xref: /openbmc/linux/arch/s390/pci/pci_dma.c (revision 5d0e4d78)
1 /*
2  * Copyright IBM Corp. 2012
3  *
4  * Author(s):
5  *   Jan Glauber <jang@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/export.h>
11 #include <linux/iommu-helper.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pci.h>
15 #include <asm/pci_dma.h>
16 
17 #define S390_MAPPING_ERROR		(~(dma_addr_t) 0x0)
18 
19 static struct kmem_cache *dma_region_table_cache;
20 static struct kmem_cache *dma_page_table_cache;
21 static int s390_iommu_strict;
22 
23 static int zpci_refresh_global(struct zpci_dev *zdev)
24 {
25 	return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
26 				  zdev->iommu_pages * PAGE_SIZE);
27 }
28 
29 unsigned long *dma_alloc_cpu_table(void)
30 {
31 	unsigned long *table, *entry;
32 
33 	table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
34 	if (!table)
35 		return NULL;
36 
37 	for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
38 		*entry = ZPCI_TABLE_INVALID;
39 	return table;
40 }
41 
42 static void dma_free_cpu_table(void *table)
43 {
44 	kmem_cache_free(dma_region_table_cache, table);
45 }
46 
47 static unsigned long *dma_alloc_page_table(void)
48 {
49 	unsigned long *table, *entry;
50 
51 	table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
52 	if (!table)
53 		return NULL;
54 
55 	for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
56 		*entry = ZPCI_PTE_INVALID;
57 	return table;
58 }
59 
60 static void dma_free_page_table(void *table)
61 {
62 	kmem_cache_free(dma_page_table_cache, table);
63 }
64 
65 static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
66 {
67 	unsigned long *sto;
68 
69 	if (reg_entry_isvalid(*entry))
70 		sto = get_rt_sto(*entry);
71 	else {
72 		sto = dma_alloc_cpu_table();
73 		if (!sto)
74 			return NULL;
75 
76 		set_rt_sto(entry, sto);
77 		validate_rt_entry(entry);
78 		entry_clr_protected(entry);
79 	}
80 	return sto;
81 }
82 
83 static unsigned long *dma_get_page_table_origin(unsigned long *entry)
84 {
85 	unsigned long *pto;
86 
87 	if (reg_entry_isvalid(*entry))
88 		pto = get_st_pto(*entry);
89 	else {
90 		pto = dma_alloc_page_table();
91 		if (!pto)
92 			return NULL;
93 		set_st_pto(entry, pto);
94 		validate_st_entry(entry);
95 		entry_clr_protected(entry);
96 	}
97 	return pto;
98 }
99 
100 unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
101 {
102 	unsigned long *sto, *pto;
103 	unsigned int rtx, sx, px;
104 
105 	rtx = calc_rtx(dma_addr);
106 	sto = dma_get_seg_table_origin(&rto[rtx]);
107 	if (!sto)
108 		return NULL;
109 
110 	sx = calc_sx(dma_addr);
111 	pto = dma_get_page_table_origin(&sto[sx]);
112 	if (!pto)
113 		return NULL;
114 
115 	px = calc_px(dma_addr);
116 	return &pto[px];
117 }
118 
119 void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
120 {
121 	if (flags & ZPCI_PTE_INVALID) {
122 		invalidate_pt_entry(entry);
123 	} else {
124 		set_pt_pfaa(entry, page_addr);
125 		validate_pt_entry(entry);
126 	}
127 
128 	if (flags & ZPCI_TABLE_PROTECTED)
129 		entry_set_protected(entry);
130 	else
131 		entry_clr_protected(entry);
132 }
133 
134 static int __dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
135 			      dma_addr_t dma_addr, size_t size, int flags)
136 {
137 	unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
138 	u8 *page_addr = (u8 *) (pa & PAGE_MASK);
139 	unsigned long irq_flags;
140 	unsigned long *entry;
141 	int i, rc = 0;
142 
143 	if (!nr_pages)
144 		return -EINVAL;
145 
146 	spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
147 	if (!zdev->dma_table) {
148 		rc = -EINVAL;
149 		goto out_unlock;
150 	}
151 
152 	for (i = 0; i < nr_pages; i++) {
153 		entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
154 		if (!entry) {
155 			rc = -ENOMEM;
156 			goto undo_cpu_trans;
157 		}
158 		dma_update_cpu_trans(entry, page_addr, flags);
159 		page_addr += PAGE_SIZE;
160 		dma_addr += PAGE_SIZE;
161 	}
162 
163 undo_cpu_trans:
164 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
