xref: /openbmc/linux/arch/s390/pci/pci.c (revision d159037a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  *
8  * The System z PCI code is a rewrite from a prototype by
9  * the following people (Kudoz!):
10  *   Alexander Schmidt
11  *   Christoph Raisch
12  *   Hannes Hering
13  *   Hoang-Nam Nguyen
14  *   Jan-Bernd Themann
15  *   Stefan Roscher
16  *   Thomas Klein
17  */
18 
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 
32 #include <asm/isc.h>
33 #include <asm/airq.h>
34 #include <asm/facility.h>
35 #include <asm/pci_insn.h>
36 #include <asm/pci_clp.h>
37 #include <asm/pci_dma.h>
38 
39 #include "pci_bus.h"
40 #include "pci_iov.h"
41 
42 /* list of all detected zpci devices */
43 static LIST_HEAD(zpci_list);
44 static DEFINE_SPINLOCK(zpci_list_lock);
45 
46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
47 static DEFINE_SPINLOCK(zpci_domain_lock);
48 
49 #define ZPCI_IOMAP_ENTRIES						\
50 	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
51 	    ZPCI_IOMAP_MAX_ENTRIES)
52 
53 unsigned int s390_pci_no_rid;
54 
55 static DEFINE_SPINLOCK(zpci_iomap_lock);
56 static unsigned long *zpci_iomap_bitmap;
57 struct zpci_iomap_entry *zpci_iomap_start;
58 EXPORT_SYMBOL_GPL(zpci_iomap_start);
59 
60 DEFINE_STATIC_KEY_FALSE(have_mio);
61 
62 static struct kmem_cache *zdev_fmb_cache;
63 
64 struct zpci_dev *get_zdev_by_fid(u32 fid)
65 {
66 	struct zpci_dev *tmp, *zdev = NULL;
67 
68 	spin_lock(&zpci_list_lock);
69 	list_for_each_entry(tmp, &zpci_list, entry) {
70 		if (tmp->fid == fid) {
71 			zdev = tmp;
72 			break;
73 		}
74 	}
75 	spin_unlock(&zpci_list_lock);
76 	return zdev;
77 }
78 
79 void zpci_remove_reserved_devices(void)
80 {
81 	struct zpci_dev *tmp, *zdev;
82 	enum zpci_state state;
83 	LIST_HEAD(remove);
84 
85 	spin_lock(&zpci_list_lock);
86 	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
87 		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
88 		    !clp_get_state(zdev->fid, &state) &&
89 		    state == ZPCI_FN_STATE_RESERVED)
90 			list_move_tail(&zdev->entry, &remove);
91 	}
92 	spin_unlock(&zpci_list_lock);
93 
94 	list_for_each_entry_safe(zdev, tmp, &remove, entry)
95 		zpci_device_reserved(zdev);
96 }
97 
98 int pci_domain_nr(struct pci_bus *bus)
99 {
100 	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
101 }
102 EXPORT_SYMBOL_GPL(pci_domain_nr);
103 
104 int pci_proc_domain(struct pci_bus *bus)
105 {
106 	return pci_domain_nr(bus);
107 }
108 EXPORT_SYMBOL_GPL(pci_proc_domain);
109 
110 /* Modify PCI: Register I/O address translation parameters */
111 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
112 		       u64 base, u64 limit, u64 iota)
113 {
114 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
115 	struct zpci_fib fib = {0};
116 	u8 cc, status;
117 
118 	WARN_ON_ONCE(iota & 0x3fff);
119 	fib.pba = base;
120 	fib.pal = limit;
121 	fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
122 	cc = zpci_mod_fc(req, &fib, &status);
123 	if (cc)
124 		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
125 	return cc;
126 }
127 
128 /* Modify PCI: Unregister I/O address translation parameters */
129 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
130 {
131 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
132 	struct zpci_fib fib = {0};
133 	u8 cc, status;
134 
135 	cc = zpci_mod_fc(req, &fib, &status);
136 	if (cc)
137 		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
