1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 32 #include <asm/isc.h> 33 #include <asm/airq.h> 34 #include <asm/facility.h> 35 #include <asm/pci_insn.h> 36 #include <asm/pci_clp.h> 37 #include <asm/pci_dma.h> 38 39 #include "pci_bus.h" 40 #include "pci_iov.h" 41 42 /* list of all detected zpci devices */ 43 static LIST_HEAD(zpci_list); 44 static DEFINE_SPINLOCK(zpci_list_lock); 45 46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 47 static DEFINE_SPINLOCK(zpci_domain_lock); 48 49 #define ZPCI_IOMAP_ENTRIES \ 50 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 51 ZPCI_IOMAP_MAX_ENTRIES) 52 53 unsigned int s390_pci_no_rid; 54 55 static DEFINE_SPINLOCK(zpci_iomap_lock); 56 static unsigned long *zpci_iomap_bitmap; 57 struct zpci_iomap_entry *zpci_iomap_start; 58 EXPORT_SYMBOL_GPL(zpci_iomap_start); 59 60 DEFINE_STATIC_KEY_FALSE(have_mio); 61 62 static struct kmem_cache *zdev_fmb_cache; 63 64 /* AEN structures that must be preserved over KVM module re-insertion */ 65 union zpci_sic_iib *zpci_aipb; 66 EXPORT_SYMBOL_GPL(zpci_aipb); 67 struct airq_iv *zpci_aif_sbv; 68 EXPORT_SYMBOL_GPL(zpci_aif_sbv); 69 70 struct zpci_dev *get_zdev_by_fid(u32 fid) 71 { 72 struct zpci_dev *tmp, *zdev = NULL; 73 74 spin_lock(&zpci_list_lock); 75 list_for_each_entry(tmp, &zpci_list, entry) { 76 if (tmp->fid == fid) { 77 zdev = tmp; 78 zpci_zdev_get(zdev); 79 break; 80 } 81 } 82 spin_unlock(&zpci_list_lock); 83 return zdev; 84 } 85 86 void zpci_remove_reserved_devices(void) 87 { 88 struct zpci_dev *tmp, *zdev; 89 enum zpci_state state; 90 LIST_HEAD(remove); 91 92 spin_lock(&zpci_list_lock); 93 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 94 if (zdev->state == ZPCI_FN_STATE_STANDBY && 95 !clp_get_state(zdev->fid, &state) && 96 state == ZPCI_FN_STATE_RESERVED) 97 list_move_tail(&zdev->entry, &remove); 98 } 99 spin_unlock(&zpci_list_lock); 100 101 list_for_each_entry_safe(zdev, tmp, &remove, entry) 102 zpci_device_reserved(zdev); 103 } 104 105 int pci_domain_nr(struct pci_bus *bus) 106 { 107 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 108 } 109 EXPORT_SYMBOL_GPL(pci_domain_nr); 110 111 int pci_proc_domain(struct pci_bus *bus) 112 { 113 return pci_domain_nr(bus); 114 } 115 EXPORT_SYMBOL_GPL(pci_proc_domain); 116 117 /* Modify PCI: Register I/O address translation parameters */ 118 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 119 u64 base, u64 limit, u64 iota, u8 *status) 120 { 121 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 122 struct zpci_fib fib = {0}; 123 u8 cc; 124 125 WARN_ON_ONCE(iota & 0x3fff); 126 fib.pba = base; 127 fib.pal = limit; 128 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 129 fib.gd = zdev->gisa; 130 cc = zpci_mod_fc(req, &fib, status); 131 if (cc) 132 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); 133 return cc; 134 } 135 EXPORT_SYMBOL_GPL(zpci_register_ioat); 136 137 /* Modify PCI: Unregister I/O address translation parameters */ 138 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 139 { 140 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 141 struct zpci_fib fib = {0}; 142 u8 cc, status; 143 144 fib.gd = zdev->gisa; 145 146 cc = zpci_mod_fc(req, &fib, &status); 147 if (cc) 148 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 149 return cc; 150 } 151 152 /* Modify PCI: Set PCI function measurement parameters */ 153 int zpci_fmb_enable_device(struct zpci_dev *zdev) 154 { 155 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 156 struct zpci_fib fib = {0}; 157 u8 cc, status; 158 159 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 160 return -EINVAL; 161 162 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 163 if (!zdev->fmb) 164 return -ENOMEM; 165 WARN_ON((u64) zdev->fmb & 0xf); 166 167 /* reset software counters */ 168 atomic64_set(&zdev->allocated_pages, 0); 169 atomic64_set(&zdev->mapped_pages, 0); 170 