xref: /openbmc/linux/arch/s390/pci/pci_dma.c (revision 65417d9f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/iommu-helper.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci.h>
16 #include <asm/pci_dma.h>
17 
18 #define S390_MAPPING_ERROR		(~(dma_addr_t) 0x0)
19 
20 static struct kmem_cache *dma_region_table_cache;
21 static struct kmem_cache *dma_page_table_cache;
22 static int s390_iommu_strict;
23 
24 static int zpci_refresh_global(struct zpci_dev *zdev)
25 {
26 	return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
27 				  zdev->iommu_pages * PAGE_SIZE);
28 }
29 
30 unsigned long *dma_alloc_cpu_table(void)
31 {
32 	unsigned long *table, *entry;
33 
34 	table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
35 	if (!table)
36 		return NULL;
37 
38 	for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
39 		*entry = ZPCI_TABLE_INVALID;
40 	return table;
41 }
42 
43 static void dma_free_cpu_table(void *table)
44 {
45 	kmem_cache_free(dma_region_table_cache, table);
46 }
47 
48 static unsigned long *dma_alloc_page_table(void)
49 {
50 	unsigned long *table, *entry;
51 
52 	table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
53 	if (!table)
54 		return NULL;
55 
56 	for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
57 		*entry = ZPCI_PTE_INVALID;
58 	return table;
59 }
60 
61 static void dma_free_page_table(void *table)
62 {
63 	kmem_cache_free(dma_page_table_cache, table);
64 }
65 
66 static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
67 {
68 	unsigned long *sto;
69 
70 	if (reg_entry_isvalid(*entry))
71 		sto = get_rt_sto(*entry);
72 	else {
73 		sto = dma_alloc_cpu_table();
74 		if (!sto)
75 			return NULL;
76 
77 		set_rt_sto(entry, sto);
78 		validate_rt_entry(entry);
79 		entry_clr_protected(entry);
80 	}
81 	return sto;
82 }
83 
84 static unsigned long *dma_get_page_table_origin(unsigned long *entry)
85 {
86 	unsigned long *pto;
87 
88 	if (reg_entry_isvalid(*entry))
89 		pto = get_st_pto(*entry);
90 	else {
91 		pto = dma_alloc_page_table();
92 		if (!pto)
93 			return NULL;
94 		set_st_pto(entry, pto);
95 		validate_st_entry(entry);
96 		entry_clr_protected(entry);
97 	}
98 	return pto;
99 }
100 
101 unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
102 {
103 	unsigned long *sto, *pto;
104 	unsigned int rtx, sx, px;
105 
106 	rtx = calc_rtx(dma_addr);
107 	sto = dma_get_seg_table_origin(&rto[rtx]);
108 	if (!sto)
109 		return NULL;
110 
111 	sx = calc_sx(dma_addr);
112 	pto = dma_get_page_table_origin(&sto[sx]);
113 	if (!pto)
114 		return NULL;
115 
116 	px = calc_px(dma_addr);
117 	return &pto[px];
118 }
119 
120 void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
121 {
122 	if (flags & ZPCI_PTE_INVALID) {
123 		invalidate_pt_entry(entry);
124 	} else {
125 		set_pt_pfaa(entry, page_addr);
126 		validate_pt_entry(entry);
127 	}
128 
129 	if (flags & ZPCI_TABLE_PROTECTED)
130 		entry_set_protected(entry);
131 	else
132 		entry_clr_protected(entry);
133 }
134 
135 static int __dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
136 			      dma_addr_t dma_addr, size_t size, int flags)
137 {
138 	unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
139 	u8 *page_addr = (u8 *) (pa & PAGE_MASK);
140 	unsigned long irq_flags;
141 	unsigned long *entry;
142 	int i, rc = 0;
143 
144 	if (!nr_pages)
145 		return -EINVAL;
146 
147 	spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
148 	if (!zdev->dma_table) {
149 		rc = -EINVAL;
150 		goto out_unlock;
151 	}
152 
153 	for (i = 0; i < nr_pages; i++) {
154 		entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
155 		if (!entry) {
156 			rc = -ENOMEM;
157 			goto undo_cpu_trans;
158 		}
159 		dma_update_cpu_trans(entry, page_addr, flags);
160 		page_addr += PAGE_SIZE;
161 		dma_addr += PAGE_SIZE;
162 	}
163 
164 undo_cpu_trans:
165 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
166 		flags = ZPCI_PTE_INVALID;
167 		while (i-- > 0) {
168 			page_addr -= PAGE_SIZE;
169 			dma_addr -= PAGE_SIZE;
170 			entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
171 			if (!entry)
172 				break;
173 			dma_update_cpu_trans(entry, page_addr, flags);
174 		}
175 	}
176 out_unlock:
177 	spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
178 	return rc;
179 }
180 
181 static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr,
182 			   size_t size, int flags)
183 {
184 	/*
185 	 * With zdev->tlb_refresh == 0, rpcit is not required to establish new
186 	 * translations when previously invalid translation-table entries are
187 	 * validated. With lazy unmap, rpcit is skipped for previously valid
188 	 * entries, but a global rpcit is then required before any address can
189 	 * be re-used, i.e. after each iommu bitmap wrap-around.