165 		flags = ZPCI_PTE_INVALID;
166 		while (i-- > 0) {
167 			page_addr -= PAGE_SIZE;
168 			dma_addr -= PAGE_SIZE;
169 			entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
170 			if (!entry)
171 				break;
172 			dma_update_cpu_trans(entry, page_addr, flags);
173 		}
174 	}
175 out_unlock:
176 	spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
177 	return rc;
178 }
179 
180 static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr,
181 			   size_t size, int flags)
182 {
183 	/*
184 	 * With zdev->tlb_refresh == 0, rpcit is not required to establish new
185 	 * translations when previously invalid translation-table entries are
186 	 * validated. With lazy unmap, rpcit is skipped for previously valid
187 	 * entries, but a global rpcit is then required before any address can
188 	 * be re-used, i.e. after each iommu bitmap wrap-around.
189 	 */
190 	if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) {
191 		if (!zdev->tlb_refresh)
192 			return 0;
193 	} else {
194 		if (!s390_iommu_strict)
195 			return 0;
196 	}
197 
198 	return zpci_refresh_trans((u64) zdev->fh << 32, dma_addr,
199 				  PAGE_ALIGN(size));
200 }
201 
202 static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
203 			    dma_addr_t dma_addr, size_t size, int flags)
204 {
205 	int rc;
206 
207 	rc = __dma_update_trans(zdev, pa, dma_addr, size, flags);
208 	if (rc)
209 		return rc;
210 
211 	rc = __dma_purge_tlb(zdev, dma_addr, size, flags);
212 	if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
213 		__dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID);
214 
215 	return rc;
216 }
217 
218 void dma_free_seg_table(unsigned long entry)
219 {
220 	unsigned long *sto = get_rt_sto(entry);
221 	int sx;
222 
223 	for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
224 		if (reg_entry_isvalid(sto[sx]))
225 			dma_free_page_table(get_st_pto(sto[sx]));
226 
227 	dma_free_cpu_table(sto);
228 }
229 
230 void dma_cleanup_tables(unsigned long *table)
231 {
232 	int rtx;
233 
234 	if (!table)
235 		return;
236 
237 	for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
238 		if (reg_entry_isvalid(table[rtx]))
239 			dma_free_seg_table(table[rtx]);
240 
241 	dma_free_cpu_table(table);
242 }
243 
244 static unsigned long __dma_alloc_iommu(struct device *dev,
245 				       unsigned long start, int size)
246 {
247 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
248 	unsigned long boundary_size;
249 
250 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
251 			      PAGE_SIZE) >> PAGE_SHIFT;
252 	return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
253 				start, size, zdev->start_dma >> PAGE_SHIFT,
254 				boundary_size, 0);
255 }
256 
257 static dma_addr_t dma_alloc_address(struct device *dev, int size)
258 {
259 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
260 	unsigned long offset, flags;
261 
262 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
263 	offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
264 	if (offset == -1) {
265 		if (!s390_iommu_strict) {
266 			/* global flush before DMA addresses are reused */
267 			if (zpci_refresh_global(zdev))
268 				goto out_error;
269 
270 			bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
271 				      zdev->lazy_bitmap, zdev->iommu_pages);
272 			bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
273 		}
274 		/* wrap-around */
275 		offset = __dma_alloc_iommu(dev, 0, size);
276 		if (offset == -1)
277 			goto out_error;
278 	}
279 	zdev->next_bit = offset + size;
280 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
281 
282 	return zdev->start_dma + offset * PAGE_SIZE;
283 
284 out_error:
285 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
286 	return S390_MAPPING_ERROR;
287 }
288 
289 static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size)
290 {
291 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
292 	unsigned long flags, offset;
293 
