1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 32 #include <asm/isc.h> 33 #include <asm/airq.h> 34 #include <asm/facility.h> 35 #include <asm/pci_insn.h> 36 #include <asm/pci_clp.h> 37 #include <asm/pci_dma.h> 38 39 #include "pci_bus.h" 40 #include "pci_iov.h" 41 42 /* list of all detected zpci devices */ 43 static LIST_HEAD(zpci_list); 44 static DEFINE_SPINLOCK(zpci_list_lock); 45 46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 47 static DEFINE_SPINLOCK(zpci_domain_lock); 48 49 #define ZPCI_IOMAP_ENTRIES \ 50 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 51 ZPCI_IOMAP_MAX_ENTRIES) 52 53 unsigned int s390_pci_no_rid; 54 55 static DEFINE_SPINLOCK(zpci_iomap_lock); 56 static unsigned long *zpci_iomap_bitmap; 57 struct zpci_iomap_entry *zpci_iomap_start; 58 EXPORT_SYMBOL_GPL(zpci_iomap_start); 59 60 DEFINE_STATIC_KEY_FALSE(have_mio); 61 62 static struct kmem_cache *zdev_fmb_cache; 63 64 struct zpci_dev *get_zdev_by_fid(u32 fid) 65 { 66 struct zpci_dev *tmp, *zdev = NULL; 67 68 spin_lock(&zpci_list_lock); 69 list_for_each_entry(tmp, &zpci_list, entry) { 70 if (tmp->fid == fid) { 71 zdev = tmp; 72 zpci_zdev_get(zdev); 73 break; 74 } 75 } 76 spin_unlock(&zpci_list_lock); 77 return zdev; 78 } 79 80 void zpci_remove_reserved_devices(void) 81 { 82 struct zpci_dev *tmp, *zdev; 83 enum zpci_state state; 84 LIST_HEAD(remove); 85 86 spin_lock(&zpci_list_lock); 87 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 88 if (zdev->state == ZPCI_FN_STATE_STANDBY && 89 !clp_get_state(zdev->fid, &state) && 90 state == ZPCI_FN_STATE_RESERVED) 91 list_move_tail(&zdev->entry, &remove); 92 } 93 spin_unlock(&zpci_list_lock); 94 95 list_for_each_entry_safe(zdev, tmp, &remove, entry) 96 zpci_device_reserved(zdev); 97 } 98 99 int pci_domain_nr(struct pci_bus *bus) 100 { 101 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 102 } 103 EXPORT_SYMBOL_GPL(pci_domain_nr); 104 105 int pci_proc_domain(struct pci_bus *bus) 106 { 107 return pci_domain_nr(bus); 108 } 109 EXPORT_SYMBOL_GPL(pci_proc_domain); 110 111 /* Modify PCI: Register I/O address translation parameters */ 112 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 113 u64 base, u64 limit, u64 iota) 114 { 115 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 116 struct zpci_fib fib = {0}; 117 u8 cc, status; 118 119 WARN_ON_ONCE(iota & 0x3fff); 120 fib.pba = base; 121 fib.pal = limit; 122 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 123 cc = zpci_mod_fc(req, &fib, &status); 124 if (cc) 125 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 126 return cc; 127 } 128 129 /* Modify PCI: Unregister I/O address translation parameters */ 130 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 131 { 132 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 133 struct zpci_fib fib = {0}; 134 u8 cc, status; 135 136 cc = zpci_mod_fc(req, &fib, &status); 137 if (cc) 138 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 139 return cc; 140 } 141 142 /* Modify PCI: Set PCI function measurement parameters */ 143 int zpci_fmb_enable_device(struct zpci_dev *zdev) 144 { 145 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 146 struct zpci_fib fib = {0}; 147 u8 cc, status; 148 149 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 150 return -EINVAL; 151 152 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 153 if (!zdev->fmb) 154 return -ENOMEM; 155 WARN_ON((u64) zdev->fmb & 0xf); 156 157 /* reset software counters */ 158 atomic64_set(&zdev->allocated_pages, 0); 159 atomic64_set(&zdev->mapped_pages, 0); 160 atomic64_set(&zdev->unmapped_pages, 0); 161 162 fib.fmb_addr = virt_to_phys(zdev->fmb); 163 cc = zpci_mod_fc(req, &fib, &status); 164 if (cc) { 165 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 166 zdev->fmb = NULL; 167 } 168 return cc ? -EIO : 0; 