190 	 */
191 	if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) {
192 		if (!zdev->tlb_refresh)
193 			return 0;
194 	} else {
195 		if (!s390_iommu_strict)
196 			return 0;
197 	}
198 
199 	return zpci_refresh_trans((u64) zdev->fh << 32, dma_addr,
200 				  PAGE_ALIGN(size));
201 }
202 
203 static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
204 			    dma_addr_t dma_addr, size_t size, int flags)
205 {
206 	int rc;
207 
208 	rc = __dma_update_trans(zdev, pa, dma_addr, size, flags);
209 	if (rc)
210 		return rc;
211 
212 	rc = __dma_purge_tlb(zdev, dma_addr, size, flags);
213 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
214 		__dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID);
215 
216 	return rc;
217 }
218 
219 void dma_free_seg_table(unsigned long entry)
220 {
221 	unsigned long *sto = get_rt_sto(entry);
222 	int sx;
223 
224 	for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
225 		if (reg_entry_isvalid(sto[sx]))
226 			dma_free_page_table(get_st_pto(sto[sx]));
227 
228 	dma_free_cpu_table(sto);
229 }
230 
231 void dma_cleanup_tables(unsigned long *table)
232 {
233 	int rtx;
234 
235 	if (!table)
236 		return;
237 
238 	for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
239 		if (reg_entry_isvalid(table[rtx]))
240 			dma_free_seg_table(table[rtx]);
241 
242 	dma_free_cpu_table(table);
243 }
244 
245 static unsigned long __dma_alloc_iommu(struct device *dev,
246 				       unsigned long start, int size)
247 {
248 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
249 	unsigned long boundary_size;
250 
251 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
252 			      PAGE_SIZE) >> PAGE_SHIFT;
253 	return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
254 				start, size, zdev->start_dma >> PAGE_SHIFT,
255 				boundary_size, 0);
256 }
257 
258 static dma_addr_t dma_alloc_address(struct device *dev, int size)
259 {
260 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
261 	unsigned long offset, flags;
262 
263 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
264 	offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
265 	if (offset == -1) {
266 		if (!s390_iommu_strict) {
267 			/* global flush before DMA addresses are reused */
268 			if (zpci_refresh_global(zdev))
269 				goto out_error;
270 
271 			bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
272 				      zdev->lazy_bitmap, zdev->iommu_pages);
273 			bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
274 		}
275 		/* wrap-around */
276 		offset = __dma_alloc_iommu(dev, 0, size);
277 		if (offset == -1)
278 			goto out_error;
279 	}
280 	zdev->next_bit = offset + size;
281 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
282 
283 	return zdev->start_dma + offset * PAGE_SIZE;
284 
285 out_error:
286 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
287 	return S390_MAPPING_ERROR;
288 }
289 
290 static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size)
291 {
292 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
293 	unsigned long flags, offset;
294 
295 	offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
296 
297 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
298 	if (!zdev->iommu_bitmap)
299 		goto out;
300 
301 	if (s390_iommu_strict)
302 		bitmap_clear(zdev->iommu_bitmap, offset, size);
303 	else
304 		bitmap_set(zdev->lazy_bitmap, offset, size);
305 
306 out:
307 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
308 }
309 
310 static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
311 {
312 	struct {
313 		unsigned long rc;
314 		unsigned long addr;
315 	} __packed data = {rc, addr};
316 
317 	zpci_err_hex(&data, sizeof(data));