294 	offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
295 
296 	spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
297 	if (!zdev->iommu_bitmap)
298 		goto out;
299 
300 	if (s390_iommu_strict)
301 		bitmap_clear(zdev->iommu_bitmap, offset, size);
302 	else
303 		bitmap_set(zdev->lazy_bitmap, offset, size);
304 
305 out:
306 	spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
307 }
308 
309 static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
310 {
311 	struct {
312 		unsigned long rc;
313 		unsigned long addr;
314 	} __packed data = {rc, addr};
315 
316 	zpci_err_hex(&data, sizeof(data));
317 }
318 
319 static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
320 				     unsigned long offset, size_t size,
321 				     enum dma_data_direction direction,
322 				     unsigned long attrs)
323 {
324 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
325 	unsigned long pa = page_to_phys(page) + offset;
326 	int flags = ZPCI_PTE_VALID;
327 	unsigned long nr_pages;
328 	dma_addr_t dma_addr;
329 	int ret;
330 
331 	/* This rounds up number of pages based on size and offset */
332 	nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
333 	dma_addr = dma_alloc_address(dev, nr_pages);
334 	if (dma_addr == S390_MAPPING_ERROR) {
335 		ret = -ENOSPC;
336 		goto out_err;
337 	}
338 
339 	/* Use rounded up size */
340 	size = nr_pages * PAGE_SIZE;
341 
342 	if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
343 		flags |= ZPCI_TABLE_PROTECTED;
344 
345 	ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
346 	if (ret)
347 		goto out_free;
348 
349 	atomic64_add(nr_pages, &zdev->mapped_pages);
350 	return dma_addr + (offset & ~PAGE_MASK);
351 
352 out_free:
353 	dma_free_address(dev, dma_addr, nr_pages);
354 out_err:
355 	zpci_err("map error:\n");
356 	zpci_err_dma(ret, pa);
357 	return S390_MAPPING_ERROR;
358 }
359 
360 static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
361 				 size_t size, enum dma_data_direction direction,
362 				 unsigned long attrs)
363 {
364 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
365 	int npages, ret;
366 
367 	npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
368 	dma_addr = dma_addr & PAGE_MASK;
369 	ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
370 			       ZPCI_PTE_INVALID);
371 	if (ret) {
372 		zpci_err("unmap error:\n");
373 		zpci_err_dma(ret, dma_addr);
374 		return;
375 	}
376 
377 	atomic64_add(npages, &zdev->unmapped_pages);
378 	dma_free_address(dev, dma_addr, npages);
379 }
380 
381 static void *s390_dma_alloc(struct device *dev, size_t size,
382 			    dma_addr_t *dma_handle, gfp_t flag,
383 			    unsigned long attrs)
384 {
385 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
386 	struct page *page;
387 	unsigned long pa;
388 	dma_addr_t map;
389 
390 	size = PAGE_ALIGN(size);
391 	page = alloc_pages(flag, get_order(size));
392 	if (!page)
393 		return NULL;
394 
395 	pa = page_to_phys(page);
396 	map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
397 	if (dma_mapping_error(dev, map)) {
398 		free_pages(pa, get_order(size));
399 		return NULL;
400 	}
401 
402 	atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
403 	if (dma_handle)
404 		*dma_handle = map;
405 	return (void *) pa;
406 }
407 
408 static void s390_dma_free(struct device *dev, size_t size,
409 			  void *pa, dma_addr_t dma_handle,
410 			  unsigned long attrs)
411 {
412 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
413 
414 	size = PAGE_ALIGN(size);
415 	atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
416 	s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
417 	free_pages((unsigned long) pa, get_order(size));
418 }
419 
420 /* Map a segment into a contiguous dma address area */
421 static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
422 			     size_t size, dma_addr_t *handle,
423 			     enum dma_data_direction dir)
424 {
425 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