169 } 170 171 /* Modify PCI: Disable PCI function measurement */ 172 int zpci_fmb_disable_device(struct zpci_dev *zdev) 173 { 174 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 175 struct zpci_fib fib = {0}; 176 u8 cc, status; 177 178 if (!zdev->fmb) 179 return -EINVAL; 180 181 /* Function measurement is disabled if fmb address is zero */ 182 cc = zpci_mod_fc(req, &fib, &status); 183 if (cc == 3) /* Function already gone. */ 184 cc = 0; 185 186 if (!cc) { 187 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 188 zdev->fmb = NULL; 189 } 190 return cc ? -EIO : 0; 191 } 192 193 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 194 { 195 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 196 u64 data; 197 int rc; 198 199 rc = __zpci_load(&data, req, offset); 200 if (!rc) { 201 data = le64_to_cpu((__force __le64) data); 202 data >>= (8 - len) * 8; 203 *val = (u32) data; 204 } else 205 *val = 0xffffffff; 206 return rc; 207 } 208 209 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 210 { 211 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 212 u64 data = val; 213 int rc; 214 215 data <<= (8 - len) * 8; 216 data = (__force u64) cpu_to_le64(data); 217 rc = __zpci_store(data, req, offset); 218 return rc; 219 } 220 221 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 222 resource_size_t size, 223 resource_size_t align) 224 { 225 return 0; 226 } 227 228 /* combine single writes by using store-block insn */ 229 void __iowrite64_copy(void __iomem *to, const void *from, size_t count) 230 { 231 zpci_memcpy_toio(to, from, count); 232 } 233 234 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot) 235 { 236 unsigned long offset, vaddr; 237 struct vm_struct *area; 238 phys_addr_t last_addr; 239 240 last_addr = addr + size - 1; 241 if (!size || last_addr < addr) 242 return NULL; 243 244 if (!static_branch_unlikely(&have_mio)) 245 return (void __iomem *) addr; 246 247 offset = addr & ~PAGE_MASK; 248 addr &= PAGE_MASK; 249 size = PAGE_ALIGN(size + offset); 250 area = get_vm_area(size, VM_IOREMAP); 251 if (!area) 252 return NULL; 253 254 vaddr = (unsigned long) area->addr; 255 if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) { 256 free_vm_area(area); 257 return NULL; 258 } 259 return (void __iomem *) ((unsigned long) area->addr + offset); 260 } 261 262 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot) 263 { 264 return __ioremap(addr, size, __pgprot(prot)); 265 } 266 EXPORT_SYMBOL(ioremap_prot); 267 268 void __iomem *ioremap(phys_addr_t addr, size_t size) 269 { 270 return __ioremap(addr, size, PAGE_KERNEL); 271 } 272 EXPORT_SYMBOL(ioremap); 273 274 void __iomem *ioremap_wc(phys_addr_t addr, size_t size) 275 { 276 return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL)); 277 } 278 EXPORT_SYMBOL(ioremap_wc); 279 280 void __iomem *ioremap_wt(phys_addr_t addr, size_t size) 281 { 282 return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL)); 283 } 284 EXPORT_SYMBOL(ioremap_wt); 285 286 void iounmap(volatile void __iomem *addr) 287 { 288 if (static_branch_likely(&have_mio)) 289 vunmap((__force void *) ((unsigned long) addr & PAGE_MASK)); 290 } 291 EXPORT_SYMBOL(iounmap); 292 293 /* Create a virtual mapping cookie for a PCI BAR */ 294 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 295 unsigned long offset, unsigned long max) 296 { 297 struct zpci_dev *zdev = to_zpci(pdev); 298 int idx; 299 300 idx = zdev->bars[bar].map_idx; 301 spin_lock(&zpci_iomap_lock); 302 /* Detect overrun */ 303 WARN_ON(!