xref: /openbmc/linux/arch/s390/pci/pci.c (revision 6fa24b41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  *
8  * The System z PCI code is a rewrite from a prototype by
9  * the following people (Kudoz!):
10  *   Alexander Schmidt
11  *   Christoph Raisch
12  *   Hannes Hering
13  *   Hoang-Nam Nguyen
14  *   Jan-Bernd Themann
15  *   Stefan Roscher
16  *   Thomas Klein
17  */
18 
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 
32 #include <asm/isc.h>
33 #include <asm/airq.h>
34 #include <asm/facility.h>
35 #include <asm/pci_insn.h>
36 #include <asm/pci_clp.h>
37 #include <asm/pci_dma.h>
38 
39 #include "pci_bus.h"
40 #include "pci_iov.h"
41 
42 /* list of all detected zpci devices */
43 static LIST_HEAD(zpci_list);
44 static DEFINE_SPINLOCK(zpci_list_lock);
45 
46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
47 static DEFINE_SPINLOCK(zpci_domain_lock);
48 
49 #define ZPCI_IOMAP_ENTRIES						\
50 	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
51 	    ZPCI_IOMAP_MAX_ENTRIES)
52 
53 unsigned int s390_pci_no_rid;
54 
55 static DEFINE_SPINLOCK(zpci_iomap_lock);
56 static unsigned long *zpci_iomap_bitmap;
57 struct zpci_iomap_entry *zpci_iomap_start;
58 EXPORT_SYMBOL_GPL(zpci_iomap_start);
59 
60 DEFINE_STATIC_KEY_FALSE(have_mio);
61 
62 static struct kmem_cache *zdev_fmb_cache;
63 
64 /* AEN structures that must be preserved over KVM module re-insertion */
65 union zpci_sic_iib *zpci_aipb;
66 EXPORT_SYMBOL_GPL(zpci_aipb);
67 struct airq_iv *zpci_aif_sbv;
68 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
69 
70 struct zpci_dev *get_zdev_by_fid(u32 fid)
71 {
72 	struct zpci_dev *tmp, *zdev = NULL;
73 
74 	spin_lock(&zpci_list_lock);
75 	list_for_each_entry(tmp, &zpci_list, entry) {
76 		if (tmp->fid == fid) {
77 			zdev = tmp;
78 			zpci_zdev_get(zdev);
79 			break;
80 		}
81 	}
82 	spin_unlock(&zpci_list_lock);
83 	return zdev;
84 }
85 
86 void zpci_remove_reserved_devices(void)
87 {
88 	struct zpci_dev *tmp, *zdev;
89 	enum zpci_state state;
90 	LIST_HEAD(remove);
91 
92 	spin_lock(&zpci_list_lock);
93 	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
94 		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
95 		    !clp_get_state(zdev->fid, &state) &&
96 		    state == ZPCI_FN_STATE_RESERVED)
97 			list_move_tail(&zdev->entry, &remove);
98 	}
99 	spin_unlock(&zpci_list_lock);
100 
101 	list_for_each_entry_safe(zdev, tmp, &remove, entry)
102 		zpci_device_reserved(zdev);
103 }
104 
105 int pci_domain_nr(struct pci_bus *bus)
106 {
107 	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
108 }
109 EXPORT_SYMBOL_GPL(pci_domain_nr);
110 
111 int pci_proc_domain(struct pci_bus *bus)
112 {
113 	return pci_domain_nr(bus);
114 }
115 EXPORT_SYMBOL_GPL(pci_proc_domain);
116 
117 /* Modify PCI: Register I/O address translation parameters */
118 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
119 		       u64 base, u64 limit, u64 iota, u8 *status)
120 {
121 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
122 	struct zpci_fib fib = {0};
123 	u8 cc;
124 
125 	WARN_ON_ONCE(iota & 0x3fff);
126 	fib.pba = base;
127 	fib.pal = limit;
128 	fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
129 	fib.gd = zdev->gisa;
130 	cc = zpci_mod_fc(req, &fib, status);
131 	if (cc)
132 		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
133 	return cc;
134 }
