1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 32 #include <asm/isc.h> 33 #include <asm/airq.h> 34 #include <asm/facility.h> 35 #include <asm/pci_insn.h> 36 #include <asm/pci_clp.h> 37 #include <asm/pci_dma.h> 38 39 #include "pci_bus.h" 40 #include "pci_iov.h" 41 42 /* list of all detected zpci devices */ 43 static LIST_HEAD(zpci_list); 44 static DEFINE_SPINLOCK(zpci_list_lock); 45 46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 47 static DEFINE_SPINLOCK(zpci_domain_lock); 48 49 #define ZPCI_IOMAP_ENTRIES \ 50 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 51 ZPCI_IOMAP_MAX_ENTRIES) 52 53 unsigned int s390_pci_no_rid; 54 55 static DEFINE_SPINLOCK(zpci_iomap_lock); 56 static unsigned long *zpci_iomap_bitmap; 57 struct zpci_iomap_entry *zpci_iomap_start; 58 EXPORT_SYMBOL_GPL(zpci_iomap_start); 59 60 DEFINE_STATIC_KEY_FALSE(have_mio); 61 62 static struct kmem_cache *zdev_fmb_cache; 63 64 struct zpci_dev *get_zdev_by_fid(u32 fid) 65 { 66 struct zpci_dev *tmp, *zdev = NULL; 67 68 spin_lock(&zpci_list_lock); 69 list_for_each_entry(tmp, &zpci_list, entry) { 70 if (tmp->fid == fid) { 71 zdev = tmp; 72 break; 73 } 74 } 75 spin_unlock(&zpci_list_lock); 76 return zdev; 77 } 78 79 void zpci_remove_reserved_devices(void) 80 { 81 struct zpci_dev *tmp, *zdev; 82 enum zpci_state state; 83 LIST_HEAD(remove); 84 85 spin_lock(&zpci_list_lock); 86 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 87 if (zdev->state == ZPCI_FN_STATE_STANDBY && 88 !clp_get_state(zdev->fid, &state) && 89 state == ZPCI_FN_STATE_RESERVED) 90 list_move_tail(&zdev->entry, &remove); 91 } 92 spin_unlock(&zpci_list_lock); 93 94 list_for_each_entry_safe(zdev, tmp, &remove, entry) 95 zpci_device_reserved(zdev); 96 } 97 98 int pci_domain_nr(struct pci_bus *bus) 99 { 100 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 101 } 102 EXPORT_SYMBOL_GPL(pci_domain_nr); 103 104 int pci_proc_domain(struct pci_bus *bus) 105 { 106 return pci_domain_nr(bus); 107 } 108 EXPORT_SYMBOL_GPL(pci_proc_domain); 109 110 /* Modify PCI: Register I/O address translation parameters */ 111 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 112 u64 base, u64 limit, u64 iota) 113 { 114 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 115 struct zpci_fib fib = {0}; 116 u8 cc, status; 117 118 WARN_ON_ONCE(iota & 0x3fff); 119 fib.pba = base; 120 fib.pal = limit; 121 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 122 cc = zpci_mod_fc(req, &fib, &status); 123 if (cc) 124 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 125 return cc; 126 } 127 128 /* Modify PCI: Unregister I/O address translation parameters */ 129 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 130 { 131 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 132 struct zpci_fib fib = {0}; 133 u8 cc, status; 134 135 cc = zpci_mod_fc(req, &fib, &status); 136 if (cc) 137 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 138 return cc; 139 } 140 141 /* Modify PCI: Set PCI function measurement parameters */ 142 int zpci_fmb_enable_device(struct zpci_dev *zdev) 143 { 144 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 145 struct zpci_fib fib = {0}; 146 u8 cc, status; 147 148 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 149 return -EINVAL; 150 151 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 152 if (!zdev->fmb) 153 return -ENOMEM; 154 WARN_ON((u64) zdev->fmb & 0xf); 155 156 /* reset software counters */ 157 atomic64_set(&zdev->allocated_pages, 0); 158 atomic64_set(&zdev->mapped_pages, 0); 159 atomic64_set(&zdev->unmapped_pages, 0); 160 161 fib.fmb_addr = virt_to_phys(zdev->fmb); 162 cc = zpci_mod_fc(req, &fib, &status); 163 if (cc) { 164 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 165 zdev->fmb = NULL; 166 } 167 return cc ? -EIO : 0; 168 } 169 170 /* Modify