318 }
319 
320 static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
321 				     unsigned long offset, size_t size,
322 				     enum dma_data_direction direction,
323 				     unsigned long attrs)
324 {
325 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
326 	unsigned long pa = page_to_phys(page) + offset;
327 	int flags = ZPCI_PTE_VALID;
328 	unsigned long nr_pages;
329 	dma_addr_t dma_addr;
330 	int ret;
331 
332 	/* This rounds up number of pages based on size and offset */
333 	nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
334 	dma_addr = dma_alloc_address(dev, nr_pages);
335 	if (dma_addr == S390_MAPPING_ERROR) {
336 		ret = -ENOSPC;
337 		goto out_err;
338 	}
339 
340 	/* Use rounded up size */
341 	size = nr_pages * PAGE_SIZE;
342 
343 	if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
344 		flags |= ZPCI_TABLE_PROTECTED;
345 
346 	ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
347 	if (ret)
348 		goto out_free;
349 
350 	atomic64_add(nr_pages, &zdev->mapped_pages);
351 	return dma_addr + (offset & ~PAGE_MASK);
352 
353 out_free:
354 	dma_free_address(dev, dma_addr, nr_pages);
355 out_err:
356 	zpci_err("map error:\n");
357 	zpci_err_dma(ret, pa);
358 	return S390_MAPPING_ERROR;
359 }
360 
361 static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
362 				 size_t size, enum dma_data_direction direction,
363 				 unsigned long attrs)
364 {
365 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
366 	int npages, ret;
367 
368 	npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
369 	dma_addr = dma_addr & PAGE_MASK;
370 	ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
371 			       ZPCI_PTE_INVALID);
372 	if (ret) {
373 		zpci_err("unmap error:\n");
374 		zpci_err_dma(ret, dma_addr);
375 		return;
376 	}
377 
378 	atomic64_add(npages, &zdev->unmapped_pages);
379 	dma_free_address(dev, dma_addr, npages);
380 }
381 
382 static void *s390_dma_alloc(struct device *dev, size_t size,
383 			    dma_addr_t *dma_handle, gfp_t flag,
384 			    unsigned long attrs)
385 {
386 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
387 	struct page *page;
388 	unsigned long pa;
389 	dma_addr_t map;
390 
391 	size = PAGE_ALIGN(size);
392 	page = alloc_pages(flag, get_order(size));
393 	if (!page)
394 		return NULL;
395 
396 	pa = page_to_phys(page);
397 	map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
398 	if (dma_mapping_error(dev, map)) {
399 		free_pages(pa, get_order(size));
400 		return NULL;
401 	}
402 
403 	atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
404 	if (dma_handle)
405 		*dma_handle = map;
406 	return (void *) pa;
407 }
408 
409 static void s390_dma_free(struct device *dev, size_t size,
410 			  void *pa, dma_addr_t dma_handle,
411 			  unsigned long attrs)
412 {
413 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
414 
415 	size = PAGE_ALIGN(size);
416 	atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
417 	s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
418 	free_pages((unsigned long) pa, get_order(size));
419 }
420 
421 /* Map a segment into a contiguous dma address area */
422 static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
423 			     size_t size, dma_addr_t *handle,
424 			     enum dma_data_direction dir)
425 {
426 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
427 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
428 	dma_addr_t dma_addr_base, dma_addr;
429 	int flags = ZPCI_PTE_VALID;
430 	struct scatterlist *s;
431 	unsigned long pa = 0;
432 	int ret;
433 
434 	dma_addr_base = dma_alloc_address(dev, nr_pages);
435 	if (dma_addr_base == S390_MAPPING_ERROR)