426 	struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
427 	dma_addr_t dma_addr_base, dma_addr;
428 	int flags = ZPCI_PTE_VALID;
429 	struct scatterlist *s;
430 	unsigned long pa = 0;
431 	int ret;
432 
433 	dma_addr_base = dma_alloc_address(dev, nr_pages);
434 	if (dma_addr_base == S390_MAPPING_ERROR)
435 		return -ENOMEM;
436 
437 	dma_addr = dma_addr_base;
438 	if (dir == DMA_NONE || dir == DMA_TO_DEVICE)
439 		flags |= ZPCI_TABLE_PROTECTED;
440 
441 	for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) {
442 		pa = page_to_phys(sg_page(s));
443 		ret = __dma_update_trans(zdev, pa, dma_addr,
444 					 s->offset + s->length, flags);
445 		if (ret)
446 			goto unmap;
447 
448 		dma_addr += s->offset + s->length;
449 	}
450 	ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags);
451 	if (ret)
452 		goto unmap;
453 
454 	*handle = dma_addr_base;
455 	atomic64_add(nr_pages, &zdev->mapped_pages);
456 
457 	return ret;
458 
459 unmap:
460 	dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base,
461 			 ZPCI_PTE_INVALID);
462 	dma_free_address(dev, dma_addr_base, nr_pages);
463 	zpci_err("map error:\n");
464 	zpci_err_dma(ret, pa);
465 	return ret;
466 }
467 
468 static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
469 			   int nr_elements, enum dma_data_direction dir,
470 			   unsigned long attrs)
471 {
472 	struct scatterlist *s = sg, *start = sg, *dma = sg;
473 	unsigned int max = dma_get_max_seg_size(dev);
474 	unsigned int size = s->offset + s->length;
475 	unsigned int offset = s->offset;
476 	int count = 0, i;
477 
478 	for (i = 1; i < nr_elements; i++) {
479 		s = sg_next(s);
480 
481 		s->dma_address = S390_MAPPING_ERROR;
482 		s->dma_length = 0;
483 
484 		if (s->offset || (size & ~PAGE_MASK) ||
485 		    size + s->length > max) {
486 			if (__s390_dma_map_sg(dev, start, size,
487 					      &dma->dma_address, dir))
488 				goto unmap;
489 
490 			dma->dma_address += offset;
491 			dma->dma_length = size - offset;
492 
493 			size = offset = s->offset;
494 			start = s;
495 			dma = sg_next(dma);
496 			count++;
497 		}
498 		size += s->length;
499 	}
500 	if (__s390_dma_map_sg(dev, start, size, &dma->dma_address, dir))
501 		goto unmap;
502 
503 	dma->dma_address += offset;
504 	dma->dma_length = size - offset;
505 
506 	return count + 1;
507 unmap:
508 	for_each_sg(sg, s, count, i)
509 		s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s),
510 				     dir, attrs);
511 
512 	return 0;
513 }
514 
515 static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
516 			      int nr_elements, enum dma_data_direction dir,
517 			      unsigned long attrs)
518 {
519 	struct scatterlist *s;
520 	int i;
521 
522 	for_each_sg(sg, s, nr_elements, i) {
523 		if (s->dma_length)
524 			s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
525 					     dir, attrs);
526 		s->dma_address = 0;
527 		s->dma_length = 0;
528 	}
529 }
530 
531 static int s390_mapping_error(struct device *dev, dma_addr_t dma_addr)
532 {
533 	return dma_addr == S390_MAPPING_ERROR;
534 }
535 
536 int zpci_dma_init_device(struct zpci_dev *zdev)
537 {
538 	int rc;
539 
540 	/*
541 	 * At this point, if the device is part of an IOMMU domain, this would
542 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
543 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
544 	 */
545 	WARN_ON(zdev->s390_domain);
546 
547 	spin_lock_init(&zdev->iommu_bitmap_lock);
548 	spin_lock_init(&zdev->dma_table_lock);
549 
550 	zdev->dma_table = dma_alloc_cpu_table();
551 	if (!zdev->dma_table) {
552 		rc = -ENOMEM;
553 		goto out;
554 	}
555 
556 	/*
557 	 * Restrict the iommu bitmap size to the minimum of the following:
558 	 * - main memory size
559 	 * - 3-level pagetable address limit minus start_dma offset
560 	 * - DMA address range allowed by the hardware (clp query pci fn)
561 	 *
562 	 * Also set zdev->end_dma to the actual end address of the usable
563 	 * range, instead of the theoretical maximum as reported by hardware.