PCI: Disable PCI function measurement */ 171 int zpci_fmb_disable_device(struct zpci_dev *zdev) 172 { 173 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 174 struct zpci_fib fib = {0}; 175 u8 cc, status; 176 177 if (!zdev->fmb) 178 return -EINVAL; 179 180 /* Function measurement is disabled if fmb address is zero */ 181 cc = zpci_mod_fc(req, &fib, &status); 182 if (cc == 3) /* Function already gone. */ 183 cc = 0; 184 185 if (!cc) { 186 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 187 zdev->fmb = NULL; 188 } 189 return cc ? -EIO : 0; 190 } 191 192 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 193 { 194 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 195 u64 data; 196 int rc; 197 198 rc = __zpci_load(&data, req, offset); 199 if (!rc) { 200 data = le64_to_cpu((__force __le64) data); 201 data >>= (8 - len) * 8; 202 *val = (u32) data; 203 } else 204 *val = 0xffffffff; 205 return rc; 206 } 207 208 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 209 { 210 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 211 u64 data = val; 212 int rc; 213 214 data <<= (8 - len) * 8; 215 data = (__force u64) cpu_to_le64(data); 216 rc = __zpci_store(data, req, offset); 217 return rc; 218 } 219 220 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 221 resource_size_t size, 222 resource_size_t align) 223 { 224 return 0; 225 } 226 227 /* combine single writes by using store-block insn */ 228 void __iowrite64_copy(void __iomem *to, const void *from, size_t count) 229 { 230 zpci_memcpy_toio(to, from, count); 231 } 232 233 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot) 234 { 235 unsigned long offset, vaddr; 236 struct vm_struct *area; 237 phys_addr_t last_addr; 238 239 last_addr = addr + size - 1; 240 if (!size || last_addr < addr) 241 return NULL; 242 243 if (!static_branch_unlikely(&have_mio)) 244 return (void __iomem *) addr; 245 246 offset = addr & ~PAGE_MASK; 247 addr &= PAGE_MASK; 248 size = PAGE_ALIGN(size + offset); 249 area = get_vm_area(size, VM_IOREMAP); 250 if (!area) 251 return NULL; 252 253 vaddr = (unsigned long) area->addr; 254 if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) { 255 free_vm_area(area); 256 return NULL; 257 } 258 return (void __iomem *) ((unsigned long) area->addr + offset); 259 } 260 261 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot) 262 { 263 return __ioremap(addr, size, __pgprot(prot)); 264 } 265 EXPORT_SYMBOL(ioremap_prot); 266 267 void __iomem *ioremap(phys_addr_t addr, size_t size) 268 { 269 return __ioremap(addr, size, PAGE_KERNEL); 270 } 271 EXPORT_SYMBOL(ioremap); 272 273 void __iomem *ioremap_wc(phys_addr_t addr, size_t size) 274 { 275 return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL)); 276 } 277 EXPORT_SYMBOL(ioremap_wc); 278 279 void __iomem *ioremap_wt(phys_addr_t addr, size_t size) 280 { 281 return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL)); 282 } 283 EXPORT_SYMBOL(ioremap_wt); 284 285 void iounmap(volatile void __iomem *addr) 286 { 287 if (static_branch_likely(&have_mio)) 288 vunmap((__force void *) ((unsigned long) addr & PAGE_MASK)); 289 } 290 EXPORT_SYMBOL(iounmap); 291 292 /* Create a virtual mapping cookie for a PCI BAR */ 293 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 294 unsigned long offset, unsigned long max) 295 { 296 struct zpci_dev *zdev = to_zpci(pdev); 297 int idx; 298 299 idx = zdev->bars[bar].map_idx; 300 spin_lock(&zpci_iomap_lock); 301 /* Detect overrun */ 302 WARN_ON(!