atomic64_set(&zdev->unmapped_pages, 0); 171 172 fib.fmb_addr = virt_to_phys(zdev->fmb); 173 fib.gd = zdev->gisa; 174 cc = zpci_mod_fc(req, &fib, &status); 175 if (cc) { 176 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 177 zdev->fmb = NULL; 178 } 179 return cc ? -EIO : 0; 180 } 181 182 /* Modify PCI: Disable PCI function measurement */ 183 int zpci_fmb_disable_device(struct zpci_dev *zdev) 184 { 185 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 186 struct zpci_fib fib = {0}; 187 u8 cc, status; 188 189 if (!zdev->fmb) 190 return -EINVAL; 191 192 fib.gd = zdev->gisa; 193 194 /* Function measurement is disabled if fmb address is zero */ 195 cc = zpci_mod_fc(req, &fib, &status); 196 if (cc == 3) /* Function already gone. */ 197 cc = 0; 198 199 if (!cc) { 200 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 201 zdev->fmb = NULL; 202 } 203 return cc ? -EIO : 0; 204 } 205 206 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 207 { 208 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 209 u64 data; 210 int rc; 211 212 rc = __zpci_load(&data, req, offset); 213 if (!rc) { 214 data = le64_to_cpu((__force __le64) data); 215 data >>= (8 - len) * 8; 216 *val = (u32) data; 217 } else 218 *val = 0xffffffff; 219 return rc; 220 } 221 222 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 223 { 224 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 225 u64 data = val; 226 int rc; 227 228 data <<= (8 - len) * 8; 229 data = (__force u64) cpu_to_le64(data); 230 rc = __zpci_store(data, req, offset); 231 return rc; 232 } 233 234 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 235 resource_size_t size, 236 resource_size_t align) 237 { 238 return 0; 239 } 240 241 /* combine single writes by using store-block insn */ 242 void __iowrite64_copy(void __iomem *to, const void *from, size_t count) 243 { 244 zpci_memcpy_toio(to, from, count); 245 } 246 247 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot) 248 { 249 unsigned long offset, vaddr; 250 struct vm_struct *area; 251 phys_addr_t last_addr; 252 253 last_addr = addr + size - 1; 254 if (!size || last_addr < addr) 255 return NULL; 256 257 if (!static_branch_unlikely(&have_mio)) 258 return (void __iomem *) addr; 259 260 offset = addr & ~PAGE_MASK; 261 addr &= PAGE_MASK; 262 size = PAGE_ALIGN(size + offset); 263 area = get_vm_area(size, VM_IOREMAP); 264 if (!area) 265 return NULL; 266 267 vaddr = (unsigned long) area->addr; 268 if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) { 269 free_vm_area(area); 270 return NULL; 271 } 272 return (void __iomem *) ((unsigned long) area->addr + offset); 273 } 274 275 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot) 276 { 277 return __ioremap(addr, size, __pgprot(prot)); 278 } 279 EXPORT_SYMBOL(ioremap_prot); 280 281 void __iomem *ioremap(phys_addr_t addr, size_t size) 282 { 283 return __ioremap(addr, size, PAGE_KERNEL); 284 } 285 EXPORT_SYMBOL(ioremap); 286 287 void __iomem *ioremap_wc(phys_addr_t addr, size_t size) 288 { 289 return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL)); 290 } 291 EXPORT_SYMBOL(ioremap_wc); 292 293 void __iomem *ioremap_wt(phys_addr_t addr, size_t size) 294 { 295 return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL)); 296 } 297 EXPORT_SYMBOL(ioremap_wt); 298 299 void iounmap(volatile void __iomem *addr) 300 { 301 if (static_branch_likely(&have_mio)) 302 vunmap((__force void *) ((unsigned long) addr & PAGE_MASK)); 303 } 304 EXPORT_SYMBOL(iounmap); 305 306 /* Create a virtual mapping cookie for a PCI BAR */ 307 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 308 unsigned long offset, unsigned long max) 309 { 310 struct zpci_dev *zdev = to_zpci(pdev); 311 int idx; 312 313 idx = zdev->bars[bar].map_idx; 314 spin_lock(&zpci_iomap_lock); 315 /* Detect overrun */ 316 WARN_ON(!