138 	return cc;
139 }
140 
141 /* Modify PCI: Set PCI function measurement parameters */
142 int zpci_fmb_enable_device(struct zpci_dev *zdev)
143 {
144 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
145 	struct zpci_fib fib = {0};
146 	u8 cc, status;
147 
148 	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
149 		return -EINVAL;
150 
151 	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
152 	if (!zdev->fmb)
153 		return -ENOMEM;
154 	WARN_ON((u64) zdev->fmb & 0xf);
155 
156 	/* reset software counters */
157 	atomic64_set(&zdev->allocated_pages, 0);
158 	atomic64_set(&zdev->mapped_pages, 0);
159 	atomic64_set(&zdev->unmapped_pages, 0);
160 
161 	fib.fmb_addr = virt_to_phys(zdev->fmb);
162 	cc = zpci_mod_fc(req, &fib, &status);
163 	if (cc) {
164 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
165 		zdev->fmb = NULL;
166 	}
167 	return cc ? -EIO : 0;
168 }
169 
170 /* Modify PCI: Disable PCI function measurement */
171 int zpci_fmb_disable_device(struct zpci_dev *zdev)
172 {
173 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
174 	struct zpci_fib fib = {0};
175 	u8 cc, status;
176 
177 	if (!zdev->fmb)
178 		return -EINVAL;
179 
180 	/* Function measurement is disabled if fmb address is zero */
181 	cc = zpci_mod_fc(req, &fib, &status);
182 	if (cc == 3) /* Function already gone. */
183 		cc = 0;
184 
185 	if (!cc) {
186 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
187 		zdev->fmb = NULL;
188 	}
189 	return cc ? -EIO : 0;
190 }
191 
192 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
193 {
194 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
195 	u64 data;
196 	int rc;
197 
198 	rc = __zpci_load(&data, req, offset);
199 	if (!rc) {
200 		data = le64_to_cpu((__force __le64) data);
201 		data >>= (8 - len) * 8;
202 		*val = (u32) data;
203 	} else
204 		*val = 0xffffffff;
205 	return rc;
206 }
207 
208 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
209 {
210 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
211 	u64 data = val;
212 	int rc;
213 
214 	data <<= (8 - len) * 8;
215 	data = (__force u64) cpu_to_le64(data);
216 	rc = __zpci_store(data, req, offset);
217 	return rc;
218 }
219 
220 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
221 				       resource_size_t size,
222 				       resource_size_t align)
223 {
224 	return 0;
225 }
226 
227 /* combine single writes by using store-block insn */
228 void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
229 {
230        zpci_memcpy_toio(to, from, count);
231 }
232 
233 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot)
234 {
235 	unsigned long offset, vaddr;
236 	struct vm_struct *area;
237 	phys_addr_t last_addr;
238 
239 	last_addr = addr + size - 1;
240 	if (!size || last_addr < addr)
241 		return NULL;
242 
243 	if (!static_branch_unlikely(&have_mio))
244 		return (void __iomem *) addr;
245 
246 	offset = addr & ~PAGE_MASK;
247 	addr &= PAGE_MASK;
248 	size = PAGE_ALIGN(size + offset);
249 	area = get_vm_area(size, VM_IOREMAP);
250 	if (!area)
251 		return NULL;
252 
253 	vaddr = (unsigned long) area->addr;
254 	if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) {
255 		free_vm_area(area);
256 		return NULL;
257 	}
258 	return (void __iomem *) ((unsigned long) area->addr + offset);
259 }
260 
261 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot)
262 {