++zpci_iomap_start[idx].count); 303 zpci_iomap_start[idx].fh = zdev->fh; 304 zpci_iomap_start[idx].bar = bar; 305 spin_unlock(&zpci_iomap_lock); 306 307 return (void __iomem *) ZPCI_ADDR(idx) + offset; 308 } 309 310 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 311 unsigned long offset, 312 unsigned long max) 313 { 314 unsigned long barsize = pci_resource_len(pdev, bar); 315 struct zpci_dev *zdev = to_zpci(pdev); 316 void __iomem *iova; 317 318 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 319 return iova ? iova + offset : iova; 320 } 321 322 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 323 unsigned long offset, unsigned long max) 324 { 325 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 326 return NULL; 327 328 if (static_branch_likely(&have_mio)) 329 return pci_iomap_range_mio(pdev, bar, offset, max); 330 else 331 return pci_iomap_range_fh(pdev, bar, offset, max); 332 } 333 EXPORT_SYMBOL(pci_iomap_range); 334 335 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 336 { 337 return pci_iomap_range(dev, bar, 0, maxlen); 338 } 339 EXPORT_SYMBOL(pci_iomap); 340 341 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 342 unsigned long offset, unsigned long max) 343 { 344 unsigned long barsize = pci_resource_len(pdev, bar); 345 struct zpci_dev *zdev = to_zpci(pdev); 346 void __iomem *iova; 347 348 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 349 return iova ? iova + offset : iova; 350 } 351 352 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 353 unsigned long offset, unsigned long max) 354 { 355 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 356 return NULL; 357 358 if (static_branch_likely(&have_mio)) 359 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 360 else 361 return pci_iomap_range_fh(pdev, bar, offset, max); 362 } 363 EXPORT_SYMBOL(pci_iomap_wc_range); 364 365 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 366 { 367 return pci_iomap_wc_range(dev, bar, 0, maxlen); 368 } 369 EXPORT_SYMBOL(pci_iomap_wc); 370 371 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 372 { 373 unsigned int idx = ZPCI_IDX(addr); 374 375 spin_lock(&zpci_iomap_lock); 376 /* Detect underrun */ 377 WARN_ON(!zpci_iomap_start[idx].count); 378 if (!--zpci_iomap_start[idx].count) { 379 zpci_iomap_start[idx].fh = 0; 380 zpci_iomap_start[idx].bar = 0; 381 } 382 spin_unlock(&zpci_iomap_lock); 383 } 384 385 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 386 { 387 iounmap(addr); 388 } 389 390 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 391 { 392 if (static_branch_likely(&have_mio)) 393 pci_iounmap_mio(pdev, addr); 394 else 395 pci_iounmap_fh(pdev, addr); 396 } 397 EXPORT_SYMBOL(pci_iounmap); 398 399 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 400 int size, u32 *val) 401 { 402 struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn); 403 404 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 405 } 406 407 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 408 int size, u32 val) 409 { 410 struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn); 411 412 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 413 } 414 415 static struct pci_ops pci_root_ops = { 416 .read = pci_read, 417 .write = pci_write, 418 }; 419 420 static void zpci_map_resources(struct pci_dev *pdev) 421 { 422 struct zpci_dev *zdev = to_zpci(pdev); 423 resource_size_t len; 424 int i; 425 426 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 427 len = pci_resource_len(pdev, i); 428 if (!len) 429 continue; 430 431 if (zpci_use_mio(zdev)) 432 pdev->resource[i].start = 433 (resource_size_t __force) zdev->bars[i].mio_wt; 434 else 435 pdev->resource[i].start = (resource_size_t __force) 436 pci_iomap_range_fh(pdev, i, 0, 0); 437 pdev->resource[i].end = pdev->resource[i].start + len - 1; 438 } 439 440 zpci_iov_map_resources(pdev); 441 } 442 443 static void zpci_unmap_resources(struct pci_dev *pdev) 444 { 445 struct zpci_dev *zdev = to_zpci(pdev); 446 resource_size_t len; 447 int i; 448 449 if (zpci_use_mio(zdev)) 450 return; 451 452 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 453 len = pci_resource_len(pdev, i); 