++zpci_iomap_start[idx].count); 317 zpci_iomap_start[idx].fh = zdev->fh; 318 zpci_iomap_start[idx].bar = bar; 319 spin_unlock(&zpci_iomap_lock); 320 321 return (void __iomem *) ZPCI_ADDR(idx) + offset; 322 } 323 324 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 325 unsigned long offset, 326 unsigned long max) 327 { 328 unsigned long barsize = pci_resource_len(pdev, bar); 329 struct zpci_dev *zdev = to_zpci(pdev); 330 void __iomem *iova; 331 332 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 333 return iova ? iova + offset : iova; 334 } 335 336 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 337 unsigned long offset, unsigned long max) 338 { 339 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 340 return NULL; 341 342 if (static_branch_likely(&have_mio)) 343 return pci_iomap_range_mio(pdev, bar, offset, max); 344 else 345 return pci_iomap_range_fh(pdev, bar, offset, max); 346 } 347 EXPORT_SYMBOL(pci_iomap_range); 348 349 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 350 { 351 return pci_iomap_range(dev, bar, 0, maxlen); 352 } 353 EXPORT_SYMBOL(pci_iomap); 354 355 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 356 unsigned long offset, unsigned long max) 357 { 358 unsigned long barsize = pci_resource_len(pdev, bar); 359 struct zpci_dev *zdev = to_zpci(pdev); 360 void __iomem *iova; 361 362 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 363 return iova ? iova + offset : iova; 364 } 365 366 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 367 unsigned long offset, unsigned long max) 368 { 369 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 370 return NULL; 371 372 if (static_branch_likely(&have_mio)) 373 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 374 else 375 return pci_iomap_range_fh(pdev, bar, offset, max); 376 } 377 EXPORT_SYMBOL(pci_iomap_wc_range); 378 379 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 380 { 381 return pci_iomap_wc_range(dev, bar, 0, maxlen); 382 } 383 EXPORT_SYMBOL(pci_iomap_wc); 384 385 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 386 { 387 unsigned int idx = ZPCI_IDX(addr); 388 389 spin_lock(&zpci_iomap_lock); 390 /* Detect underrun */ 391 WARN_ON(!zpci_iomap_start[idx].count); 392 if (!--zpci_iomap_start[idx].count) { 393 zpci_iomap_start[idx].fh = 0; 394 zpci_iomap_start[idx].bar = 0; 395 } 396 spin_unlock(&zpci_iomap_lock); 397 } 398 399 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 400 { 401 iounmap(addr); 402 } 403 404 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 405 { 406 if (static_branch_likely(&have_mio)) 407 pci_iounmap_mio(pdev, addr); 408 else 409 pci_iounmap_fh(pdev, addr); 410 } 411 EXPORT_SYMBOL(pci_iounmap); 412 413 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 414 int size, u32 *val) 415 { 416 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 417 418 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 419 } 420 421 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 422 int size, u32 val) 423 { 424 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 425 426 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 427 } 428 429 static struct pci_ops pci_root_ops = { 430 .read = pci_read, 431 .write = pci_write, 432 }; 433 434 static void zpci_map_resources(struct pci_dev *pdev) 435 { 436 struct zpci_dev *zdev = to_zpci(pdev); 437 resource_size_t len; 438 int i; 439 440 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 441 len = pci_resource_len(pdev, i); 442 if (!len) 443 continue; 444 445 if (zpci_use_mio(zdev)) 446 pdev->resource[i].start = 447 (resource_size_t __force) zdev->bars[i].mio_wt; 448 else 449 pdev->resource[i].start = (resource_size_t __force) 450 pci_iomap_range_fh(pdev, i, 0, 0); 451 pdev->resource[i].end = pdev->resource[i].start + len - 1; 452 } 453 454 zpci_iov_map_resources(pdev); 455 } 456 457 static void zpci_unmap_resources(struct pci_dev *pdev) 458 { 459 struct zpci_dev *zdev = to_zpci(pdev); 460 resource_size_t len; 461 int i; 462 463 if (zpci_use_mio(zdev)) 464 return; 465 466 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 467 len = pci_resource_len(pdev, i); 468 if (!len) 469 continue; 470 pci_iounmap_fh(pdev, (void __iomem __force *) 471 pdev->resource[i].start); 472 } 473 } 474 475 static int zpci_alloc_iomap(struct zpci_dev *zdev) 476 { 477 unsigned long entry; 478 479 spin_lock(&zpci_iomap_lock); 480 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 481 if (entry == ZPCI_IOMAP_ENTRIES) { 482 spin_unlock(&zpci_iomap_lock); 483 return -ENOSPC; 484 } 485 set_bit(entry, zpci_iomap_bitmap); 486 spin_unlock(&zpci_iomap_lock); 487 return entry; 488 } 489 490 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 491 { 492 spin_lock(&zpci_iomap_lock); 493 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 494 clear_bit(entry, zpci_iomap_bitmap); 495 spin_unlock(&zpci_iomap_lock); 496 } 497 498 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 499 { 500 int bar, idx; 501 502 spin_lock(&zpci_iomap_lock); 503 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 504 if (!zdev->bars[bar].size) 505 continue; 506 idx = zdev->bars[bar].map_idx; 507 if (!zpci_iomap_start[idx].count) 508 continue; 509 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 510 } 511 spin_unlock(&zpci_iomap_lock); 512 } 513 514 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 515 { 516 if (!fh || zdev->fh == fh) 517 return; 518 519 zdev->fh = fh; 520 if (zpci_use_mio(zdev)) 521 return; 522 if (zdev->has_resources && zdev_enabled(zdev)) 523 zpci_do_update_iomap_fh(zdev, fh); 524 } 525 526 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 527 unsigned long size, unsigned long flags) 528 { 529 struct resource *r; 530 531 r = kzalloc(sizeof(*r), GFP_KERNEL); 532 if (!r) 533 return NULL; 534 535 r->start = start; 536 r->end = r->start + size - 1; 537 r->flags = flags; 538 r->name = zdev->res_name; 539 540 if (request_resource(&iomem_resource, r)) { 541 kfree(r); 542 return NULL; 543 } 544 return r; 545 } 546 547 int zpci_setup_bus_resources(struct zpci_dev *zdev, 548 struct list_head *resources) 549 { 550 unsigned long addr, size, flags; 551 struct resource *res; 552 int i, entry; 553 554 snprintf(zdev->res_name, sizeof(zdev->res_name), 555 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 556 557 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 558 if (!zdev->bars[i].size) 559 continue; 560 entry = zpci_alloc_iomap(zdev); 561 if (entry < 0) 562 return entry; 563 zdev->bars[i].map_idx = entry; 564 565 /* only MMIO is supported */ 566 flags = IORESOURCE_MEM; 567 if (zdev->bars[i].val & 8) 568 flags |= IORESOURCE_PREFETCH; 569 if (zdev->bars[i].val & 4) 570 flags |= IORESOURCE_MEM_64; 571 572 if (zpci_use_mio(zdev)) 573 addr = (unsigned long) zdev->bars[i].mio_wt; 574 else 575 addr = ZPCI_ADDR(entry); 576 size = 1UL << zdev->bars[i].size; 577 578 res = __alloc_res(zdev, addr, size, flags); 579 if (!res) { 580 zpci_free_iomap(zdev, entry); 581 return -ENOMEM; 582 } 583 zdev->bars[i].res = res; 584 pci_add_resource(resources, res); 585 } 586 zdev->has_resources = 1; 587 588 return 0; 589 } 590 591 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 592 { 593 int i; 594 595 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 596 if (!zdev->bars[i].size || !zdev->bars[i].res) 597 continue; 598 599 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 600 release_resource(zdev->bars[i].res); 601 kfree(zdev->bars[i].res); 602 } 603 zdev->has_resources = 0; 604 } 605 606 int pcibios_device_add(struct pci_dev *pdev) 607 { 608 struct zpci_dev *zdev = to_zpci(pdev); 609 struct resource *res; 610 int i; 611 612 /* The pdev has a reference to the zdev via its bus */ 613 zpci_zdev_get(zdev); 614 if (pdev->is_physfn) 615 pdev->no_vf_scan = 1; 616 617 pdev->dev.groups = zpci_attr_groups; 