436 		return -ENOMEM;
437 
438 	dma_addr = dma_addr_base;
439 	if (dir == DMA_NONE || dir == DMA_TO_DEVICE)
440 		flags |= ZPCI_TABLE_PROTECTED;
441 
442 	for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) {
443 		pa = page_to_phys(sg_page(s));
444 		ret = __dma_update_trans(zdev, pa, dma_addr,
445 					 s->offset + s->length, flags);
446 		if (ret)
447 			goto unmap;
448 
449 		dma_addr += s->offset + s->length;
450 	}
451 	ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags);
452 	if (ret)
453 		goto unmap;
454 
455 	*handle = dma_addr_base;
456 	atomic64_add(nr_pages, &zdev->mapped_pages);
457 
458 	return ret;
459 
460 unmap:
461 	dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base,
462 			 ZPCI_PTE_INVALID);
463 	dma_free_address(dev, dma_addr_base, nr_pages);
464 	zpci_err("map error:\n");
465 	zpci_err_dma(ret, pa);
466 	return ret;
467 }
468 
469 static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
470 			   int nr_elements, enum dma_data_direction dir,
471 			   unsigned long attrs)
472 {
473 	struct scatterlist *s = sg, *start = sg, *dma = sg;
474 	unsigned int max = dma_get_max_seg_size(dev);
475 	unsigned int size = s->offset + s->length;
476 	unsigned int offset = s->offset;
477 	int count = 0, i;
478 
479 	for (i = 1; i < nr_elements; i++) {
480 		s = sg_next(s);
481 
482 		s->dma_address = S390_MAPPING_ERROR;
483 		s->dma_length = 0;
484 
485 		if (s->offset || (size & ~PAGE_MASK) ||
486 		    size + s->length > max) {
487 			if (__s390_dma_map_sg(dev, start, size,
488 					      &dma->dma_address, dir))
489 				goto unmap;
490 
491 			dma->dma_address += offset;
492 			dma->dma_length = size - offset;
493 
494 			size = offset = s->offset;
495 			start = s;
496 			dma = sg_next(dma);
497 			count++;
498 		}
499 		size += s->length;
500 	}
501 	if (__s390_dma_map_sg(dev, start, size, &dma->dma_address, dir))
502 		goto unmap;
503 
504 	dma->dma_address += offset;
505 	dma->dma_length = size - offset;
506 
507 	return count + 1;
508 unmap:
509 	for_each_sg(sg, s, count, i)
510 		s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s),
511 				     dir, attrs);
512 
513 	return 0;
514 }
515 
516 static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
517 			      int nr_elements, enum dma_data_direction dir,
518 			      unsigned long attrs)
519 {
520 	struct scatterlist *s;
521 	int i;
522 
523 	for_each_sg(sg, s, nr_elements, i) {
524 		if (s->dma_length)
525 			s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
526 					     dir, attrs);
527 		s->dma_address = 0;
528 		s->dma_length = 0;
529 	}
530 }
531 
532 static int s390_mapping_error(struct device *dev, dma_addr_t dma_addr)
533 {
534 	return dma_addr == S390_MAPPING_ERROR;
535 }
536 
537 int zpci_dma_init_device(struct zpci_dev *zdev)
538 {
539 	int rc;
540 
541 	/*
542 	 * At this point, if the device is part of an IOMMU domain, this would
543 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
544 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
545 	 */
546 	WARN_ON(zdev->s390_domain);
547 
548 	spin_lock_init(&zdev->iommu_bitmap_lock);
549 	spin_lock_init(&zdev->dma_table_lock);
550 
551 	zdev->dma_table = dma_alloc_cpu_table();
552 	if (!zdev->dma_table) {
553 		rc = -ENOMEM;
554 		goto out;
555 	}
556 
557 	/*
558 	 * Restrict the iommu bitmap size to the minimum of the following:
559 	 * - main memory size
560 	 * - 3-level pagetable address limit minus start_dma offset
561 	 * - DMA address range allowed by the hardware (clp query pci fn)
562 	 *
563 	 * Also set zdev->end_dma to the actual end address of the usable
564 	 * range, instead of the theoretical maximum as reported by hardware.