564 	 */
565 	zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
566 	zdev->iommu_size = min3((u64) high_memory,
567 				ZPCI_TABLE_SIZE_RT - zdev->start_dma,
568 				zdev->end_dma - zdev->start_dma + 1);
569 	zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
570 	zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
571 	zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
572 	if (!zdev->iommu_bitmap) {
573 		rc = -ENOMEM;
574 		goto free_dma_table;
575 	}
576 	if (!s390_iommu_strict) {
577 		zdev->lazy_bitmap = vzalloc(zdev->iommu_pages / 8);
578 		if (!zdev->lazy_bitmap) {
579 			rc = -ENOMEM;
580 			goto free_bitmap;
581 		}
582 
583 	}
584 	rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
585 				(u64) zdev->dma_table);
586 	if (rc)
587 		goto free_bitmap;
588 
589 	return 0;
590 free_bitmap:
591 	vfree(zdev->iommu_bitmap);
592 	zdev->iommu_bitmap = NULL;
593 	vfree(zdev->lazy_bitmap);
594 	zdev->lazy_bitmap = NULL;
595 free_dma_table:
596 	dma_free_cpu_table(zdev->dma_table);
597 	zdev->dma_table = NULL;
598 out:
599 	return rc;
600 }
601 
602 void zpci_dma_exit_device(struct zpci_dev *zdev)
603 {
604 	/*
605 	 * At this point, if the device is part of an IOMMU domain, this would
606 	 * be a strong hint towards a bug in the IOMMU API (common) code and/or
607 	 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
608 	 */
609 	WARN_ON(zdev->s390_domain);
610 
611 	if (zpci_unregister_ioat(zdev, 0))
612 		return;
613 
614 	dma_cleanup_tables(zdev->dma_table);
615 	zdev->dma_table = NULL;
616 	vfree(zdev->iommu_bitmap);
617 	zdev->iommu_bitmap = NULL;
618 	vfree(zdev->lazy_bitmap);
619 	zdev->lazy_bitmap = NULL;
620 
621 	zdev->next_bit = 0;
622 }
623 
624 static int __init dma_alloc_cpu_table_caches(void)
625 {
626 	dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
627 					ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
628 					0, NULL);
629 	if (!dma_region_table_cache)
630 		return -ENOMEM;
631 
632 	dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
633 					ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
634 					0, NULL);
635 	if (!dma_page_table_cache) {
636 		kmem_cache_destroy(dma_region_table_cache);
637 		return -ENOMEM;
638 	}
639 	return 0;
640 }
641 
642 int __init zpci_dma_init(void)
643 {
644 	return dma_alloc_cpu_table_caches();
645 }
646 
647 void zpci_dma_exit(void)
648 {
649 	kmem_cache_destroy(dma_page_table_cache);
650 	kmem_cache_destroy(dma_region_table_cache);
651 }
652 
653 #define PREALLOC_DMA_DEBUG_ENTRIES	(1 << 16)
654 
655 static int __init dma_debug_do_init(void)
656 {
657 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
658 	return 0;
659 }
660 fs_initcall(dma_debug_do_init);
661 
662 const struct dma_map_ops s390_pci_dma_ops = {
663 	.alloc		= s390_dma_alloc,
664 	.free		= s390_dma_free,
665 	.map_sg		= s390_dma_map_sg,
666 	.unmap_sg	= s390_dma_unmap_sg,
667 	.map_page	= s390_dma_map_pages,
668 	.unmap_page	= s390_dma_unmap_pages,
669 	.mapping_error	= s390_mapping_error,
670 	/* if we support direct DMA this must be conditional */
671 	.is_phys	= 0,
672 	/* dma_supported is unconditionally true without a callback */
673 };
674 EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
675 
676 static int __init s390_iommu_setup(char *str)
677 {
678 	if (!strncmp(str, "strict", 6))
679 		s390_iommu_strict = 1;
680 	return 0;
681 }
682 
683 __setup("s390_iommu=", s390_iommu_setup);
684