618 pdev->dev.dma_ops = &s390_pci_dma_ops; 619 zpci_map_resources(pdev); 620 621 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 622 res = &pdev->resource[i]; 623 if (res->parent || !res->flags) 624 continue; 625 pci_claim_resource(pdev, i); 626 } 627 628 return 0; 629 } 630 631 void pcibios_release_device(struct pci_dev *pdev) 632 { 633 struct zpci_dev *zdev = to_zpci(pdev); 634 635 zpci_unmap_resources(pdev); 636 zpci_zdev_put(zdev); 637 } 638 639 int pcibios_enable_device(struct pci_dev *pdev, int mask) 640 { 641 struct zpci_dev *zdev = to_zpci(pdev); 642 643 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 644 zpci_fmb_enable_device(zdev); 645 646 return pci_enable_resources(pdev, mask); 647 } 648 649 void pcibios_disable_device(struct pci_dev *pdev) 650 { 651 struct zpci_dev *zdev = to_zpci(pdev); 652 653 zpci_fmb_disable_device(zdev); 654 zpci_debug_exit_device(zdev); 655 } 656 657 static int __zpci_register_domain(int domain) 658 { 659 spin_lock(&zpci_domain_lock); 660 if (test_bit(domain, zpci_domain)) { 661 spin_unlock(&zpci_domain_lock); 662 pr_err("Domain %04x is already assigned\n", domain); 663 return -EEXIST; 664 } 665 set_bit(domain, zpci_domain); 666 spin_unlock(&zpci_domain_lock); 667 return domain; 668 } 669 670 static int __zpci_alloc_domain(void) 671 { 672 int domain; 673 674 spin_lock(&zpci_domain_lock); 675 /* 676 * We can always auto allocate domains below ZPCI_NR_DEVICES. 677 * There is either a free domain or we have reached the maximum in 678 * which case we would have bailed earlier. 679 */ 680 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 681 set_bit(domain, zpci_domain); 682 spin_unlock(&zpci_domain_lock); 683 return domain; 684 } 685 686 int zpci_alloc_domain(int domain) 687 { 688 if (zpci_unique_uid) { 689 if (domain) 690 return __zpci_register_domain(domain); 691 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 692 update_uid_checking(false); 693 } 694 return __zpci_alloc_domain(); 695 } 696 697 void zpci_free_domain(int domain) 698 { 699 spin_lock(&zpci_domain_lock); 700 clear_bit(domain, zpci_domain); 701 spin_unlock(&zpci_domain_lock); 702 } 703 704 705 int zpci_enable_device(struct zpci_dev *zdev) 706 { 707 u32 fh = zdev->fh; 708 int rc = 0; 709 710 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 711 rc = -EIO; 712 else 713 zpci_update_fh(zdev, fh); 714 return rc; 715 } 716 EXPORT_SYMBOL_GPL(zpci_enable_device); 717 718 int zpci_disable_device(struct zpci_dev *zdev) 719 { 720 u32 fh = zdev->fh; 721 int cc, rc = 0; 722 723 cc = clp_disable_fh(zdev, &fh); 724 if (!cc) { 725 zpci_update_fh(zdev, fh); 726 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 727 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 728 zdev->fid); 729 /* Function is already disabled - update handle */ 730 rc = clp_refresh_fh(zdev->fid, &fh); 731 if (!rc) { 732 zpci_update_fh(zdev, fh); 733 rc = -EINVAL; 734 } 735 } else { 736 rc = -EIO; 737 } 738 return rc; 739 } 740 EXPORT_SYMBOL_GPL(zpci_disable_device); 741 742 /** 743 * zpci_hot_reset_device - perform a reset of the given zPCI function 744 * @zdev: the slot which should be reset 745 * 746 * Performs a low level reset of the zPCI function. The reset is low level in 747 * the sense that the zPCI function can be reset without detaching it from the 748 * common PCI subsystem. The reset may be performed while under control of 749 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 750 * table is reinstated at the end of the reset. 751 * 752 * After the reset the functions internal state is reset to an initial state 753 * equivalent to its state during boot when first probing a driver. 754 * Consequently after reset the PCI function requires re-initialization via the 755 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 756 * and enabling the function via e.g.pci_enablde_device_flags().The caller 757 * must guard against concurrent reset attempts. 