135 EXPORT_SYMBOL_GPL(zpci_register_ioat);
136 
137 /* Modify PCI: Unregister I/O address translation parameters */
138 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
139 {
140 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
141 	struct zpci_fib fib = {0};
142 	u8 cc, status;
143 
144 	fib.gd = zdev->gisa;
145 
146 	cc = zpci_mod_fc(req, &fib, &status);
147 	if (cc)
148 		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
149 	return cc;
150 }
151 
152 /* Modify PCI: Set PCI function measurement parameters */
153 int zpci_fmb_enable_device(struct zpci_dev *zdev)
154 {
155 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
156 	struct zpci_fib fib = {0};
157 	u8 cc, status;
158 
159 	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
160 		return -EINVAL;
161 
162 	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
163 	if (!zdev->fmb)
164 		return -ENOMEM;
165 	WARN_ON((u64) zdev->fmb & 0xf);
166 
167 	/* reset software counters */
168 	atomic64_set(&zdev->allocated_pages, 0);
169 	atomic64_set(&zdev->mapped_pages, 0);
170 	atomic64_set(&zdev->unmapped_pages, 0);
171 
172 	fib.fmb_addr = virt_to_phys(zdev->fmb);
173 	fib.gd = zdev->gisa;
174 	cc = zpci_mod_fc(req, &fib, &status);
175 	if (cc) {
176 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
177 		zdev->fmb = NULL;
178 	}
179 	return cc ? -EIO : 0;
180 }
181 
182 /* Modify PCI: Disable PCI function measurement */
183 int zpci_fmb_disable_device(struct zpci_dev *zdev)
184 {
185 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
186 	struct zpci_fib fib = {0};
187 	u8 cc, status;
188 
189 	if (!zdev->fmb)
190 		return -EINVAL;
191 
192 	fib.gd = zdev->gisa;
193 
194 	/* Function measurement is disabled if fmb address is zero */
195 	cc = zpci_mod_fc(req, &fib, &status);
196 	if (cc == 3) /* Function already gone. */
197 		cc = 0;
198 
199 	if (!cc) {
200 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
201 		zdev->fmb = NULL;
202 	}
203 	return cc ? -EIO : 0;
204 }
205 
206 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
207 {
208 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
209 	u64 data;
210 	int rc;
211 
212 	rc = __zpci_load(&data, req, offset);
213 	if (!rc) {
214 		data = le64_to_cpu((__force __le64) data);
215 		data >>= (8 - len) * 8;
216 		*val = (u32) data;
217 	} else
218 		*val = 0xffffffff;
219 	return rc;
220 }
221 
222 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
223 {
224 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
225 	u64 data = val;
226 	int rc;
227 
228 	data <<= (8 - len) * 8;
229 	data = (__force u64) cpu_to_le64(data);
230 	rc = __zpci_store(data, req, offset);
231 	return rc;
232 }
233 
234 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
235 				       resource_size_t size,
236 				       resource_size_t align)
237 {
238 	return 0;
239 }
240 
241 /* combine single writes by using store-block insn */
242 void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
243 {
244 	zpci_memcpy_toio(to, from, count * 8);
245 }
246 
247 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
248 			   unsigned long prot)
249 {
250 	/*
251 	 * When PCI MIO instructions are unavailable the "physical" address
252 	 * encodes a hint for accessing the PCI memory space it represents.
253 	 * Just pass it unchanged such that ioread/iowrite can decode it.