263 	return __ioremap(addr, size, __pgprot(prot));
264 }
265 EXPORT_SYMBOL(ioremap_prot);
266 
267 void __iomem *ioremap(phys_addr_t addr, size_t size)
268 {
269 	return __ioremap(addr, size, PAGE_KERNEL);
270 }
271 EXPORT_SYMBOL(ioremap);
272 
273 void __iomem *ioremap_wc(phys_addr_t addr, size_t size)
274 {
275 	return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL));
276 }
277 EXPORT_SYMBOL(ioremap_wc);
278 
279 void __iomem *ioremap_wt(phys_addr_t addr, size_t size)
280 {
281 	return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL));
282 }
283 EXPORT_SYMBOL(ioremap_wt);
284 
285 void iounmap(volatile void __iomem *addr)
286 {
287 	if (static_branch_likely(&have_mio))
288 		vunmap((__force void *) ((unsigned long) addr & PAGE_MASK));
289 }
290 EXPORT_SYMBOL(iounmap);
291 
292 /* Create a virtual mapping cookie for a PCI BAR */
293 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
294 					unsigned long offset, unsigned long max)
295 {
296 	struct zpci_dev *zdev =	to_zpci(pdev);
297 	int idx;
298 
299 	idx = zdev->bars[bar].map_idx;
300 	spin_lock(&zpci_iomap_lock);
301 	/* Detect overrun */
302 	WARN_ON(!++zpci_iomap_start[idx].count);
303 	zpci_iomap_start[idx].fh = zdev->fh;
304 	zpci_iomap_start[idx].bar = bar;
305 	spin_unlock(&zpci_iomap_lock);
306 
307 	return (void __iomem *) ZPCI_ADDR(idx) + offset;
308 }
309 
310 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
311 					 unsigned long offset,
312 					 unsigned long max)
313 {
314 	unsigned long barsize = pci_resource_len(pdev, bar);
315 	struct zpci_dev *zdev = to_zpci(pdev);
316 	void __iomem *iova;
317 
318 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
319 	return iova ? iova + offset : iova;
320 }
321 
322 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
323 			      unsigned long offset, unsigned long max)
324 {
325 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
326 		return NULL;
327 
328 	if (static_branch_likely(&have_mio))
329 		return pci_iomap_range_mio(pdev, bar, offset, max);
330 	else
331 		return pci_iomap_range_fh(pdev, bar, offset, max);
332 }
333 EXPORT_SYMBOL(pci_iomap_range);
334 
335 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
336 {
337 	return pci_iomap_range(dev, bar, 0, maxlen);
338 }
339 EXPORT_SYMBOL(pci_iomap);
340 
341 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
342 					    unsigned long offset, unsigned long max)
343 {
344 	unsigned long barsize = pci_resource_len(pdev, bar);
345 	struct zpci_dev *zdev = to_zpci(pdev);
346 	void __iomem *iova;
347 
348 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
349 	return iova ? iova + offset : iova;
350 }
351 
352 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
353 				 unsigned long offset, unsigned long max)
354 {
355 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
356 		return NULL;
357 
358 	if (static_branch_likely(&have_mio))
359 		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
360 	else
361 		return pci_iomap_range_fh(pdev, bar, offset, max);
362 }
363 EXPORT_SYMBOL(pci_iomap_wc_range);
364 
365 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
366 {
367 	return pci_iomap_wc_range(dev, bar, 0, maxlen);
368 }
369 EXPORT_SYMBOL(pci_iomap_wc);
370 
371 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
372 {
373 	unsigned int idx = ZPCI_IDX(addr);
374 
375 	spin_lock(&zpci_iomap_lock);
376 	/* Detect underrun */