758 * 759 * In most cases this function should not be called directly but through 760 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 761 * locking. 762 * 763 * Return: 0 on success and an error value otherwise 764 */ 765 int zpci_hot_reset_device(struct zpci_dev *zdev) 766 { 767 u8 status; 768 int rc; 769 770 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 771 if (zdev_enabled(zdev)) { 772 /* Disables device access, DMAs and IRQs (reset state) */ 773 rc = zpci_disable_device(zdev); 774 /* 775 * Due to a z/VM vs LPAR inconsistency in the error state the 776 * FH may indicate an enabled device but disable says the 777 * device is already disabled don't treat it as an error here. 778 */ 779 if (rc == -EINVAL) 780 rc = 0; 781 if (rc) 782 return rc; 783 } 784 785 rc = zpci_enable_device(zdev); 786 if (rc) 787 return rc; 788 789 if (zdev->dma_table) 790 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 791 virt_to_phys(zdev->dma_table), &status); 792 else 793 rc = zpci_dma_init_device(zdev); 794 if (rc) { 795 zpci_disable_device(zdev); 796 return rc; 797 } 798 799 return 0; 800 } 801 802 /** 803 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 804 * @fid: Function ID of the device to be created 805 * @fh: Current Function Handle of the device to be created 806 * @state: Initial state after creation either Standby or Configured 807 * 808 * Creates a new zpci device and adds it to its, possibly newly created, zbus 809 * as well as zpci_list. 810 * 811 * Returns: the zdev on success or an error pointer otherwise 812 */ 813 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 814 { 815 struct zpci_dev *zdev; 816 int rc; 817 818 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 819 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 820 if (!zdev) 821 return ERR_PTR(-ENOMEM); 822 823 /* FID and Function Handle are the static/dynamic identifiers */ 824 zdev->fid = fid; 825 zdev->fh = fh; 826 827 /* Query function properties and update zdev */ 828 rc = clp_query_pci_fn(zdev); 829 if (rc) 830 goto error; 831 zdev->state = state; 832 833 kref_init(&zdev->kref); 834 mutex_init(&zdev->lock); 835 mutex_init(&zdev->kzdev_lock); 836 837 rc = zpci_init_iommu(zdev); 838 if (rc) 839 goto error; 840 841 rc = zpci_bus_device_register(zdev, &pci_root_ops); 842 if (rc) 843 goto error_destroy_iommu; 844 845 spin_lock(&zpci_list_lock); 846 list_add_tail(&zdev->entry, &zpci_list); 847 spin_unlock(&zpci_list_lock); 848 849 return zdev; 850 851 error_destroy_iommu: 852 zpci_destroy_iommu(zdev); 853 error: 854 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 855 kfree(zdev); 856 return ERR_PTR(rc); 857 } 858 859 bool zpci_is_device_configured(struct zpci_dev *zdev) 860 { 861 enum zpci_state state = zdev->state; 862 863 return state != ZPCI_FN_STATE_RESERVED && 864 state != ZPCI_FN_STATE_STANDBY; 865 } 866 867 /** 868 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 869 * @zdev: The zpci_dev to be configured 870 * @fh: The general function handle supplied by the platform 871 * 872 * Given a device in the configuration state Configured, enables, scans and 873 * adds it to the common code PCI subsystem if possible. If the PCI device is 874 * parked because we can not yet create a PCI bus because we have not seen 875 * function 0, it is ignored but will be scanned once function 0 appears. 876 * If any failure occurs, the zpci_dev is left disabled. 