254 	 */
255 	if (!static_branch_unlikely(&have_mio))
256 		return (void __iomem *)phys_addr;
257 
258 	return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
259 }
260 EXPORT_SYMBOL(ioremap_prot);
261 
262 void iounmap(volatile void __iomem *addr)
263 {
264 	if (static_branch_likely(&have_mio))
265 		generic_iounmap(addr);
266 }
267 EXPORT_SYMBOL(iounmap);
268 
269 /* Create a virtual mapping cookie for a PCI BAR */
270 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
271 					unsigned long offset, unsigned long max)
272 {
273 	struct zpci_dev *zdev =	to_zpci(pdev);
274 	int idx;
275 
276 	idx = zdev->bars[bar].map_idx;
277 	spin_lock(&zpci_iomap_lock);
278 	/* Detect overrun */
279 	WARN_ON(!++zpci_iomap_start[idx].count);
280 	zpci_iomap_start[idx].fh = zdev->fh;
281 	zpci_iomap_start[idx].bar = bar;
282 	spin_unlock(&zpci_iomap_lock);
283 
284 	return (void __iomem *) ZPCI_ADDR(idx) + offset;
285 }
286 
287 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
288 					 unsigned long offset,
289 					 unsigned long max)
290 {
291 	unsigned long barsize = pci_resource_len(pdev, bar);
292 	struct zpci_dev *zdev = to_zpci(pdev);
293 	void __iomem *iova;
294 
295 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
296 	return iova ? iova + offset : iova;
297 }
298 
299 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
300 			      unsigned long offset, unsigned long max)
301 {
302 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
303 		return NULL;
304 
305 	if (static_branch_likely(&have_mio))
306 		return pci_iomap_range_mio(pdev, bar, offset, max);
307 	else
308 		return pci_iomap_range_fh(pdev, bar, offset, max);
309 }
310 EXPORT_SYMBOL(pci_iomap_range);
311 
312 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
313 {
314 	return pci_iomap_range(dev, bar, 0, maxlen);
315 }
316 EXPORT_SYMBOL(pci_iomap);
317 
318 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
319 					    unsigned long offset, unsigned long max)
320 {
321 	unsigned long barsize = pci_resource_len(pdev, bar);
322 	struct zpci_dev *zdev = to_zpci(pdev);
323 	void __iomem *iova;
324 
325 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
326 	return iova ? iova + offset : iova;
327 }
328 
329 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
330 				 unsigned long offset, unsigned long max)
331 {
332 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
333 		return NULL;
334 
335 	if (static_branch_likely(&have_mio))
336 		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
337 	else
338 		return pci_iomap_range_fh(pdev, bar, offset, max);
339 }
340 EXPORT_SYMBOL(pci_iomap_wc_range);
341 
342 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
343 {
344 	return pci_iomap_wc_range(dev, bar, 0, maxlen);
345 }
346 EXPORT_SYMBOL(pci_iomap_wc);
347 
348 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
349 {
350 	unsigned int idx = ZPCI_IDX(addr);
351 
352 	spin_lock(&zpci_iomap_lock);
353 	/* Detect underrun */
354 	WARN_ON(!zpci_iomap_start[idx].count);
355 	if (!--zpci_iomap_start[idx].count) {
356 		zpci_iomap_start[idx].fh = 0;
357 		zpci_iomap_start[idx].bar = 0;
358 	}
359 	spin_unlock(&zpci_iomap_lock);
360 }
361 
362 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
363 {
364 	iounmap(addr);
365 }
366 
367 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
368 {
369 	if (static_branch_likely(&have_mio))
370 		pci_iounmap_mio(pdev, addr);
371 	else
372 		pci_iounmap_fh(pdev, addr);
373 }
374 EXPORT_SYMBOL(pci_iounmap);
375 
376 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
377 		    int size, u32 *val)
378 {
379 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
380 
381 	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
382 }
383 
384 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
385 		     int size, u32 val)
386 {
387 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
388 
389 	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
390 }
391 
392 static struct pci_ops pci_root_ops = {
393 	.read = pci_read,
394 	.write = pci_write,
395 };
396 
397 static void zpci_map_resources(struct pci_dev *pdev)
398 {
399 	struct zpci_dev *zdev = to_zpci(pdev);
400 	resource_size_t len;
401 	int i;
402 