377 	WARN_ON(!zpci_iomap_start[idx].count);
378 	if (!--zpci_iomap_start[idx].count) {
379 		zpci_iomap_start[idx].fh = 0;
380 		zpci_iomap_start[idx].bar = 0;
381 	}
382 	spin_unlock(&zpci_iomap_lock);
383 }
384 
385 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
386 {
387 	iounmap(addr);
388 }
389 
390 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
391 {
392 	if (static_branch_likely(&have_mio))
393 		pci_iounmap_mio(pdev, addr);
394 	else
395 		pci_iounmap_fh(pdev, addr);
396 }
397 EXPORT_SYMBOL(pci_iounmap);
398 
399 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
400 		    int size, u32 *val)
401 {
402 	struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn);
403 
404 	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
405 }
406 
407 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
408 		     int size, u32 val)
409 {
410 	struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn);
411 
412 	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
413 }
414 
415 static struct pci_ops pci_root_ops = {
416 	.read = pci_read,
417 	.write = pci_write,
418 };
419 
420 static void zpci_map_resources(struct pci_dev *pdev)
421 {
422 	struct zpci_dev *zdev = to_zpci(pdev);
423 	resource_size_t len;
424 	int i;
425 
426 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
427 		len = pci_resource_len(pdev, i);
428 		if (!len)
429 			continue;
430 
431 		if (zpci_use_mio(zdev))
432 			pdev->resource[i].start =
433 				(resource_size_t __force) zdev->bars[i].mio_wt;
434 		else
435 			pdev->resource[i].start = (resource_size_t __force)
436 				pci_iomap_range_fh(pdev, i, 0, 0);
437 		pdev->resource[i].end = pdev->resource[i].start + len - 1;
438 	}
439 
440 	zpci_iov_map_resources(pdev);
441 }
442 
443 static void zpci_unmap_resources(struct pci_dev *pdev)
444 {
445 	struct zpci_dev *zdev = to_zpci(pdev);
446 	resource_size_t len;
447 	int i;
448 
449 	if (zpci_use_mio(zdev))
450 		return;
451 
452 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
453 		len = pci_resource_len(pdev, i);
454 		if (!len)
455 			continue;
456 		pci_iounmap_fh(pdev, (void __iomem __force *)
457 			       pdev->resource[i].start);
458 	}
459 }
460 
461 static int zpci_alloc_iomap(struct zpci_dev *zdev)
462 {
463 	unsigned long entry;
464 
465 	spin_lock(&zpci_iomap_lock);
466 	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
467 	if (entry == ZPCI_IOMAP_ENTRIES) {
468 		spin_unlock(&zpci_iomap_lock);
469 		return -ENOSPC;
470 	}
471 	set_bit(entry, zpci_iomap_bitmap);
472 	spin_unlock(&zpci_iomap_lock);
473 	return entry;
474 }
475 
476 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
477 {
478 	spin_lock(&zpci_iomap_lock);
479 	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
480 	clear_bit(entry, zpci_iomap_bitmap);
481 	spin_unlock(&zpci_iomap_lock);
482 }
483 
484 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
485 				    unsigned long size, unsigned long flags)
486 {
487 	struct resource *r;
488 
489 	r = kzalloc(sizeof(*r), GFP_KERNEL);
490 	if (!r)
491 		return NULL;
492 
493 	r->start = start;
494 	r->end = r->start + size - 1;
495 	r->flags = flags;
496 	r->name = zdev->res_name;
497 
498 	if (request_resource(&iomem_resource, r)) {
499 		kfree(r);
500 		return NULL;
501 	}
502 	return r;
503 }
504 
505 int zpci_setup_bus_resources(struct zpci_dev *zdev,
506 			     struct list_head *resources)
507 {
