mapping_error(dev, map)) {
412 		free_pages(pa, get_order(size));
413 		return NULL;
414 	}
415 
416 	atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
417 	if (dma_handle)
418 		*dma_handle = map;
419 	return (void *) pa;
420 }
421 
422 static void s390_dma_free(struct device *dev, size_t size,
423 			  void *pa, dma_addr_t dma_handle,
424 			  unsigned long attrs)
425 {
426 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
427 
428 	size = PAGE_ALIGN(size);
429 	atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
430 	s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
431 	free_pages((unsigned long) pa, get_order(size));
432 }
433 
434 /* Map a segment into a contiguous dma address area */
435 static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
436 			     size_t size, dma_addr_t *handle,
437 			     enum dma_data_direction dir)
438 {
439 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
440 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
441 	dma_addr_t dma_addr_base, dma_addr;
442 	int flags = ZPCI_PTE_VALID;
443 	struct scatterlist *s;
444 	unsigned long pa = 0;
445 	int ret;
446 
447 	dma_addr_base = dma_alloc_address(dev, nr_pages);
448 	if (dma_addr_base == DMA_MAPPING_ERROR)
449 		return -ENOMEM;
450 
451 	dma_addr = dma_addr_base;
452 	if (dir == DMA_NONE || dir == DMA_TO_DEVICE)
453 		flags |= ZPCI_TABLE_PROTECTED;
454 
455 	for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) {
456 		pa = page_to_phys(sg_page(s));
457 		ret = __dma_update_trans(zdev, pa, dma_addr,
458 					 s->offset + s->length, flags);
459 		if (ret)
460 			goto unmap;
461 
462 		dma_addr += s->offset + s->length;
463 	}
464 	ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags);
465 	if (ret)
466 		goto unmap;
467 
468 	*handle = dma_addr_base;
469 	atomic64_add(nr_pages, &zdev->mapped_pages);
470 
471 	return ret;
472 
473 unmap:
474 	dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base,
475 			 ZPCI_PTE_INVALID);
476 	dma_free_address(dev, dma_addr_base, nr_pages);
477 	zpci_err("map error:\n");
478 	zpci_err_dma(ret, pa);
479 	return ret;
480 }
481 
482 static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
483 			   int nr_elements, enum dma_data_direction dir,
484 			   unsigned long attrs)
485 {
486 	struct scatterlist *s = sg, *start = sg, *dma = sg;
487 	unsigned int max = dma_get_max_seg_size(dev);
488 	unsigned int size = s->offset + s->length;
489 	unsigned int offset = s->offset;
490 	int count = 0, i;
491 
492 	for (i = 1; i < nr_elements; i++) {
493 		s = sg_next(s);
494 
495 		s->dma_address = DMA_MAPPING_ERROR;
496 		s->dma_length = 0;
497 
498 		if (s->offset || (size & ~PAGE_MASK) ||
499 		    size + s->length > max) {
500 			if (__s390_dma_map_sg(dev, start, size,
501 					      &dma->dma_address, dir))
502 				goto unmap;
503 
504 			dma->dma_address += offset;
505 			dma->dma_length = size - offset;
506 
507 			size = offset = s->offset;
508 			start = s;
509 			dma = sg_next(dma);
510 			count++;
511 		}
512 		size += s->length;
513 	}
514 	if (__s390_dma_map_sg(dev, start, size, &dma->dma_address, dir))
515 		goto unmap;
516 
517 	dma->dma_address += offset;
518 	dma->dma_length = size - offset;
519 
520 	return count + 1;
521 unmap:
522 	for_each_sg(sg, s, count, i)
523 		s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s),
524 				     dir, attrs);
525 
526 	return 0;
527 }
528 
529 static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
530 			      int nr_elements, enum dma_data_direction dir,
531 			      unsigned long attrs)
532 {
533 	struct scatterlist *s;
534 	int i;
535 
536 	for_each_sg(sg, s, nr_elements, i) {
537 		if (s->dma_length)
538 			s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
539 					     dir, attrs);
540 		s->dma_address = 0;
541 		s->dma_length = 0;
542 	}
543 }
544 
545 int zpci_dma_init_device(struct zpci_dev *zdev)
546 {
547 	int rc;
548 
549 	/*
550 	 * At this point, if the device is part of an IOMMU domain, this would
551 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
552 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
553 	 */
554 	WARN_ON(zdev->s390_domain);
555 
556 	spin_lock_init(&zdev->iommu_bitmap_lock);
557 	spin_lock_init(&zdev->dma_table_lock);
558 
559 	zdev->dma_table = dma_alloc_cpu_table();
560 	if (!zdev->dma_table) {
561 		rc = -ENOMEM;
562 		goto out;
563 	}
564 
565 	/*
566 	 * Restrict the iommu bitmap size to the minimum of the following:
567 	 * - main memory size
568 	 * - 3-level pagetable address limit minus start_dma offset
569 	 * - DMA address range allowed by the hardware (clp query pci fn)
570 	 *
571 	 * Also set zdev->end_dma to the actual end address of the usable
572 	 * range, instead of the theoretical maximum as reported by hardware.