403 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
404 		len = pci_resource_len(pdev, i);
405 		if (!len)
406 			continue;
407 
408 		if (zpci_use_mio(zdev))
409 			pdev->resource[i].start =
410 				(resource_size_t __force) zdev->bars[i].mio_wt;
411 		else
412 			pdev->resource[i].start = (resource_size_t __force)
413 				pci_iomap_range_fh(pdev, i, 0, 0);
414 		pdev->resource[i].end = pdev->resource[i].start + len - 1;
415 	}
416 
417 	zpci_iov_map_resources(pdev);
418 }
419 
420 static void zpci_unmap_resources(struct pci_dev *pdev)
421 {
422 	struct zpci_dev *zdev = to_zpci(pdev);
423 	resource_size_t len;
424 	int i;
425 
426 	if (zpci_use_mio(zdev))
427 		return;
428 
429 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
430 		len = pci_resource_len(pdev, i);
431 		if (!len)
432 			continue;
433 		pci_iounmap_fh(pdev, (void __iomem __force *)
434 			       pdev->resource[i].start);
435 	}
436 }
437 
438 static int zpci_alloc_iomap(struct zpci_dev *zdev)
439 {
440 	unsigned long entry;
441 
442 	spin_lock(&zpci_iomap_lock);
443 	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
444 	if (entry == ZPCI_IOMAP_ENTRIES) {
445 		spin_unlock(&zpci_iomap_lock);
446 		return -ENOSPC;
447 	}
448 	set_bit(entry, zpci_iomap_bitmap);
449 	spin_unlock(&zpci_iomap_lock);
450 	return entry;
451 }
452 
453 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
454 {
455 	spin_lock(&zpci_iomap_lock);
456 	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
457 	clear_bit(entry, zpci_iomap_bitmap);
458 	spin_unlock(&zpci_iomap_lock);
459 }
460 
461 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
462 {
463 	int bar, idx;
464 
465 	spin_lock(&zpci_iomap_lock);
466 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
467 		if (!zdev->bars[bar].size)
468 			continue;
469 		idx = zdev->bars[bar].map_idx;
470 		if (!zpci_iomap_start[idx].count)
471 			continue;
472 		WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
473 	}
474 	spin_unlock(&zpci_iomap_lock);
475 }
476 
477 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
478 {
479 	if (!fh || zdev->fh == fh)
480 		return;
481 
482 	zdev->fh = fh;
483 	if (zpci_use_mio(zdev))
484 		return;
485 	if (zdev->has_resources && zdev_enabled(zdev))
486 		zpci_do_update_iomap_fh(zdev, fh);
487 }
488 
489 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
490 				    unsigned long size, unsigned long flags)
491 {
492 	struct resource *r;
493 
494 	r = kzalloc(sizeof(*r), GFP_KERNEL);
495 	if (!r)
496 		return NULL;
497 
498 	r->start = start;
499 	r->end = r->start + size - 1;
500 	r->flags = flags;
501 	r->name = zdev->res_name;
502 
503 	if (request_resource(&iomem_resource, r)) {
504 		kfree(r);
505 		return NULL;
506 	}
507 	return r;
508 }
509 
510 int zpci_setup_bus_resources(struct zpci_dev *zdev)
511 {
512 	unsigned long addr, size, flags;
513 	struct resource *res;
514 	int i, entry;
515 
516 	snprintf(zdev->res_name, sizeof(zdev->res_name),
517 		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
518 
519 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
520 		if (!zdev->bars[i].size)
521 			continue;
522 		entry = zpci_alloc_iomap(zdev);
523 		if (entry < 0)
524 			return entry;
525 		zdev->bars[i].map_idx = entry;
526 
527 		/* only MMIO is supported */
528 		flags = IORESOURCE_MEM;
529 		if (zdev->bars[i].val & 8)
530 			flags |= IORESOURCE_PREFETCH;
531 		if (zdev->bars[i].val & 4)
532 			flags |= IORESOURCE_MEM_64;
533 
534 		if (zpci_use_mio(zdev))
535 			addr = (unsigned long) zdev->bars[i].mio_wt;
536 		else
537 			addr = ZPCI_ADDR(entry);
538 		size = 1UL << zdev->bars[i].size;
539 
540 		res = __alloc_res(zdev, addr, size, flags);
541 		if (!res) {
542 			zpci_free_iomap(zdev, entry);
543 			return -ENOMEM;
544 		}
545 		zdev->bars[i].res = res;
546 	}
547 	zdev->has_resources = 1;
548 
549 	return 0;
550 }
551 
552 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
553 {
554 	struct resource *res;
555 	int i;
556 
557 	pci_lock_rescan_remove();
558 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
559 		res = zdev->bars[i].res;
560 		if (!res)
561 			continue;
562 
563 		release_resource(res);
564 		pci_bus_remove_resource(zdev->zbus->bus, res);
565 		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