508 	unsigned long addr, size, flags;
509 	struct resource *res;
510 	int i, entry;
511 
512 	snprintf(zdev->res_name, sizeof(zdev->res_name),
513 		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
514 
515 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
516 		if (!zdev->bars[i].size)
517 			continue;
518 		entry = zpci_alloc_iomap(zdev);
519 		if (entry < 0)
520 			return entry;
521 		zdev->bars[i].map_idx = entry;
522 
523 		/* only MMIO is supported */
524 		flags = IORESOURCE_MEM;
525 		if (zdev->bars[i].val & 8)
526 			flags |= IORESOURCE_PREFETCH;
527 		if (zdev->bars[i].val & 4)
528 			flags |= IORESOURCE_MEM_64;
529 
530 		if (zpci_use_mio(zdev))
531 			addr = (unsigned long) zdev->bars[i].mio_wt;
532 		else
533 			addr = ZPCI_ADDR(entry);
534 		size = 1UL << zdev->bars[i].size;
535 
536 		res = __alloc_res(zdev, addr, size, flags);
537 		if (!res) {
538 			zpci_free_iomap(zdev, entry);
539 			return -ENOMEM;
540 		}
541 		zdev->bars[i].res = res;
542 		pci_add_resource(resources, res);
543 	}
544 	zdev->has_resources = 1;
545 
546 	return 0;
547 }
548 
549 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
550 {
551 	int i;
552 
553 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
554 		if (!zdev->bars[i].size || !zdev->bars[i].res)
555 			continue;
556 
557 		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
558 		release_resource(zdev->bars[i].res);
559 		kfree(zdev->bars[i].res);
560 	}
561 	zdev->has_resources = 0;
562 }
563 
564 int pcibios_add_device(struct pci_dev *pdev)
565 {
566 	struct zpci_dev *zdev = to_zpci(pdev);
567 	struct resource *res;
568 	int i;
569 
570 	/* The pdev has a reference to the zdev via its bus */
571 	zpci_zdev_get(zdev);
572 	if (pdev->is_physfn)
573 		pdev->no_vf_scan = 1;
574 
575 	pdev->dev.groups = zpci_attr_groups;
576 	pdev->dev.dma_ops = &s390_pci_dma_ops;
577 	zpci_map_resources(pdev);
578 
579 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
580 		res = &pdev->resource[i];
581 		if (res->parent || !res->flags)
582 			continue;
583 		pci_claim_resource(pdev, i);
584 	}
585 
586 	return 0;
587 }
588 
589 void pcibios_release_device(struct pci_dev *pdev)
590 {
591 	struct zpci_dev *zdev = to_zpci(pdev);
592 
593 	zpci_unmap_resources(pdev);
594 	zpci_zdev_put(zdev);
595 }
596 
597 int pcibios_enable_device(struct pci_dev *pdev, int mask)
598 {
599 	struct zpci_dev *zdev = to_zpci(pdev);
600 
601 	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
602 	zpci_fmb_enable_device(zdev);
603 
604 	return pci_enable_resources(pdev, mask);
605 }
606 
607 void pcibios_disable_device(struct pci_dev *pdev)
608 {
609 	struct zpci_dev *zdev = to_zpci(pdev);
610 
611 	zpci_fmb_disable_device(zdev);
612 	zpci_debug_exit_device(zdev);
613 }
614 
615 static int __zpci_register_domain(int domain)
616 {
617 	spin_lock(&zpci_domain_lock);
618 	if (test_bit(domain, zpci_domain)) {
619 		spin_unlock(&zpci_domain_lock);
620 		pr_err("Domain %04x is already assigned\n", domain);
621 		return -EEXIST;
622 	}
623 	set_bit(domain, zpci_domain);
624 	spin_unlock(&zpci_domain_lock);
625 	return domain;
626 }
627 
628 static int __zpci_alloc_domain(void)
629 {
630 	int domain;
631 
632 	spin_lock(&zpci_domain_lock);
633 	/*
634 	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
635 	 * There is either a free domain or we have reached the maximum in
636 	 * which case we would have bailed earlier.