454 if (!len) 455 continue; 456 pci_iounmap_fh(pdev, (void __iomem __force *) 457 pdev->resource[i].start); 458 } 459 } 460 461 static int zpci_alloc_iomap(struct zpci_dev *zdev) 462 { 463 unsigned long entry; 464 465 spin_lock(&zpci_iomap_lock); 466 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 467 if (entry == ZPCI_IOMAP_ENTRIES) { 468 spin_unlock(&zpci_iomap_lock); 469 return -ENOSPC; 470 } 471 set_bit(entry, zpci_iomap_bitmap); 472 spin_unlock(&zpci_iomap_lock); 473 return entry; 474 } 475 476 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 477 { 478 spin_lock(&zpci_iomap_lock); 479 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 480 clear_bit(entry, zpci_iomap_bitmap); 481 spin_unlock(&zpci_iomap_lock); 482 } 483 484 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 485 { 486 int bar, idx; 487 488 spin_lock(&zpci_iomap_lock); 489 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 490 if (!zdev->bars[bar].size) 491 continue; 492 idx = zdev->bars[bar].map_idx; 493 if (!zpci_iomap_start[idx].count) 494 continue; 495 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 496 } 497 spin_unlock(&zpci_iomap_lock); 498 } 499 500 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 501 { 502 if (!fh || zdev->fh == fh) 503 return; 504 505 zdev->fh = fh; 506 if (zpci_use_mio(zdev)) 507 return; 508 if (zdev->has_resources && zdev_enabled(zdev)) 509 zpci_do_update_iomap_fh(zdev, fh); 510 } 511 512 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 513 unsigned long size, unsigned long flags) 514 { 515 struct resource *r; 516 517 r = kzalloc(sizeof(*r), GFP_KERNEL); 518 if (!r) 519 return NULL; 520 521 r->start = start; 522 r->end = r->start + size - 1; 523 r->flags = flags; 524 r->name = zdev->res_name; 525 526 if (request_resource(&iomem_resource, r)) { 527 kfree(r); 528 return NULL; 529 } 530 return r; 531 } 532 533 int zpci_setup_bus_resources(struct zpci_dev *zdev, 534 struct list_head *resources) 535 { 536 unsigned long addr, size, flags; 537 struct resource *res; 538 int i, entry; 539 540 snprintf(zdev->res_name, sizeof(zdev->res_name), 541 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 542 543 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 544 if (!zdev->bars[i].size) 545 continue; 546 entry = zpci_alloc_iomap(zdev); 547 if (entry < 0) 548 return entry; 549 zdev->bars[i].map_idx = entry; 550 551 /* only MMIO is supported */ 552 flags = IORESOURCE_MEM; 553 if (zdev->bars[i].val & 8) 554 flags |= IORESOURCE_PREFETCH; 555 if (zdev->bars[i].val & 4) 556 flags |= IORESOURCE_MEM_64; 557 558 if (zpci_use_mio(zdev)) 559 addr = (unsigned long) zdev->bars[i].mio_wt; 560 else 561 addr = ZPCI_ADDR(entry); 562 size = 1UL << zdev->bars[i].size; 563 564 res = __alloc_res(zdev, addr, size, flags); 565 if (!res) { 566 zpci_free_iomap(zdev, entry); 567 return -ENOMEM; 568 } 569 zdev->bars[i].res = res; 570 pci_add_resource(resources, res); 571 } 572 zdev->has_resources = 1; 573 574 return 0; 575 } 576 577 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 578 { 579 int i; 580 581 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 582 if (!zdev->bars[i].size || !zdev->bars[i].res) 583 continue; 584 585 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 586 release_resource(zdev->bars[i].res); 587 kfree(zdev->bars[i].res); 588 } 589 zdev->has_resources = 0; 590 } 591 592 int pcibios_device_add(struct pci_dev *pdev) 593 { 594 struct zpci_dev *zdev = to_zpci(pdev); 595 struct resource *res; 596 int i; 597 598 /* The pdev has a reference to the zdev via its bus */ 599 zpci_zdev_get(zdev); 600 if (pdev->is_physfn) 601 pdev->no_vf_scan = 1; 602 603 pdev->dev.groups = zpci_attr_groups; 604 pdev->dev.dma_ops = &s390_pci_dma_ops; 605 zpci_map_resources(pdev); 606 607 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 