566 		zdev->bars[i].res = NULL;
567 		kfree(res);
568 	}
569 	zdev->has_resources = 0;
570 	pci_unlock_rescan_remove();
571 }
572 
573 int pcibios_device_add(struct pci_dev *pdev)
574 {
575 	struct zpci_dev *zdev = to_zpci(pdev);
576 	struct resource *res;
577 	int i;
578 
579 	/* The pdev has a reference to the zdev via its bus */
580 	zpci_zdev_get(zdev);
581 	if (pdev->is_physfn)
582 		pdev->no_vf_scan = 1;
583 
584 	pdev->dev.groups = zpci_attr_groups;
585 	pdev->dev.dma_ops = &s390_pci_dma_ops;
586 	zpci_map_resources(pdev);
587 
588 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
589 		res = &pdev->resource[i];
590 		if (res->parent || !res->flags)
591 			continue;
592 		pci_claim_resource(pdev, i);
593 	}
594 
595 	return 0;
596 }
597 
598 void pcibios_release_device(struct pci_dev *pdev)
599 {
600 	struct zpci_dev *zdev = to_zpci(pdev);
601 
602 	zpci_unmap_resources(pdev);
603 	zpci_zdev_put(zdev);
604 }
605 
606 int pcibios_enable_device(struct pci_dev *pdev, int mask)
607 {
608 	struct zpci_dev *zdev = to_zpci(pdev);
609 
610 	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
611 	zpci_fmb_enable_device(zdev);
612 
613 	return pci_enable_resources(pdev, mask);
614 }
615 
616 void pcibios_disable_device(struct pci_dev *pdev)
617 {
618 	struct zpci_dev *zdev = to_zpci(pdev);
619 
620 	zpci_fmb_disable_device(zdev);
621 	zpci_debug_exit_device(zdev);
622 }
623 
624 static int __zpci_register_domain(int domain)
625 {
626 	spin_lock(&zpci_domain_lock);
627 	if (test_bit(domain, zpci_domain)) {
628 		spin_unlock(&zpci_domain_lock);
629 		pr_err("Domain %04x is already assigned\n", domain);
630 		return -EEXIST;
631 	}
632 	set_bit(domain, zpci_domain);
633 	spin_unlock(&zpci_domain_lock);
634 	return domain;
635 }
636 
637 static int __zpci_alloc_domain(void)
638 {
639 	int domain;
640 
641 	spin_lock(&zpci_domain_lock);
642 	/*
643 	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
644 	 * There is either a free domain or we have reached the maximum in
645 	 * which case we would have bailed earlier.
646 	 */
647 	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
648 	set_bit(domain, zpci_domain);
649 	spin_unlock(&zpci_domain_lock);
650 	return domain;
651 }
652 
653 int zpci_alloc_domain(int domain)
654 {
655 	if (zpci_unique_uid) {
656 		if (domain)
657 			return __zpci_register_domain(domain);
658 		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
659 		update_uid_checking(false);
660 	}
661 	return __zpci_alloc_domain();
662 }
663 
664 void zpci_free_domain(int domain)
665 {
666 	spin_lock(&zpci_domain_lock);
667 	clear_bit(domain, zpci_domain);
668 	spin_unlock(&zpci_domain_lock);
669 }
670 
671 
672 int zpci_enable_device(struct zpci_dev *zdev)
673 {
674 	u32 fh = zdev->fh;
675 	int rc = 0;
676 
677 	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
678 		rc = -EIO;
679 	else
680 		zpci_update_fh(zdev, fh);
681 	return rc;
682 }
683 EXPORT_SYMBOL_GPL(zpci_enable_device);
684 
685 int zpci_disable_device(struct zpci_dev *zdev)
686 {
687 	u32 fh = zdev->fh;
688 	int cc, rc = 0;
689 
690 	cc = clp_disable_fh(zdev, &fh);
691 	if (!cc) {
692 		zpci_update_fh(zdev, fh);
693 	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
694 		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
695 			zdev->fid);
696 		/* Function is already disabled - update handle */
697 		rc = clp_refresh_fh(zdev->fid, &fh);
698 		if (!rc) {
699 			zpci_update_fh(zdev, fh);
700 			rc = -EINVAL;
701 		}
702 	} else {
703 		rc = -EIO;
704 	}
705 	return rc;
706 }
707 EXPORT_SYMBOL_GPL(zpci_disable_device);
708 
709 /**
710  * zpci_hot_reset_device - perform a reset of the given zPCI function
711  * @zdev: the slot which should be reset
712  *
713  * Performs a low level reset of the zPCI function. The reset is low level in
714  * the sense that the zPCI function can be reset without detaching it from the
715  * common PCI subsystem. The reset may be performed while under control of
716  * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
717  * table is reinstated at the end of the reset.
718  *
719  * After the reset the functions internal state is reset to an initial state
720  * equivalent to its state during boot when first probing a driver.