++zpci_iomap_start[idx].count); 304 zpci_iomap_start[idx].fh = zdev->fh; 305 zpci_iomap_start[idx].bar = bar; 306 spin_unlock(&zpci_iomap_lock); 307 308 return (void __iomem *) ZPCI_ADDR(idx) + offset; 309 } 310 311 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 312 unsigned long offset, 313 unsigned long max) 314 { 315 unsigned long barsize = pci_resource_len(pdev, bar); 316 struct zpci_dev *zdev = to_zpci(pdev); 317 void __iomem *iova; 318 319 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 320 return iova ? iova + offset : iova; 321 } 322 323 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 324 unsigned long offset, unsigned long max) 325 { 326 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 327 return NULL; 328 329 if (static_branch_likely(&have_mio)) 330 return pci_iomap_range_mio(pdev, bar, offset, max); 331 else 332 return pci_iomap_range_fh(pdev, bar, offset, max); 333 } 334 EXPORT_SYMBOL(pci_iomap_range); 335 336 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 337 { 338 return pci_iomap_range(dev, bar, 0, maxlen); 339 } 340 EXPORT_SYMBOL(pci_iomap); 341 342 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 343 unsigned long offset, unsigned long max) 344 { 345 unsigned long barsize = pci_resource_len(pdev, bar); 346 struct zpci_dev *zdev = to_zpci(pdev); 347 void __iomem *iova; 348 349 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 350 return iova ? iova + offset : iova; 351 } 352 353 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 354 unsigned long offset, unsigned long max) 355 { 356 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 357 return NULL; 358 359 if (static_branch_likely(&have_mio)) 360 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 361 else 362 return pci_iomap_range_fh(pdev, bar, offset, max); 363 } 364 EXPORT_SYMBOL(pci_iomap_wc_range); 365 366 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 367 { 368 return pci_iomap_wc_range(dev, bar, 0, maxlen); 369 } 370 EXPORT_SYMBOL(pci_iomap_wc); 371 372 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 373 { 374 unsigned int idx = ZPCI_IDX(addr); 375 376 spin_lock(&zpci_iomap_lock); 377 /* Detect underrun */ 378 WARN_ON(!zpci_iomap_start[idx].count); 379 if (!--zpci_iomap_start[idx].count) { 380 zpci_iomap_start[idx].fh = 0; 381 zpci_iomap_start[idx].bar = 0; 382 } 383 spin_unlock(&zpci_iomap_lock); 384 } 385 386 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 387 { 388 iounmap(addr); 389 } 390 391 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 392 { 393 if (static_branch_likely(&have_mio)) 394 pci_iounmap_mio(pdev, addr); 395 else 396 pci_iounmap_fh(pdev, addr); 397 } 398 EXPORT_SYMBOL(pci_iounmap); 399 400 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 401 int size, u32 *val) 402 { 403 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 404 405 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 406 } 407 408 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 409 int size, u32 val) 410 { 411 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 412 413 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 414 } 415 416 static struct pci_ops pci_root_ops = { 417 .read = pci_read, 418 .write = pci_write, 419 }; 420 421 static void zpci_map_resources(struct pci_dev *pdev) 422 { 423 struct zpci_dev *zdev = to_zpci(pdev); 424 resource_size_t len; 425 int i; 426 427 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 428 len = pci_resource_len(pdev, i); 429 if (!len) 430 continue; 431 432 if (zpci_use_mio(zdev)) 433 pdev->resource[i].start = 434 (resource_size_t __force) zdev->bars[i].mio_wt; 435 else 436 pdev->resource[i].start = (resource_size_t __force) 437 pci_iomap_range_fh(pdev, i, 0, 0); 438 pdev->resource[i].end = pdev->resource[i].start + len - 1; 439 } 440 441 zpci_iov_map_resources(pdev); 442 } 443 444 static void zpci_unmap_resources(struct pci_dev *pdev) 445 { 446 struct zpci_dev *zdev = to_zpci(pdev); 447 resource_size_t len; 448 int i; 449 450 if (zpci_use_mio(zdev)) 451 return; 452 453 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 454 len = pci_resource_len(pdev, i); 455 if (!len) 456 continue; 457 pci_iounmap_fh(pdev, (void __iomem __force *) 458 pdev->resource[i].start); 459 } 460 } 461 462 static int zpci_alloc_iomap(struct zpci_dev *zdev) 463 { 464 unsigned long entry; 465 466 spin_lock(&zpci_iomap_lock); 467 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 468 if (entry == ZPCI_IOMAP_ENTRIES) { 469 spin_unlock(&zpci_iomap_lock); 470 return -ENOSPC; 471 } 472 set_bit(entry, zpci_iomap_bitmap); 473 spin_unlock(&zpci_iomap_lock); 474 return entry; 475 } 476 477 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 478 { 479 spin_lock(&zpci_iomap_lock); 480 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 481 clear_bit(entry, zpci_iomap_bitmap); 482 spin_unlock(&zpci_iomap_lock); 483 } 484 485 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 486 { 487 int bar, idx; 488 489 spin_lock(&zpci_iomap_lock); 490 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 491 if (!zdev->bars[bar].size) 492 continue; 493 idx = zdev->bars[bar].map_idx; 494 if (!zpci_iomap_start[idx].count) 495 continue; 496 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 497 } 498 spin_unlock(&zpci_iomap_lock); 499 } 500 501 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 502 { 503 if (!fh || zdev->fh == fh) 504 return; 505 506 zdev->fh = fh; 507 if (zpci_use_mio(zdev)) 508 return; 509 if (zdev->has_resources && zdev_enabled(zdev)) 510 zpci_do_update_iomap_fh(zdev, fh); 511 } 512 513 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 514 unsigned long size, unsigned long flags) 515 { 516 struct resource *r; 517 518 r = kzalloc(sizeof(*r), GFP_KERNEL); 519 if (!r) 520 return NULL; 521 522 r->start = start; 523 r->end = r->start + size - 1; 524 r->flags = flags; 525 r->name = zdev->res_name; 526 527 if (request_resource(&iomem_resource, r)) { 528 kfree(r); 529 return NULL; 530 } 531 return r; 532 } 533 534 int zpci_setup_bus_resources(struct zpci_dev *zdev, 535 struct list_head *resources) 536 { 537 unsigned long addr, size, flags; 538 struct resource *res; 539 int i, entry; 540 541 snprintf(zdev->res_name, sizeof(zdev->res_name), 542 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 543 544 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 545 if (!zdev->bars[i].size) 546 continue; 547 entry = zpci_alloc_iomap(zdev); 548 if (entry < 0) 549 return entry; 550 zdev->bars[i].map_idx = entry; 551 552 /* only MMIO is supported */ 553 flags = IORESOURCE_MEM; 554 if (zdev->bars[i].val & 8) 555 flags |= IORESOURCE_PREFETCH; 556 if (zdev->bars[i].val & 4) 557 flags |= IORESOURCE_MEM_64; 558 559 if (zpci_use_mio(zdev)) 560 addr = (unsigned long) zdev->bars[i].mio_wt; 561 else 562 addr = ZPCI_ADDR(entry); 563 size = 1UL << zdev->bars[i].size; 564 565 res = __alloc_res(zdev, addr, size, flags); 566 if (!res) { 567 zpci_free_iomap(zdev, entry); 568 return -ENOMEM; 569 } 570 zdev->bars[i].res = res; 571 pci_add_resource(resources, res); 572 } 573 zdev->has_resources = 1; 574 575 return 0; 576 } 577 578 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 579 { 580 int i; 581 582 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 583 if (!zdev->bars[i].size || !zdev->bars[i].res) 584 continue; 585 586 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 587 release_resource(zdev->bars[i].res); 588 kfree(zdev->bars[i].res); 589 } 590 zdev->has_resources = 0; 591 } 592 593 int pcibios_device_add(struct pci_dev *pdev) 594 { 595 struct zpci_dev *zdev = to_zpci(pdev); 596 struct resource *res; 597 int i; 598 599 /* The pdev has a reference to the zdev via its bus */ 600 zpci_zdev_get(zdev); 601 if (pdev->is_physfn) 602 pdev->no_vf_scan = 1; 603 604 pdev->dev.groups = zpci_attr_groups; 605 pdev->dev.dma_ops = &s390_pci_dma_ops; 606 zpci_map_resources(pdev); 607 608 