608 res = &pdev->resource[i]; 609 if (res->parent || !res->flags) 610 continue; 611 pci_claim_resource(pdev, i); 612 } 613 614 return 0; 615 } 616 617 void pcibios_release_device(struct pci_dev *pdev) 618 { 619 struct zpci_dev *zdev = to_zpci(pdev); 620 621 zpci_unmap_resources(pdev); 622 zpci_zdev_put(zdev); 623 } 624 625 int pcibios_enable_device(struct pci_dev *pdev, int mask) 626 { 627 struct zpci_dev *zdev = to_zpci(pdev); 628 629 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 630 zpci_fmb_enable_device(zdev); 631 632 return pci_enable_resources(pdev, mask); 633 } 634 635 void pcibios_disable_device(struct pci_dev *pdev) 636 { 637 struct zpci_dev *zdev = to_zpci(pdev); 638 639 zpci_fmb_disable_device(zdev); 640 zpci_debug_exit_device(zdev); 641 } 642 643 static int __zpci_register_domain(int domain) 644 { 645 spin_lock(&zpci_domain_lock); 646 if (test_bit(domain, zpci_domain)) { 647 spin_unlock(&zpci_domain_lock); 648 pr_err("Domain %04x is already assigned\n", domain); 649 return -EEXIST; 650 } 651 set_bit(domain, zpci_domain); 652 spin_unlock(&zpci_domain_lock); 653 return domain; 654 } 655 656 static int __zpci_alloc_domain(void) 657 { 658 int domain; 659 660 spin_lock(&zpci_domain_lock); 661 /* 662 * We can always auto allocate domains below ZPCI_NR_DEVICES. 663 * There is either a free domain or we have reached the maximum in 664 * which case we would have bailed earlier. 665 */ 666 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 667 set_bit(domain, zpci_domain); 668 spin_unlock(&zpci_domain_lock); 669 return domain; 670 } 671 672 int zpci_alloc_domain(int domain) 673 { 674 if (zpci_unique_uid) { 675 if (domain) 676 return __zpci_register_domain(domain); 677 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 678 update_uid_checking(false); 679 } 680 return __zpci_alloc_domain(); 681 } 682 683 void zpci_free_domain(int domain) 684 { 685 spin_lock(&zpci_domain_lock); 686 clear_bit(domain, zpci_domain); 687 spin_unlock(&zpci_domain_lock); 688 } 689 690 691 int zpci_enable_device(struct zpci_dev *zdev) 692 { 693 u32 fh = zdev->fh; 694 int rc = 0; 695 696 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 697 rc = -EIO; 698 else 699 zpci_update_fh(zdev, fh); 700 return rc; 701 } 702 703 int zpci_disable_device(struct zpci_dev *zdev) 704 { 705 u32 fh = zdev->fh; 706 int cc, rc = 0; 707 708 cc = clp_disable_fh(zdev, &fh); 709 if (!cc) { 710 zpci_update_fh(zdev, fh); 711 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 712 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 713 zdev->fid); 714 /* Function is already disabled - update handle */ 715 rc = clp_refresh_fh(zdev->fid, &fh); 716 if (!rc) { 717 zpci_update_fh(zdev, fh); 718 rc = -EINVAL; 719 } 720 } else { 721 rc = -EIO; 722 } 723 return rc; 724 } 725 726 /** 727 * zpci_hot_reset_device - perform a reset of the given zPCI function 728 * @zdev: the slot which should be reset 729 * 730 * Performs a low level reset of the zPCI function. The reset is low level in 731 * the sense that the zPCI function can be reset without detaching it from the 732 * common PCI subsystem. The reset may be performed while under control of 733 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 734 * table is reinstated at the end of the reset. 735 * 736 * After the reset the functions internal state is reset to an initial state 737 * equivalent to its state during boot when first probing a driver. 738 * Consequently after reset the PCI function requires re-initialization via the 739 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 740 * and enabling the function via e.g.pci_enablde_device_flags().The caller 741 * must guard against concurrent reset attempts. 742 * 743 * In most cases this function should not be called directly but through 744 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 745 * locking. 