721  * Consequently after reset the PCI function requires re-initialization via the
722  * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
723  * and enabling the function via e.g.pci_enablde_device_flags().The caller
724  * must guard against concurrent reset attempts.
725  *
726  * In most cases this function should not be called directly but through
727  * pci_reset_function() or pci_reset_bus() which handle the save/restore and
728  * locking.
729  *
730  * Return: 0 on success and an error value otherwise
731  */
732 int zpci_hot_reset_device(struct zpci_dev *zdev)
733 {
734 	u8 status;
735 	int rc;
736 
737 	zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
738 	if (zdev_enabled(zdev)) {
739 		/* Disables device access, DMAs and IRQs (reset state) */
740 		rc = zpci_disable_device(zdev);
741 		/*
742 		 * Due to a z/VM vs LPAR inconsistency in the error state the
743 		 * FH may indicate an enabled device but disable says the
744 		 * device is already disabled don't treat it as an error here.
745 		 */
746 		if (rc == -EINVAL)
747 			rc = 0;
748 		if (rc)
749 			return rc;
750 	}
751 
752 	rc = zpci_enable_device(zdev);
753 	if (rc)
754 		return rc;
755 
756 	if (zdev->dma_table)
757 		rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
758 					virt_to_phys(zdev->dma_table), &status);
759 	else
760 		rc = zpci_dma_init_device(zdev);
761 	if (rc) {
762 		zpci_disable_device(zdev);
763 		return rc;
764 	}
765 
766 	return 0;
767 }
768 
769 /**
770  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
771  * @fid: Function ID of the device to be created
772  * @fh: Current Function Handle of the device to be created
773  * @state: Initial state after creation either Standby or Configured
774  *
775  * Creates a new zpci device and adds it to its, possibly newly created, zbus
776  * as well as zpci_list.
777  *
778  * Returns: the zdev on success or an error pointer otherwise
779  */
780 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
781 {
782 	struct zpci_dev *zdev;
783 	int rc;
784 
785 	zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
786 	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
787 	if (!zdev)
788 		return ERR_PTR(-ENOMEM);
789 
790 	/* FID and Function Handle are the static/dynamic identifiers */
791 	zdev->fid = fid;
792 	zdev->fh = fh;
793 
794 	/* Query function properties and update zdev */
795 	rc = clp_query_pci_fn(zdev);
796 	if (rc)
797 		goto error;
798 	zdev->state =  state;
799 
800 	kref_init(&zdev->kref);
801 	mutex_init(&zdev->lock);
802 	mutex_init(&zdev->kzdev_lock);
803 
804 	rc = zpci_init_iommu(zdev);
805 	if (rc)
806 		goto error;
807 
808 	rc = zpci_bus_device_register(zdev, &pci_root_ops);
809 	if (rc)
810 		goto error_destroy_iommu;
811 
812 	spin_lock(&zpci_list_lock);
813 	list_add_tail(&zdev->entry, &zpci_list);
814 	spin_unlock(&zpci_list_lock);
815 
816 	return zdev;
817 
818 error_destroy_iommu:
819 	zpci_destroy_iommu(zdev);
820 error:
821 	zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
822 	kfree(zdev);
823 	return ERR_PTR(rc);
824 }
825 
826 bool zpci_is_device_configured(struct zpci_dev *zdev)
827 {
828 	enum zpci_state state = zdev->state;
829 
830 	return state != ZPCI_FN_STATE_RESERVED &&
831 		state != ZPCI_FN_STATE_STANDBY;
832 }
833 
834 /**
835  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
836  * @zdev: The zpci_dev to be configured
837  * @fh: The general function handle supplied by the platform
838  *
839  * Given a device in the configuration state Configured, enables, scans and
840  * adds it to the common code PCI subsystem if possible. If any failure occurs,
841  * the zpci_dev is left disabled.
842  *
843  * Return: 0 on success, or an error code otherwise
844  */
845 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
846 {
847 	zpci_update_fh(zdev, fh);
848 	return zpci_bus_scan_device(zdev);
849 }
850 
851 /**
852  * zpci_deconfigure_device() - Deconfigure a zpci_dev
853  * @zdev: The zpci_dev to configure
854  *
855  * Deconfigure a zPCI function that is currently configured and possibly known
856  * to the common code PCI subsystem.
857  * If any failure occurs the device is left as is.