637 	 */
638 	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
639 	set_bit(domain, zpci_domain);
640 	spin_unlock(&zpci_domain_lock);
641 	return domain;
642 }
643 
644 int zpci_alloc_domain(int domain)
645 {
646 	if (zpci_unique_uid) {
647 		if (domain)
648 			return __zpci_register_domain(domain);
649 		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
650 		update_uid_checking(false);
651 	}
652 	return __zpci_alloc_domain();
653 }
654 
655 void zpci_free_domain(int domain)
656 {
657 	spin_lock(&zpci_domain_lock);
658 	clear_bit(domain, zpci_domain);
659 	spin_unlock(&zpci_domain_lock);
660 }
661 
662 
663 int zpci_enable_device(struct zpci_dev *zdev)
664 {
665 	u32 fh = zdev->fh;
666 	int rc = 0;
667 
668 	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
669 		rc = -EIO;
670 	else
671 		zdev->fh = fh;
672 	return rc;
673 }
674 
675 int zpci_disable_device(struct zpci_dev *zdev)
676 {
677 	u32 fh = zdev->fh;
678 	int cc, rc = 0;
679 
680 	cc = clp_disable_fh(zdev, &fh);
681 	if (!cc) {
682 		zdev->fh = fh;
683 	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
684 		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
685 			zdev->fid);
686 		/* Function is already disabled - update handle */
687 		rc = clp_refresh_fh(zdev->fid, &fh);
688 		if (!rc) {
689 			zdev->fh = fh;
690 			rc = -EINVAL;
691 		}
692 	} else {
693 		rc = -EIO;
694 	}
695 	return rc;
696 }
697 
698 /**
699  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
700  * @fid: Function ID of the device to be created
701  * @fh: Current Function Handle of the device to be created
702  * @state: Initial state after creation either Standby or Configured
703  *
704  * Creates a new zpci device and adds it to its, possibly newly created, zbus
705  * as well as zpci_list.
706  *
707  * Returns: the zdev on success or an error pointer otherwise
708  */
709 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
710 {
711 	struct zpci_dev *zdev;
712 	int rc;
713 
714 	zpci_dbg(3, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
715 	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
716 	if (!zdev)
717 		return ERR_PTR(-ENOMEM);
718 
719 	/* FID and Function Handle are the static/dynamic identifiers */
720 	zdev->fid = fid;
721 	zdev->fh = fh;
722 
723 	/* Query function properties and update zdev */
724 	rc = clp_query_pci_fn(zdev);
725 	if (rc)
726 		goto error;
727 	zdev->state =  state;
728 
729 	kref_init(&zdev->kref);
730 	mutex_init(&zdev->lock);
731 
732 	rc = zpci_init_iommu(zdev);
733 	if (rc)
734 		goto error;
735 
736 	rc = zpci_bus_device_register(zdev, &pci_root_ops);
737 	if (rc)
738 		goto error_destroy_iommu;
739 
740 	spin_lock(&zpci_list_lock);
741 	list_add_tail(&zdev->entry, &zpci_list);
742 	spin_unlock(&zpci_list_lock);
743 
744 	return zdev;
745 
746 error_destroy_iommu:
747 	zpci_destroy_iommu(zdev);
748 error:
749 	zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
750 	kfree(zdev);
751 	return ERR_PTR(rc);
752 }
753 
754 bool zpci_is_device_configured(struct zpci_dev *zdev)
755 {
756 	enum zpci_state state = zdev->state;
757 
758 	return state != ZPCI_FN_STATE_RESERVED &&
759 		state != ZPCI_FN_STATE_STANDBY;
760 }
761 
762 /**
763  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
764  * @zdev: The zpci_dev to be configured
765  * @fh: The general function handle supplied by the platform
766  *
767  * Given a device in the configuration state Configured, enables, scans and
768  * adds it to the common code PCI subsystem if possible. If the PCI device is
769  * parked because we can not yet create a PCI bus because we have not seen
770  * function 0, it is ignored but will be scanned once function 0 appears.
771  * If any failure occurs, the zpci_dev is left disabled.