746 * 747 * Return: 0 on success and an error value otherwise 748 */ 749 int zpci_hot_reset_device(struct zpci_dev *zdev) 750 { 751 int rc; 752 753 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 754 if (zdev_enabled(zdev)) { 755 /* Disables device access, DMAs and IRQs (reset state) */ 756 rc = zpci_disable_device(zdev); 757 /* 758 * Due to a z/VM vs LPAR inconsistency in the error state the 759 * FH may indicate an enabled device but disable says the 760 * device is already disabled don't treat it as an error here. 761 */ 762 if (rc == -EINVAL) 763 rc = 0; 764 if (rc) 765 return rc; 766 } 767 768 rc = zpci_enable_device(zdev); 769 if (rc) 770 return rc; 771 772 if (zdev->dma_table) 773 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 774 virt_to_phys(zdev->dma_table)); 775 else 776 rc = zpci_dma_init_device(zdev); 777 if (rc) { 778 zpci_disable_device(zdev); 779 return rc; 780 } 781 782 return 0; 783 } 784 785 /** 786 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 787 * @fid: Function ID of the device to be created 788 * @fh: Current Function Handle of the device to be created 789 * @state: Initial state after creation either Standby or Configured 790 * 791 * Creates a new zpci device and adds it to its, possibly newly created, zbus 792 * as well as zpci_list. 793 * 794 * Returns: the zdev on success or an error pointer otherwise 795 */ 796 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 797 { 798 struct zpci_dev *zdev; 799 int rc; 800 801 zpci_dbg(3, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 802 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 803 if (!zdev) 804 return ERR_PTR(-ENOMEM); 805 806 /* FID and Function Handle are the static/dynamic identifiers */ 807 zdev->fid = fid; 808 zdev->fh = fh; 809 810 /* Query function properties and update zdev */ 811 rc = clp_query_pci_fn(zdev); 812 if (rc) 813 goto error; 814 zdev->state = state; 815 816 kref_init(&zdev->kref); 817 mutex_init(&zdev->lock); 818 819 rc = zpci_init_iommu(zdev); 820 if (rc) 821 goto error; 822 823 rc = zpci_bus_device_register(zdev, &pci_root_ops); 824 if (rc) 825 goto error_destroy_iommu; 826 827 spin_lock(&zpci_list_lock); 828 list_add_tail(&zdev->entry, &zpci_list); 829 spin_unlock(&zpci_list_lock); 830 831 return zdev; 832 833 error_destroy_iommu: 834 zpci_destroy_iommu(zdev); 835 error: 836 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 837 kfree(zdev); 838 return ERR_PTR(rc); 839 } 840 841 bool zpci_is_device_configured(struct zpci_dev *zdev) 842 { 843 enum zpci_state state = zdev->state; 844 845 return state != ZPCI_FN_STATE_RESERVED && 846 state != ZPCI_FN_STATE_STANDBY; 847 } 848 849 /** 850 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 851 * @zdev: The zpci_dev to be configured 852 * @fh: The general function handle supplied by the platform 853 * 854 * Given a device in the configuration state Configured, enables, scans and 855 * adds it to the common code PCI subsystem if possible. If the PCI device is 856 * parked because we can not yet create a PCI bus because we have not seen 857 * function 0, it is ignored but will be scanned once function 0 appears. 858 * If any failure occurs, the zpci_dev is left disabled. 859 * 860 * Return: 0 on success, or an error code otherwise 861 */ 862 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 863 { 864 int rc; 865 866 zpci_update_fh(zdev, fh); 867 /* the PCI function will be scanned once function 0 appears */ 868 if (!zdev->zbus->bus) 869 return 0; 870 871 /* For function 0 on a multi-function bus scan whole bus as we might 872 * have to pick up existing functions waiting for it to allow creating 873 * the PCI bus 874 */ 875 if (zdev->devfn == 0 && zdev->zbus->multifunction) 876 rc = zpci_bus_scan_bus(zdev->zbus); 877 else 878 rc = zpci_bus_scan_device(zdev); 879 880 return rc; 881 } 882 883 /** 884 * zpci_deconfigure_device() - Deconfigure a zpci_dev 885 * @zdev: The zpci_dev to configure 886 * 887 * Deconfigure a zPCI function that is currently configured and possibly known 888 * to the common code PCI subsystem. 