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 609 res = &pdev->resource[i]; 610 if (res->parent || !res->flags) 611 continue; 612 pci_claim_resource(pdev, i); 613 } 614 615 return 0; 616 } 617 618 void pcibios_release_device(struct pci_dev *pdev) 619 { 620 struct zpci_dev *zdev = to_zpci(pdev); 621 622 zpci_unmap_resources(pdev); 623 zpci_zdev_put(zdev); 624 } 625 626 int pcibios_enable_device(struct pci_dev *pdev, int mask) 627 { 628 struct zpci_dev *zdev = to_zpci(pdev); 629 630 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 631 zpci_fmb_enable_device(zdev); 632 633 return pci_enable_resources(pdev, mask); 634 } 635 636 void pcibios_disable_device(struct pci_dev *pdev) 637 { 638 struct zpci_dev *zdev = to_zpci(pdev); 639 640 zpci_fmb_disable_device(zdev); 641 zpci_debug_exit_device(zdev); 642 } 643 644 static int __zpci_register_domain(int domain) 645 { 646 spin_lock(&zpci_domain_lock); 647 if (test_bit(domain, zpci_domain)) { 648 spin_unlock(&zpci_domain_lock); 649 pr_err("Domain %04x is already assigned\n", domain); 650 return -EEXIST; 651 } 652 set_bit(domain, zpci_domain); 653 spin_unlock(&zpci_domain_lock); 654 return domain; 655 } 656 657 static int __zpci_alloc_domain(void) 658 { 659 int domain; 660 661 spin_lock(&zpci_domain_lock); 662 /* 663 * We can always auto allocate domains below ZPCI_NR_DEVICES. 664 * There is either a free domain or we have reached the maximum in 665 * which case we would have bailed earlier. 666 */ 667 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 668 set_bit(domain, zpci_domain); 669 spin_unlock(&zpci_domain_lock); 670 return domain; 671 } 672 673 int zpci_alloc_domain(int domain) 674 { 675 if (zpci_unique_uid) { 676 if (domain) 677 return __zpci_register_domain(domain); 678 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 679 update_uid_checking(false); 680 } 681 return __zpci_alloc_domain(); 682 } 683 684 void zpci_free_domain(int domain) 685 { 686 spin_lock(&zpci_domain_lock); 687 clear_bit(domain, zpci_domain); 688 spin_unlock(&zpci_domain_lock); 689 } 690 691 692 int zpci_enable_device(struct zpci_dev *zdev) 693 { 694 u32 fh = zdev->fh; 695 int rc = 0; 696 697 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 698 rc = -EIO; 699 else 700 zpci_update_fh(zdev, fh); 701 return rc; 702 } 703 704 int zpci_disable_device(struct zpci_dev *zdev) 705 { 706 u32 fh = zdev->fh; 707 int cc, rc = 0; 708 709 cc = clp_disable_fh(zdev, &fh); 710 if (!cc) { 711 zpci_update_fh(zdev, fh); 712 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 713 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 714 zdev->fid); 715 /* Function is already disabled - update handle */ 716 rc = clp_refresh_fh(zdev->fid, &fh); 717 if (!rc) { 718 zpci_update_fh(zdev, fh); 719 rc = -EINVAL; 720 } 721 } else { 722 rc = -EIO; 723 } 724 return rc; 725 } 726 727 /** 728 * zpci_hot_reset_device - perform a reset of the given zPCI function 729 * @zdev: the slot which should be reset 730 * 731 * Performs a low level reset of the zPCI function. The reset is low level in 732 * the sense that the zPCI function can be reset without detaching it from the 733 * common PCI subsystem. The reset may be performed while under control of 734 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 735 * table is reinstated at the end of the reset. 736 * 737 * After the reset the functions internal state is reset to an initial state 738 * equivalent to its state during boot when first probing a driver. 739 * Consequently after reset the PCI function requires re-initialization via the 740 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 741 * and enabling the function via e.g.pci_enablde_device_flags().The caller 742 * must guard against concurrent reset attempts. 