858  *
859  * Return: 0 on success, or an error code otherwise
860  */
861 int zpci_deconfigure_device(struct zpci_dev *zdev)
862 {
863 	int rc;
864 
865 	if (zdev->zbus->bus)
866 		zpci_bus_remove_device(zdev, false);
867 
868 	if (zdev->dma_table) {
869 		rc = zpci_dma_exit_device(zdev);
870 		if (rc)
871 			return rc;
872 	}
873 	if (zdev_enabled(zdev)) {
874 		rc = zpci_disable_device(zdev);
875 		if (rc)
876 			return rc;
877 	}
878 
879 	rc = sclp_pci_deconfigure(zdev->fid);
880 	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
881 	if (rc)
882 		return rc;
883 	zdev->state = ZPCI_FN_STATE_STANDBY;
884 
885 	return 0;
886 }
887 
888 /**
889  * zpci_device_reserved() - Mark device as resverved
890  * @zdev: the zpci_dev that was reserved
891  *
892  * Handle the case that a given zPCI function was reserved by another system.
893  * After a call to this function the zpci_dev can not be found via
894  * get_zdev_by_fid() anymore but may still be accessible via existing
895  * references though it will not be functional anymore.
896  */
897 void zpci_device_reserved(struct zpci_dev *zdev)
898 {
899 	if (zdev->has_hp_slot)
900 		zpci_exit_slot(zdev);
901 	/*
902 	 * Remove device from zpci_list as it is going away. This also
903 	 * makes sure we ignore subsequent zPCI events for this device.
904 	 */
905 	spin_lock(&zpci_list_lock);
906 	list_del(&zdev->entry);
907 	spin_unlock(&zpci_list_lock);
908 	zdev->state = ZPCI_FN_STATE_RESERVED;
909 	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
910 	zpci_zdev_put(zdev);
911 }
912 
913 void zpci_release_device(struct kref *kref)
914 {
915 	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
916 	int ret;
917 
918 	if (zdev->zbus->bus)
919 		zpci_bus_remove_device(zdev, false);
920 
921 	if (zdev->dma_table)
922 		zpci_dma_exit_device(zdev);
923 	if (zdev_enabled(zdev))
924 		zpci_disable_device(zdev);
925 
926 	switch (zdev->state) {
927 	case ZPCI_FN_STATE_CONFIGURED:
928 		ret = sclp_pci_deconfigure(zdev->fid);
929 		zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
930 		fallthrough;
931 	case ZPCI_FN_STATE_STANDBY:
932 		if (zdev->has_hp_slot)
933 			zpci_exit_slot(zdev);
934 		spin_lock(&zpci_list_lock);
935 		list_del(&zdev->entry);
936 		spin_unlock(&zpci_list_lock);
937 		zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
938 		fallthrough;
939 	case ZPCI_FN_STATE_RESERVED:
940 		if (zdev->has_resources)
941 			zpci_cleanup_bus_resources(zdev);
942 		zpci_bus_device_unregister(zdev);
943 		zpci_destroy_iommu(zdev);
944 		fallthrough;
945 	default:
946 		break;
947 	}
948 	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
949 	kfree_rcu(zdev, rcu);
950 }
951 
952 int zpci_report_error(struct pci_dev *pdev,
953 		      struct zpci_report_error_header *report)
954 {
955 	struct zpci_dev *zdev = to_zpci(pdev);
956 
957 	return sclp_pci_report(report, zdev->fh, zdev->fid);
958 }
959 EXPORT_SYMBOL(zpci_report_error);
960 
961 /**
962  * zpci_clear_error_state() - Clears the zPCI error state of the device
963  * @zdev: The zdev for which the zPCI error state should be reset
964  *
965  * Clear the zPCI error state of the device. If clearing the zPCI error state
966  * fails the device is left in the error state. In this case it may make sense
967  * to call zpci_io_perm_failure() on the associated pdev if it exists.
968  *
969  * Returns: 0 on success, -EIO otherwise
970  */
971 int zpci_clear_error_state(struct zpci_dev *zdev)
972 {
973 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
974 	struct zpci_fib fib = {0};
975 	u8 status;
976 	int cc;
977 
978 	cc = zpci_mod_fc(req, &fib, &status);
979 	if (cc) {
980 		zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
981 		return -EIO;
982 	}
983 
984 	return 0;
985 }
986 
987 /**
988  * zpci_reset_load_store_blocked() - Re-enables L/S from error state
989  * @zdev: The zdev for which to unblock load/store access
990  *
991  * Re-enables load/store access for a PCI function in the error state while
992  * keeping DMA blocked. In this state drivers can poke MMIO space to determine
993  * if error recovery is possible while catching any rogue DMA access from the
994  * device.