889 * If any failure occurs the device is left as is. 890 * 891 * Return: 0 on success, or an error code otherwise 892 */ 893 int zpci_deconfigure_device(struct zpci_dev *zdev) 894 { 895 int rc; 896 897 if (zdev->zbus->bus) 898 zpci_bus_remove_device(zdev, false); 899 900 if (zdev->dma_table) { 901 rc = zpci_dma_exit_device(zdev); 902 if (rc) 903 return rc; 904 } 905 if (zdev_enabled(zdev)) { 906 rc = zpci_disable_device(zdev); 907 if (rc) 908 return rc; 909 } 910 911 rc = sclp_pci_deconfigure(zdev->fid); 912 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 913 if (rc) 914 return rc; 915 zdev->state = ZPCI_FN_STATE_STANDBY; 916 917 return 0; 918 } 919 920 /** 921 * zpci_device_reserved() - Mark device as resverved 922 * @zdev: the zpci_dev that was reserved 923 * 924 * Handle the case that a given zPCI function was reserved by another system. 925 * After a call to this function the zpci_dev can not be found via 926 * get_zdev_by_fid() anymore but may still be accessible via existing 927 * references though it will not be functional anymore. 928 */ 929 void zpci_device_reserved(struct zpci_dev *zdev) 930 { 931 if (zdev->has_hp_slot) 932 zpci_exit_slot(zdev); 933 /* 934 * Remove device from zpci_list as it is going away. This also 935 * makes sure we ignore subsequent zPCI events for this device. 936 */ 937 spin_lock(&zpci_list_lock); 938 list_del(&zdev->entry); 939 spin_unlock(&zpci_list_lock); 940 zdev->state = ZPCI_FN_STATE_RESERVED; 941 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 942 zpci_zdev_put(zdev); 943 } 944 945 void zpci_release_device(struct kref *kref) 946 { 947 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 948 int ret; 949 950 if (zdev->zbus->bus) 951 zpci_bus_remove_device(zdev, false); 952 953 if (zdev->dma_table) 954 zpci_dma_exit_device(zdev); 955 if (zdev_enabled(zdev)) 956 zpci_disable_device(zdev); 957 958 switch (zdev->state) { 959 case ZPCI_FN_STATE_CONFIGURED: 960 ret = sclp_pci_deconfigure(zdev->fid); 961 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); 962 fallthrough; 963 case ZPCI_FN_STATE_STANDBY: 964 if (zdev->has_hp_slot) 965 zpci_exit_slot(zdev); 966 spin_lock(&zpci_list_lock); 967 list_del(&zdev->entry); 968 spin_unlock(&zpci_list_lock); 969 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 970 fallthrough; 971 case ZPCI_FN_STATE_RESERVED: 972 if (zdev->has_resources) 973 zpci_cleanup_bus_resources(zdev); 974 zpci_bus_device_unregister(zdev); 975 zpci_destroy_iommu(zdev); 976 fallthrough; 977 default: 978 break; 979 } 980 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 981 kfree(zdev); 982 } 983 984 int zpci_report_error(struct pci_dev *pdev, 985 struct zpci_report_error_header *report) 986 { 987 struct zpci_dev *zdev = to_zpci(pdev); 988 989 return sclp_pci_report(report, zdev->fh, zdev->fid); 990 } 991 EXPORT_SYMBOL(zpci_report_error); 992 993 /** 994 * zpci_clear_error_state() - Clears the zPCI error state of the device 995 * @zdev: The zdev for which the zPCI error state should be reset 996 * 997 * Clear the zPCI error state of the device. If clearing the zPCI error state 998 * fails the device is left in the error state. In this case it may make sense 999 * to call zpci_io_perm_failure() on the associated pdev if it exists. 