877 * 878 * Return: 0 on success, or an error code otherwise 879 */ 880 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 881 { 882 int rc; 883 884 zpci_update_fh(zdev, fh); 885 /* the PCI function will be scanned once function 0 appears */ 886 if (!zdev->zbus->bus) 887 return 0; 888 889 /* For function 0 on a multi-function bus scan whole bus as we might 890 * have to pick up existing functions waiting for it to allow creating 891 * the PCI bus 892 */ 893 if (zdev->devfn == 0 && zdev->zbus->multifunction) 894 rc = zpci_bus_scan_bus(zdev->zbus); 895 else 896 rc = zpci_bus_scan_device(zdev); 897 898 return rc; 899 } 900 901 /** 902 * zpci_deconfigure_device() - Deconfigure a zpci_dev 903 * @zdev: The zpci_dev to configure 904 * 905 * Deconfigure a zPCI function that is currently configured and possibly known 906 * to the common code PCI subsystem. 907 * If any failure occurs the device is left as is. 908 * 909 * Return: 0 on success, or an error code otherwise 910 */ 911 int zpci_deconfigure_device(struct zpci_dev *zdev) 912 { 913 int rc; 914 915 if (zdev->zbus->bus) 916 zpci_bus_remove_device(zdev, false); 917 918 if (zdev->dma_table) { 919 rc = zpci_dma_exit_device(zdev); 920 if (rc) 921 return rc; 922 } 923 if (zdev_enabled(zdev)) { 924 rc = zpci_disable_device(zdev); 925 if (rc) 926 return rc; 927 } 928 929 rc = sclp_pci_deconfigure(zdev->fid); 930 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 931 if (rc) 932 return rc; 933 zdev->state = ZPCI_FN_STATE_STANDBY; 934 935 return 0; 936 } 937 938 /** 939 * zpci_device_reserved() - Mark device as resverved 940 * @zdev: the zpci_dev that was reserved 941 * 942 * Handle the case that a given zPCI function was reserved by another system. 943 * After a call to this function the zpci_dev can not be found via 944 * get_zdev_by_fid() anymore but may still be accessible via existing 945 * references though it will not be functional anymore. 946 */ 947 void zpci_device_reserved(struct zpci_dev *zdev) 948 { 949 if (zdev->has_hp_slot) 950 zpci_exit_slot(zdev); 951 /* 952 * Remove device from zpci_list as it is going away. This also 953 * makes sure we ignore subsequent zPCI events for this device. 954 */ 955 spin_lock(&zpci_list_lock); 956 list_del(&zdev->entry); 957 spin_unlock(&zpci_list_lock); 958 zdev->state = ZPCI_FN_STATE_RESERVED; 959 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 960 zpci_zdev_put(zdev); 961 } 962 963 void zpci_release_device(struct kref *kref) 964 { 965 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 966 int ret; 967 968 if (zdev->zbus->bus) 969 zpci_bus_remove_device(zdev, false); 970 971 if (zdev->dma_table) 972 zpci_dma_exit_device(zdev); 973 if (zdev_enabled(zdev)) 974 zpci_disable_device(zdev); 975 976 switch (zdev->state) { 977 case ZPCI_FN_STATE_CONFIGURED: 978 ret = sclp_pci_deconfigure(zdev->fid); 979 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); 980 fallthrough; 981 case ZPCI_FN_STATE_STANDBY: 982 if (zdev->has_hp_slot) 983 zpci_exit_slot(zdev); 984 spin_lock(&zpci_list_lock); 985 list_del(&zdev->entry); 986 spin_unlock(&zpci_list_lock); 987 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 988 fallthrough; 989 case ZPCI_FN_STATE_RESERVED: 990 if (zdev->has_resources) 991 zpci_cleanup_bus_resources(zdev); 992 zpci_bus_device_unregister(zdev); 993 zpci_destroy_iommu(zdev); 994 fallthrough; 995 default: 996 break; 997 } 998 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 999 kfree_rcu(zdev, rcu); 1000 } 1001 1002 int zpci_report_error(struct pci_dev *pdev, 1003 struct zpci_report_error_header *report) 1004 { 1005 struct zpci_dev *zdev = to_zpci(pdev); 1006 1007 return sclp_pci_report(report, zdev->fh, zdev->fid); 1008 } 1009 EXPORT_SYMBOL(zpci_report_error); 1010 1011 /** 1012 * zpci_clear_error_state() - Clears the zPCI error state of the device 1013 * @zdev: The zdev for which the zPCI error state should be reset 1014 * 1015 * Clear the zPCI error state of the device. If clearing the zPCI error state 1016 * fails the device is left in the error state. In this case it may make sense 1017 * to call zpci_io_perm_failure() on the associated pdev if it exists. 