743 * 744 * In most cases this function should not be called directly but through 745 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 746 * locking. 747 * 748 * Return: 0 on success and an error value otherwise 749 */ 750 int zpci_hot_reset_device(struct zpci_dev *zdev) 751 { 752 int rc; 753 754 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 755 if (zdev_enabled(zdev)) { 756 /* Disables device access, DMAs and IRQs (reset state) */ 757 rc = zpci_disable_device(zdev); 758 /* 759 * Due to a z/VM vs LPAR inconsistency in the error state the 760 * FH may indicate an enabled device but disable says the 761 * device is already disabled don't treat it as an error here. 762 */ 763 if (rc == -EINVAL) 764 rc = 0; 765 if (rc) 766 return rc; 767 } 768 769 rc = zpci_enable_device(zdev); 770 if (rc) 771 return rc; 772 773 if (zdev->dma_table) 774 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 775 virt_to_phys(zdev->dma_table)); 776 else 777 rc = zpci_dma_init_device(zdev); 778 if (rc) { 779 zpci_disable_device(zdev); 780 return rc; 781 } 782 783 return 0; 784 } 785 786 /** 787 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 788 * @fid: Function ID of the device to be created 789 * @fh: Current Function Handle of the device to be created 790 * @state: Initial state after creation either Standby or Configured 791 * 792 * Creates a new zpci device and adds it to its, possibly newly created, zbus 793 * as well as zpci_list. 794 * 795 * Returns: the zdev on success or an error pointer otherwise 796 */ 797 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 798 { 799 struct zpci_dev *zdev; 800 int rc; 801 802 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 803 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 804 if (!zdev) 805 return ERR_PTR(-ENOMEM); 806 807 /* FID and Function Handle are the static/dynamic identifiers */ 808 zdev->fid = fid; 809 zdev->fh = fh; 810 811 /* Query function properties and update zdev */ 812 rc = clp_query_pci_fn(zdev); 813 if (rc) 814 goto error; 815 zdev->state = state; 816 817 kref_init(&zdev->kref); 818 mutex_init(&zdev->lock); 819 820 rc = zpci_init_iommu(zdev); 821 if (rc) 822 goto error; 823 824 rc = zpci_bus_device_register(zdev, &pci_root_ops); 825 if (rc) 826 goto error_destroy_iommu; 827 828 spin_lock(&zpci_list_lock); 829 list_add_tail(&zdev->entry, &zpci_list); 830 spin_unlock(&zpci_list_lock); 831 832 return zdev; 833 834 error_destroy_iommu: 835 zpci_destroy_iommu(zdev); 836 error: 837 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 838 kfree(zdev); 839 return ERR_PTR(rc); 840 } 841 842 bool zpci_is_device_configured(struct zpci_dev *zdev) 843 { 844 enum zpci_state state = zdev->state; 845 846 return state != ZPCI_FN_STATE_RESERVED && 847 state != ZPCI_FN_STATE_STANDBY; 848 } 849 850 /** 851 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 852 * @zdev: The zpci_dev to be configured 853 * @fh: The general function handle supplied by the platform 854 * 855 * Given a device in the configuration state Configured, enables, scans and 856 * adds it to the common code PCI subsystem if possible. If the PCI device is 857 * parked because we can not yet create a PCI bus because we have not seen 858 * function 0, it is ignored but will be scanned once function 0 appears. 859 * If any failure occurs, the zpci_dev is left disabled. 860 * 861 * Return: 0 on success, or an error code otherwise 862 */ 863 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 864 { 865 int rc; 866 867 zpci_update_fh(zdev, fh); 868 /* the PCI function will be scanned once function 0 appears */ 869 if (!zdev->zbus->bus) 870 return 0; 871 872 /* For function 0 on a multi-function bus scan whole bus as we might 873 * have to pick up existing functions waiting for it to allow creating 874 * the PCI bus 875 */ 876 if (zdev->devfn == 0 && zdev->zbus->multifunction) 877 rc = zpci_bus_scan_bus(zdev->zbus); 878 else 879 rc = zpci_bus_scan_device(zdev); 880 881 return rc; 882 } 883 884 /** 885 * zpci_deconfigure_device() - Deconfigure a zpci_dev 886 * @zdev: The zpci_dev to configure 887 * 888 * Deconfigure a zPCI function that is currently configured and possibly known 889 * to the common code PCI subsystem. 