772  *
773  * Return: 0 on success, or an error code otherwise
774  */
775 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
776 {
777 	int rc;
778 
779 	zdev->fh = fh;
780 	/* the PCI function will be scanned once function 0 appears */
781 	if (!zdev->zbus->bus)
782 		return 0;
783 
784 	/* For function 0 on a multi-function bus scan whole bus as we might
785 	 * have to pick up existing functions waiting for it to allow creating
786 	 * the PCI bus
787 	 */
788 	if (zdev->devfn == 0 && zdev->zbus->multifunction)
789 		rc = zpci_bus_scan_bus(zdev->zbus);
790 	else
791 		rc = zpci_bus_scan_device(zdev);
792 
793 	return rc;
794 }
795 
796 /**
797  * zpci_deconfigure_device() - Deconfigure a zpci_dev
798  * @zdev: The zpci_dev to configure
799  *
800  * Deconfigure a zPCI function that is currently configured and possibly known
801  * to the common code PCI subsystem.
802  * If any failure occurs the device is left as is.
803  *
804  * Return: 0 on success, or an error code otherwise
805  */
806 int zpci_deconfigure_device(struct zpci_dev *zdev)
807 {
808 	int rc;
809 
810 	if (zdev->zbus->bus)
811 		zpci_bus_remove_device(zdev, false);
812 
813 	if (zdev->dma_table) {
814 		rc = zpci_dma_exit_device(zdev);
815 		if (rc)
816 			return rc;
817 	}
818 	if (zdev_enabled(zdev)) {
819 		rc = zpci_disable_device(zdev);
820 		if (rc)
821 			return rc;
822 	}
823 
824 	rc = sclp_pci_deconfigure(zdev->fid);
825 	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
826 	if (rc)
827 		return rc;
828 	zdev->state = ZPCI_FN_STATE_STANDBY;
829 
830 	return 0;
831 }
832 
833 /**
834  * zpci_device_reserved() - Mark device as resverved
835  * @zdev: the zpci_dev that was reserved
836  *
837  * Handle the case that a given zPCI function was reserved by another system.
838  * After a call to this function the zpci_dev can not be found via
839  * get_zdev_by_fid() anymore but may still be accessible via existing
840  * references though it will not be functional anymore.
841  */
842 void zpci_device_reserved(struct zpci_dev *zdev)
843 {
844 	if (zdev->has_hp_slot)
845 		zpci_exit_slot(zdev);
846 	/*
847 	 * Remove device from zpci_list as it is going away. This also
848 	 * makes sure we ignore subsequent zPCI events for this device.
849 	 */
850 	spin_lock(&zpci_list_lock);
851 	list_del(&zdev->entry);
852 	spin_unlock(&zpci_list_lock);
853 	zdev->state = ZPCI_FN_STATE_RESERVED;
854 	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
855 	zpci_zdev_put(zdev);
856 }
857 
858 void zpci_release_device(struct kref *kref)
859 {
860 	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
861 	int ret;
862 
863 	if (zdev->zbus->bus)
864 		zpci_bus_remove_device(zdev, false);
865 
866 	if (zdev->dma_table)
867 		zpci_dma_exit_device(zdev);
868 	if (zdev_enabled(zdev))
869 		zpci_disable_device(zdev);
870 
871 	switch (zdev->state) {
872 	case ZPCI_FN_STATE_CONFIGURED:
873 		ret = sclp_pci_deconfigure(zdev->fid);
874 		zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
875 		fallthrough;
876 	case ZPCI_FN_STATE_STANDBY:
877 		if (zdev->has_hp_slot)
878 			zpci_exit_slot(zdev);
879 		spin_lock(&zpci_list_lock);
880 		list_del(&zdev->entry);
881 		spin_unlock(&zpci_list_lock);
882 		zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
883 		fallthrough;
884 	case ZPCI_FN_STATE_RESERVED:
885 		if (zdev->has_resources)