1000 * 1001 * Returns: 0 on success, -EIO otherwise 1002 */ 1003 int zpci_clear_error_state(struct zpci_dev *zdev) 1004 { 1005 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 1006 struct zpci_fib fib = {0}; 1007 u8 status; 1008 int cc; 1009 1010 cc = zpci_mod_fc(req, &fib, &status); 1011 if (cc) { 1012 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1013 return -EIO; 1014 } 1015 1016 return 0; 1017 } 1018 1019 /** 1020 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 1021 * @zdev: The zdev for which to unblock load/store access 1022 * 1023 * Re-enables load/store access for a PCI function in the error state while 1024 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 1025 * if error recovery is possible while catching any rogue DMA access from the 1026 * device. 1027 * 1028 * Returns: 0 on success, -EIO otherwise 1029 */ 1030 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1031 { 1032 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1033 struct zpci_fib fib = {0}; 1034 u8 status; 1035 int cc; 1036 1037 cc = zpci_mod_fc(req, &fib, &status); 1038 if (cc) { 1039 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1040 return -EIO; 1041 } 1042 1043 return 0; 1044 } 1045 1046 static int zpci_mem_init(void) 1047 { 1048 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1049 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1050 1051 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1052 __alignof__(struct zpci_fmb), 0, NULL); 1053 if (!zdev_fmb_cache) 1054 goto error_fmb; 1055 1056 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1057 sizeof(*zpci_iomap_start), GFP_KERNEL); 1058 if (!zpci_iomap_start) 1059 goto error_iomap; 1060 1061 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1062 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1063 if (!zpci_iomap_bitmap) 1064 goto error_iomap_bitmap; 1065 1066 if (static_branch_likely(&have_mio)) 1067 clp_setup_writeback_mio(); 1068 1069 return 0; 1070 error_iomap_bitmap: 1071 kfree(zpci_iomap_start); 1072 error_iomap: 1073 kmem_cache_destroy(zdev_fmb_cache); 1074 error_fmb: 1075 return -ENOMEM; 1076 } 1077 1078 static void zpci_mem_exit(void) 1079 { 1080 kfree(zpci_iomap_bitmap); 1081 kfree(zpci_iomap_start); 1082 kmem_cache_destroy(zdev_fmb_cache); 1083 } 1084 1085 static unsigned int s390_pci_probe __initdata = 1; 1086 unsigned int s390_pci_force_floating __initdata; 1087 static unsigned int s390_pci_initialized; 1088 1089 char * __init pcibios_setup(char *str) 1090 { 1091 if (!strcmp(str, "off")) { 1092 s390_pci_probe = 0; 1093 return NULL; 1094 } 1095 if (!strcmp(str, "nomio")) { 1096 S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1097 return NULL; 1098 } 1099 if (!strcmp(str, "force_floating")) { 1100 s390_pci_force_floating = 1; 1101 return NULL; 1102 } 1103 if (!strcmp(str, "norid")) { 1104 s390_pci_no_rid = 1; 1105 return NULL; 1106 } 1107 return str; 1108 } 1109 1110 bool zpci_is_enabled(void) 1111 { 1112 return s390_pci_initialized; 1113 } 1114 1115 static int __init pci_base_init(void) 1116 { 1117 int rc; 1118 1119 if (!s390_pci_probe) 1120 return 0; 1121 1122 if (!test_facility(69) || !test_facility(71)) { 1123 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1124 return 0; 1125 } 1126 1127 if (MACHINE_HAS_PCI_MIO) { 1128 static_branch_enable(&have_mio); 1129 ctl_set_bit(2, 5); 1130 } 1131 1132 rc = zpci_debug_init(); 1133 if (rc) 1134 goto out; 1135 1136 rc = zpci_mem_init(); 1137 if (rc) 1138 goto out_mem; 1139 1140 rc = zpci_irq_init(); 1141 if (rc) 1142 goto out_irq; 1143 1144 rc = zpci_dma_init(); 1145 if (rc) 1146 goto out_dma; 1147 1148 rc = clp_scan_pci_devices(); 1149 if (rc) 1150 goto out_find; 1151 zpci_bus_scan_busses(); 1152 1153 s390_pci_initialized = 1; 1154 return 0; 1155 1156 out_find: 1157 zpci_dma_exit(); 1158 out_dma: 1159 zpci_irq_exit(); 1160 out_irq: 1161 zpci_mem_exit(); 1162 out_mem: 1163 zpci_debug_exit(); 1164 out: 1165 return rc; 1166 } 1167 subsys_initcall_sync(pci_base_init); 1168