573 	 */
574 	zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
575 	zdev->iommu_size = min3((u64) high_memory,
576 				ZPCI_TABLE_SIZE_RT - zdev->start_dma,
577 				zdev->end_dma - zdev->start_dma + 1);
578 	zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
579 	zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
580 	zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
581 	if (!zdev->iommu_bitmap) {
582 		rc = -ENOMEM;
583 		goto free_dma_table;
584 	}
585 	if (!s390_iommu_strict) {
586 		zdev->lazy_bitmap = vzalloc(zdev->iommu_pages / 8);
587 		if (!zdev->lazy_bitmap) {
588 			rc = -ENOMEM;
589 			goto free_bitmap;
590 		}
591 
592 	}
593 	rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
594 				(u64) zdev->dma_table);
595 	if (rc)
596 		goto free_bitmap;
597 
598 	return 0;
599 free_bitmap:
600 	vfree(zdev->iommu_bitmap);
601 	zdev->iommu_bitmap = NULL;
602 	vfree(zdev->lazy_bitmap);
603 	zdev->lazy_bitmap = NULL;
604 free_dma_table:
605 	dma_free_cpu_table(zdev->dma_table);
606 	zdev->dma_table = NULL;
607 out:
608 	return rc;
609 }
610 
611 void zpci_dma_exit_device(struct zpci_dev *zdev)
612 {
613 	/*
614 	 * At this point, if the device is part of an IOMMU domain, this would
615 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
616 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
617 	 */
618 	WARN_ON(zdev->s390_domain);
619 
620 	if (zpci_unregister_ioat(zdev, 0))
621 		return;
622 
623 	dma_cleanup_tables(zdev->dma_table);
624 	zdev->dma_table = NULL;
625 	vfree(zdev->iommu_bitmap);
626 	zdev->iommu_bitmap = NULL;
627 	vfree(zdev->lazy_bitmap);
628 	zdev->lazy_bitmap = NULL;
629 
630 	zdev->next_bit = 0;
631 }
632 
633 static int __init dma_alloc_cpu_table_caches(void)
634 {
635 	dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
636 					ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
637 					0, NULL);
638 	if (!dma_region_table_cache)
639 		return -ENOMEM;
640 
641 	dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
642 					ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
643 					0, NULL);
644 	if (!dma_page_table_cache) {
645 		kmem_cache_destroy(dma_region_table_cache);
646 		return -ENOMEM;
647 	}
648 	return 0;
649 }
650 
651 int __init zpci_dma_init(void)
652 {
653 	return dma_alloc_cpu_table_caches();
654 }
655 
656 void zpci_dma_exit(void)
657 {
658 	kmem_cache_destroy(dma_page_table_cache);
659 	kmem_cache_destroy(dma_region_table_cache);
660 }
661 
662 const struct dma_map_ops s390_pci_dma_ops = {
663 	.alloc		= s390_dma_alloc,
664 	.free		= s390_dma_free,
665 	.map_sg		= s390_dma_map_sg,
666 	.unmap_sg	= s390_dma_unmap_sg,
667 	.map_page	= s390_dma_map_pages,
668 	.unmap_page	= s390_dma_unmap_pages,
669 	.mmap		= dma_common_mmap,
670 	.get_sgtable	= dma_common_get_sgtable,
671 	.alloc_pages	= dma_common_alloc_pages,
672 	.free_pages	= dma_common_free_pages,
673 	/* dma_supported is unconditionally true without a callback */
674 };
675 EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
676 
677 static int __init s390_iommu_setup(char *str)
678 {
679 	if (!strcmp(str, "strict"))
680 		s390_iommu_strict = 1;
681 	return 1;
682 }
683 
684 __setup("s390_iommu=", s390_iommu_setup);
685