995  *
996  * Returns: 0 on success, -EIO otherwise
997  */
998 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
999 {
1000 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1001 	struct zpci_fib fib = {0};
1002 	u8 status;
1003 	int cc;
1004 
1005 	cc = zpci_mod_fc(req, &fib, &status);
1006 	if (cc) {
1007 		zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1008 		return -EIO;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int zpci_mem_init(void)
1015 {
1016 	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1017 		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1018 
1019 	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1020 					   __alignof__(struct zpci_fmb), 0, NULL);
1021 	if (!zdev_fmb_cache)
1022 		goto error_fmb;
1023 
1024 	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1025 				   sizeof(*zpci_iomap_start), GFP_KERNEL);
1026 	if (!zpci_iomap_start)
1027 		goto error_iomap;
1028 
1029 	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1030 				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1031 	if (!zpci_iomap_bitmap)
1032 		goto error_iomap_bitmap;
1033 
1034 	if (static_branch_likely(&have_mio))
1035 		clp_setup_writeback_mio();
1036 
1037 	return 0;
1038 error_iomap_bitmap:
1039 	kfree(zpci_iomap_start);
1040 error_iomap:
1041 	kmem_cache_destroy(zdev_fmb_cache);
1042 error_fmb:
1043 	return -ENOMEM;
1044 }
1045 
1046 static void zpci_mem_exit(void)
1047 {
1048 	kfree(zpci_iomap_bitmap);
1049 	kfree(zpci_iomap_start);
1050 	kmem_cache_destroy(zdev_fmb_cache);
1051 }
1052 
1053 static unsigned int s390_pci_probe __initdata = 1;
1054 unsigned int s390_pci_force_floating __initdata;
1055 static unsigned int s390_pci_initialized;
1056 
1057 char * __init pcibios_setup(char *str)
1058 {
1059 	if (!strcmp(str, "off")) {
1060 		s390_pci_probe = 0;
1061 		return NULL;
1062 	}
1063 	if (!strcmp(str, "nomio")) {
1064 		S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1065 		return NULL;
1066 	}
1067 	if (!strcmp(str, "force_floating")) {
1068 		s390_pci_force_floating = 1;
1069 		return NULL;
1070 	}
1071 	if (!strcmp(str, "norid")) {
1072 		s390_pci_no_rid = 1;
1073 		return NULL;
1074 	}
1075 	return str;
1076 }
1077 
1078 bool zpci_is_enabled(void)
1079 {
1080 	return s390_pci_initialized;
1081 }
1082 
1083 static int __init pci_base_init(void)
1084 {
1085 	int rc;
1086 
1087 	if (!s390_pci_probe)
1088 		return 0;
1089 
1090 	if (!test_facility(69) || !test_facility(71)) {
1091 		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1092 		return 0;
1093 	}
1094 
1095 	if (MACHINE_HAS_PCI_MIO) {
1096 		static_branch_enable(&have_mio);
1097 		ctl_set_bit(2, 5);
1098 	}
1099 
1100 	rc = zpci_debug_init();
1101 	if (rc)
1102 		goto out;
1103 
1104 	rc = zpci_mem_init();
1105 	if (rc)
1106 		goto out_mem;
1107 
1108 	rc = zpci_irq_init();
1109 	if (rc)
1110 		goto out_irq;
1111 
1112 	rc = zpci_dma_init();
1113 	if (rc)
1114 		goto out_dma;
1115 
1116 	rc = clp_scan_pci_devices();
1117 	if (rc)
1118 		goto out_find;
1119 	zpci_bus_scan_busses();
1120 
1121 	s390_pci_initialized = 1;
1122 	return 0;
1123 
1124 out_find:
1125 	zpci_dma_exit();
1126 out_dma:
1127 	zpci_irq_exit();
1128 out_irq:
1129 	zpci_mem_exit();
1130 out_mem:
1131 	zpci_debug_exit();
1132 out:
1133 	return rc;
1134 }
1135 subsys_initcall_sync(pci_base_init);
1136