886 			zpci_cleanup_bus_resources(zdev);
887 		zpci_bus_device_unregister(zdev);
888 		zpci_destroy_iommu(zdev);
889 		fallthrough;
890 	default:
891 		break;
892 	}
893 	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
894 	kfree(zdev);
895 }
896 
897 int zpci_report_error(struct pci_dev *pdev,
898 		      struct zpci_report_error_header *report)
899 {
900 	struct zpci_dev *zdev = to_zpci(pdev);
901 
902 	return sclp_pci_report(report, zdev->fh, zdev->fid);
903 }
904 EXPORT_SYMBOL(zpci_report_error);
905 
906 static int zpci_mem_init(void)
907 {
908 	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
909 		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
910 
911 	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
912 					   __alignof__(struct zpci_fmb), 0, NULL);
913 	if (!zdev_fmb_cache)
914 		goto error_fmb;
915 
916 	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
917 				   sizeof(*zpci_iomap_start), GFP_KERNEL);
918 	if (!zpci_iomap_start)
919 		goto error_iomap;
920 
921 	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
922 				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
923 	if (!zpci_iomap_bitmap)
924 		goto error_iomap_bitmap;
925 
926 	if (static_branch_likely(&have_mio))
927 		clp_setup_writeback_mio();
928 
929 	return 0;
930 error_iomap_bitmap:
931 	kfree(zpci_iomap_start);
932 error_iomap:
933 	kmem_cache_destroy(zdev_fmb_cache);
934 error_fmb:
935 	return -ENOMEM;
936 }
937 
938 static void zpci_mem_exit(void)
939 {
940 	kfree(zpci_iomap_bitmap);
941 	kfree(zpci_iomap_start);
942 	kmem_cache_destroy(zdev_fmb_cache);
943 }
944 
945 static unsigned int s390_pci_probe __initdata = 1;
946 unsigned int s390_pci_force_floating __initdata;
947 static unsigned int s390_pci_initialized;
948 
949 char * __init pcibios_setup(char *str)
950 {
951 	if (!strcmp(str, "off")) {
952 		s390_pci_probe = 0;
953 		return NULL;
954 	}
955 	if (!strcmp(str, "nomio")) {
956 		S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
957 		return NULL;
958 	}
959 	if (!strcmp(str, "force_floating")) {
960 		s390_pci_force_floating = 1;
961 		return NULL;
962 	}
963 	if (!strcmp(str, "norid")) {
964 		s390_pci_no_rid = 1;
965 		return NULL;
966 	}
967 	return str;
968 }
969 
970 bool zpci_is_enabled(void)
971 {
972 	return s390_pci_initialized;
973 }
974 
975 static int __init pci_base_init(void)
976 {
977 	int rc;
978 
979 	if (!s390_pci_probe)
980 		return 0;
981 
982 	if (!test_facility(69) || !test_facility(71)) {
983 		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
984 		return 0;
985 	}
986 
987 	if (MACHINE_HAS_PCI_MIO) {
988 		static_branch_enable(&have_mio);
989 		ctl_set_bit(2, 5);
990 	}
991 
992 	rc = zpci_debug_init();
993 	if (rc)
994 		goto out;
995 
996 	rc = zpci_mem_init();
997 	if (rc)
998 		goto out_mem;
999 
1000 	rc = zpci_irq_init();
1001 	if (rc)
1002 		goto out_irq;
1003 
1004 	rc = zpci_dma_init();
1005 	if (rc)
1006 		goto out_dma;
1007 
1008 	rc = clp_scan_pci_devices();
1009 	if (rc)
1010 		goto out_find;
1011 	zpci_bus_scan_busses();
1012 
1013 	s390_pci_initialized = 1;
1014 	return 0;
1015 
1016 out_find:
1017 	zpci_dma_exit();
1018 out_dma:
1019 	zpci_irq_exit();
1020 out_irq:
1021 	zpci_mem_exit();
1022 out_mem:
1023 	zpci_debug_exit();
1024 out:
1025 	return rc;
1026 }
1027 subsys_initcall_sync(pci_base_init);
1028