565 	 */
566 	zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
567 	zdev->iommu_size = min3((u64) high_memory,
568 				ZPCI_TABLE_SIZE_RT - zdev->start_dma,
569 				zdev->end_dma - zdev->start_dma + 1);
570 	zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
571 	zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
572 	zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
573 	if (!zdev->iommu_bitmap) {
574 		rc = -ENOMEM;
575 		goto free_dma_table;
576 	}
577 	if (!s390_iommu_strict) {
578 		zdev->lazy_bitmap = vzalloc(zdev->iommu_pages / 8);
579 		if (!zdev->lazy_bitmap) {
580 			rc = -ENOMEM;
581 			goto free_bitmap;
582 		}
583 
584 	}
585 	rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
586 				(u64) zdev->dma_table);
587 	if (rc)
588 		goto free_bitmap;
589 
590 	return 0;
591 free_bitmap:
592 	vfree(zdev->iommu_bitmap);
593 	zdev->iommu_bitmap = NULL;
594 	vfree(zdev->lazy_bitmap);
595 	zdev->lazy_bitmap = NULL;
596 free_dma_table:
597 	dma_free_cpu_table(zdev->dma_table);
598 	zdev->dma_table = NULL;
599 out:
600 	return rc;
601 }
602 
603 void zpci_dma_exit_device(struct zpci_dev *zdev)
604 {
605 	/*
606 	 * At this point, if the device is part of an IOMMU domain, this would
607 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
608 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
609 	 */
610 	WARN_ON(zdev->s390_domain);
611 
612 	if (zpci_unregister_ioat(zdev, 0))
613 		return;
614 
615 	dma_cleanup_tables(zdev->dma_table);
616 	zdev->dma_table = NULL;
617 	vfree(zdev->iommu_bitmap);
618 	zdev->iommu_bitmap = NULL;
619 	vfree(zdev->lazy_bitmap);
620 	zdev->lazy_bitmap = NULL;
621 
622 	zdev->next_bit = 0;
623 }
624 
625 static int __init dma_alloc_cpu_table_caches(void)
626 {
627 	dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
628 					ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
629 					0, NULL);
630 	if (!dma_region_table_cache)
631 		return -ENOMEM;
632 
633 	dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
634 					ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
635 					0, NULL);
636 	if (!dma_page_table_cache) {
637 		kmem_cache_destroy(dma_region_table_cache);
638 		return -ENOMEM;
639 	}
640 	return 0;
641 }
642 
643 int __init zpci_dma_init(void)
644 {
645 	return dma_alloc_cpu_table_caches();
646 }
647 
648 void zpci_dma_exit(void)
649 {
650 	kmem_cache_destroy(dma_page_table_cache);
651 	kmem_cache_destroy(dma_region_table_cache);
652 }
653 
654 #define PREALLOC_DMA_DEBUG_ENTRIES	(1 << 16)
655 
656 static int __init dma_debug_do_init(void)
657 {
658 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
659 	return 0;
660 }
661 fs_initcall(dma_debug_do_init);
662 
663 const struct dma_map_ops s390_pci_dma_ops = {
664 	.alloc		= s390_dma_alloc,
665 	.free		= s390_dma_free,
666 	.map_sg		= s390_dma_map_sg,
667 	.unmap_sg	= s390_dma_unmap_sg,
668 	.map_page	= s390_dma_map_pages,
669 	.unmap_page	= s390_dma_unmap_pages,
670 	.mapping_error	= s390_mapping_error,
671 	/* if we support direct DMA this must be conditional */
672 	.is_phys	= 0,
673 	/* dma_supported is unconditionally true without a callback */
674 };
675 EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
676 
677 static int __init s390_iommu_setup(char *str)
678 {
679 	if (!strncmp(str, "strict", 6))
680 		s390_iommu_strict = 1;
681 	return 0;
682 }
683 
684 __setup("s390_iommu=", s390_iommu_setup);
685