890 * If any failure occurs the device is left as is. 891 * 892 * Return: 0 on success, or an error code otherwise 893 */ 894 int zpci_deconfigure_device(struct zpci_dev *zdev) 895 { 896 int rc; 897 898 if (zdev->zbus->bus) 899 zpci_bus_remove_device(zdev, false); 900 901 if (zdev->dma_table) { 902 rc = zpci_dma_exit_device(zdev); 903 if (rc) 904 return rc; 905 } 906 if (zdev_enabled(zdev)) { 907 rc = zpci_disable_device(zdev); 908 if (rc) 909 return rc; 910 } 911 912 rc = sclp_pci_deconfigure(zdev->fid); 913 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 914 if (rc) 915 return rc; 916 zdev->state = ZPCI_FN_STATE_STANDBY; 917 918 return 0; 919 } 920 921 /** 922 * zpci_device_reserved() - Mark device as resverved 923 * @zdev: the zpci_dev that was reserved 924 * 925 * Handle the case that a given zPCI function was reserved by another system. 926 * After a call to this function the zpci_dev can not be found via 927 * get_zdev_by_fid() anymore but may still be accessible via existing 928 * references though it will not be functional anymore. 929 */ 930 void zpci_device_reserved(struct zpci_dev *zdev) 931 { 932 if (zdev->has_hp_slot) 933 zpci_exit_slot(zdev); 934 /* 935 * Remove device from zpci_list as it is going away. This also 936 * makes sure we ignore subsequent zPCI events for this device. 937 */ 938 spin_lock(&zpci_list_lock); 939 list_del(&zdev->entry); 940 spin_unlock(&zpci_list_lock); 941 zdev->state = ZPCI_FN_STATE_RESERVED; 942 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 943 zpci_zdev_put(zdev); 944 } 945 946 void zpci_release_device(struct kref *kref) 947 { 948 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 949 int ret; 950 951 if (zdev->zbus->bus) 952 zpci_bus_remove_device(zdev, false); 953 954 if (zdev->dma_table) 955 zpci_dma_exit_device(zdev); 956 if (zdev_enabled(zdev)) 957 zpci_disable_device(zdev); 958 959 switch (zdev->state) { 960 case ZPCI_FN_STATE_CONFIGURED: 961 ret = sclp_pci_deconfigure(zdev->fid); 962 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); 963 fallthrough; 964 case ZPCI_FN_STATE_STANDBY: 965 if (zdev->has_hp_slot) 966 zpci_exit_slot(zdev); 967 spin_lock(&zpci_list_lock); 968 list_del(&zdev->entry); 969 spin_unlock(&zpci_list_lock); 970 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 971 fallthrough; 972 case ZPCI_FN_STATE_RESERVED: 973 if (zdev->has_resources) 974 zpci_cleanup_bus_resources(zdev); 975 zpci_bus_device_unregister(zdev); 976 zpci_destroy_iommu(zdev); 977 fallthrough; 978 default: 979 break; 980 } 981 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 982 kfree(zdev); 983 } 984 985 int zpci_report_error(struct pci_dev *pdev, 986 struct zpci_report_error_header *report) 987 { 988 struct zpci_dev *zdev = to_zpci(pdev); 989 990 return sclp_pci_report(report, zdev->fh, zdev->fid); 991 } 992 EXPORT_SYMBOL(zpci_report_error); 993 994 /** 995 * zpci_clear_error_state() - Clears the zPCI error state of the device 996 * @zdev: The zdev for which the zPCI error state should be reset 997 * 998 * Clear the zPCI error state of the device. If clearing the zPCI error state 999 * fails the device is left in the error state. In this case it may make sense 1000 * to call zpci_io_perm_failure() on the associated pdev if it exists. 