1018 * 1019 * Returns: 0 on success, -EIO otherwise 1020 */ 1021 int zpci_clear_error_state(struct zpci_dev *zdev) 1022 { 1023 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 1024 struct zpci_fib fib = {0}; 1025 u8 status; 1026 int cc; 1027 1028 cc = zpci_mod_fc(req, &fib, &status); 1029 if (cc) { 1030 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1031 return -EIO; 1032 } 1033 1034 return 0; 1035 } 1036 1037 /** 1038 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 1039 * @zdev: The zdev for which to unblock load/store access 1040 * 1041 * Re-enables load/store access for a PCI function in the error state while 1042 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 1043 * if error recovery is possible while catching any rogue DMA access from the 1044 * device. 1045 * 1046 * Returns: 0 on success, -EIO otherwise 1047 */ 1048 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1049 { 1050 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1051 struct zpci_fib fib = {0}; 1052 u8 status; 1053 int cc; 1054 1055 cc = zpci_mod_fc(req, &fib, &status); 1056 if (cc) { 1057 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1058 return -EIO; 1059 } 1060 1061 return 0; 1062 } 1063 1064 static int zpci_mem_init(void) 1065 { 1066 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1067 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1068 1069 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1070 __alignof__(struct zpci_fmb), 0, NULL); 1071 if (!zdev_fmb_cache) 1072 goto error_fmb; 1073 1074 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1075 sizeof(*zpci_iomap_start), GFP_KERNEL); 1076 if (!zpci_iomap_start) 1077 goto error_iomap; 1078 1079 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1080 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1081 if (!zpci_iomap_bitmap) 1082 goto error_iomap_bitmap; 1083 1084 if (static_branch_likely(&have_mio)) 1085 clp_setup_writeback_mio(); 1086 1087 return 0; 1088 error_iomap_bitmap: 1089 kfree(zpci_iomap_start); 1090 error_iomap: 1091 kmem_cache_destroy(zdev_fmb_cache); 1092 error_fmb: 1093 return -ENOMEM; 1094 } 1095 1096 static void zpci_mem_exit(void) 1097 { 1098 kfree(zpci_iomap_bitmap); 1099 kfree(zpci_iomap_start); 1100 kmem_cache_destroy(zdev_fmb_cache); 1101 } 1102 1103 static unsigned int s390_pci_probe __initdata = 1; 1104 unsigned int s390_pci_force_floating __initdata; 1105 static unsigned int s390_pci_initialized; 1106 1107 char * __init pcibios_setup(char *str) 1108 { 1109 if (!strcmp(str, "off")) { 1110 s390_pci_probe = 0; 1111 return NULL; 1112 } 1113 if (!strcmp(str, "nomio")) { 1114 S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1115 return NULL; 1116 } 1117 if (!strcmp(str, "force_floating")) { 1118 s390_pci_force_floating = 1; 1119 return NULL; 1120 } 1121 if (!strcmp(str, "norid")) { 1122 s390_pci_no_rid = 1; 1123 return NULL; 1124 } 1125 return str; 1126 } 1127 1128 bool zpci_is_enabled(void) 1129 { 1130 return s390_pci_initialized; 1131 } 1132 1133 static int __init pci_base_init(void) 1134 { 1135 int rc; 1136 1137 if (!s390_pci_probe) 1138 return 0; 1139 1140 if (!test_facility(69) || !test_facility(71)) { 1141 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1142 return 0; 1143 } 1144 1145 if (MACHINE_HAS_PCI_MIO) { 1146 static_branch_enable(&have_mio); 1147 ctl_set_bit(2, 5); 1148 } 1149 1150 rc = zpci_debug_init(); 1151 if (rc) 1152 goto out; 1153 1154 rc = zpci_mem_init(); 1155 if (rc) 1156 goto out_mem; 1157 1158 rc = zpci_irq_init(); 1159 if (rc) 1160 goto out_irq; 1161 1162 rc = zpci_dma_init(); 1163 if (rc) 1164 goto out_dma; 1165 1166 rc = clp_scan_pci_devices(); 1167 if (rc) 1168 goto out_find; 1169 zpci_bus_scan_busses(); 1170 1171 s390_pci_initialized = 1; 1172 return 0; 1173 1174 out_find: 1175 zpci_dma_exit(); 1176 out_dma: 1177 zpci_irq_exit(); 1178 out_irq: 1179 zpci_mem_exit(); 1180 out_mem: 1181 zpci_debug_exit(); 1182 out: 1183 return rc; 1184 } 1185 subsys_initcall_sync(pci_base_init); 1186