1001 * 1002 * Returns: 0 on success, -EIO otherwise 1003 */ 1004 int zpci_clear_error_state(struct zpci_dev *zdev) 1005 { 1006 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 1007 struct zpci_fib fib = {0}; 1008 u8 status; 1009 int cc; 1010 1011 cc = zpci_mod_fc(req, &fib, &status); 1012 if (cc) { 1013 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1014 return -EIO; 1015 } 1016 1017 return 0; 1018 } 1019 1020 /** 1021 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 1022 * @zdev: The zdev for which to unblock load/store access 1023 * 1024 * Re-enables load/store access for a PCI function in the error state while 1025 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 1026 * if error recovery is possible while catching any rogue DMA access from the 1027 * device. 1028 * 1029 * Returns: 0 on success, -EIO otherwise 1030 */ 1031 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1032 { 1033 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1034 struct zpci_fib fib = {0}; 1035 u8 status; 1036 int cc; 1037 1038 cc = zpci_mod_fc(req, &fib, &status); 1039 if (cc) { 1040 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1041 return -EIO; 1042 } 1043 1044 return 0; 1045 } 1046 1047 static int zpci_mem_init(void) 1048 { 1049 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1050 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1051 1052 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1053 __alignof__(struct zpci_fmb), 0, NULL); 1054 if (!zdev_fmb_cache) 1055 goto error_fmb; 1056 1057 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1058 sizeof(*zpci_iomap_start), GFP_KERNEL); 1059 if (!zpci_iomap_start) 1060 goto error_iomap; 1061 1062 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1063 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1064 if (!zpci_iomap_bitmap) 1065 goto error_iomap_bitmap; 1066 1067 if (static_branch_likely(&have_mio)) 1068 clp_setup_writeback_mio(); 1069 1070 return 0; 1071 error_iomap_bitmap: 1072 kfree(zpci_iomap_start); 1073 error_iomap: 1074 kmem_cache_destroy(zdev_fmb_cache); 1075 error_fmb: 1076 return -ENOMEM; 1077 } 1078 1079 static void zpci_mem_exit(void) 1080 { 1081 kfree(zpci_iomap_bitmap); 1082 kfree(zpci_iomap_start); 1083 kmem_cache_destroy(zdev_fmb_cache); 1084 } 1085 1086 static unsigned int s390_pci_probe __initdata = 1; 1087 unsigned int s390_pci_force_floating __initdata; 1088 static unsigned int s390_pci_initialized; 1089 1090 char * __init pcibios_setup(char *str) 1091 { 1092 if (!strcmp(str, "off")) { 1093 s390_pci_probe = 0; 1094 return NULL; 1095 } 1096 if (!strcmp(str, "nomio")) { 1097 S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1098 return NULL; 1099 } 1100 if (!strcmp(str, "force_floating")) { 1101 s390_pci_force_floating = 1; 1102 return NULL; 1103 } 1104 if (!strcmp(str, "norid")) { 1105 s390_pci_no_rid = 1; 1106 return NULL; 1107 } 1108 return str; 1109 } 1110 1111 bool zpci_is_enabled(void) 1112 { 1113 return s390_pci_initialized; 1114 } 1115 1116 static int __init pci_base_init(void) 1117 { 1118 int rc; 1119 1120 if (!s390_pci_probe) 1121 return 0; 1122 1123 if (!test_facility(69) || !test_facility(71)) { 1124 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1125 return 0; 1126 } 1127 1128 if (MACHINE_HAS_PCI_MIO) { 1129 static_branch_enable(&have_mio); 1130 ctl_set_bit(2, 5); 1131 } 1132 1133 rc = zpci_debug_init(); 1134 if (rc) 1135 goto out; 1136 1137 rc = zpci_mem_init(); 1138 if (rc) 1139 goto out_mem; 1140 1141 rc = zpci_irq_init(); 1142 if (rc) 1143 goto out_irq; 1144 1145 rc = zpci_dma_init(); 1146 if (rc) 1147 goto out_dma; 1148 1149 rc = clp_scan_pci_devices(); 1150 if (rc) 1151 goto out_find; 1152 zpci_bus_scan_busses(); 1153 1154 s390_pci_initialized = 1; 1155 return 0; 1156 1157 out_find: 1158 zpci_dma_exit(); 1159 out_dma: 1160 zpci_irq_exit(); 1161 out_irq: 1162 zpci_mem_exit(); 1163 out_mem: 1164 zpci_debug_exit(); 1165 out: 1166 return rc; 1167 } 1168 subsys_initcall_sync(pci_base_init); 1169