xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include "bpf_jit.h"
34 
35 struct bpf_jit {
36 	u32 seen;		/* Flags to remember seen eBPF instructions */
37 	u32 seen_reg[16];	/* Array to remember which registers are used */
38 	u32 *addrs;		/* Array with relative instruction addresses */
39 	u8 *prg_buf;		/* Start of program */
40 	int size;		/* Size of program and literal pool */
41 	int size_prg;		/* Size of program */
42 	int prg;		/* Current position in program */
43 	int lit32_start;	/* Start of 32-bit literal pool */
44 	int lit32;		/* Current position in 32-bit literal pool */
45 	int lit64_start;	/* Start of 64-bit literal pool */
46 	int lit64;		/* Current position in 64-bit literal pool */
47 	int base_ip;		/* Base address for literal pool */
48 	int exit_ip;		/* Address of exit */
49 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
50 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
51 	int tail_call_start;	/* Tail call start offset */
52 	int excnt;		/* Number of exception table entries */
53 };
54 
55 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
56 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
57 #define SEEN_FUNC	BIT(2)		/* calls C functions */
58 #define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
59 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
60 
61 /*
62  * s390 registers
63  */
64 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
65 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
66 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
67 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
68 #define REG_0		REG_W0			/* Register 0 */
69 #define REG_1		REG_W1			/* Register 1 */
70 #define REG_2		BPF_REG_1		/* Register 2 */
71 #define REG_14		BPF_REG_0		/* Register 14 */
72 
73 /*
74  * Mapping of BPF registers to s390 registers
75  */
76 static const int reg2hex[] = {
77 	/* Return code */
78 	[BPF_REG_0]	= 14,
79 	/* Function parameters */
80 	[BPF_REG_1]	= 2,
81 	[BPF_REG_2]	= 3,
82 	[BPF_REG_3]	= 4,
83 	[BPF_REG_4]	= 5,
84 	[BPF_REG_5]	= 6,
85 	/* Call saved registers */
86 	[BPF_REG_6]	= 7,
87 	[BPF_REG_7]	= 8,
88 	[BPF_REG_8]	= 9,
89 	[BPF_REG_9]	= 10,
90 	/* BPF stack pointer */
91 	[BPF_REG_FP]	= 13,
92 	/* Register for blinding */
93 	[BPF_REG_AX]	= 12,
94 	/* Work registers for s390x backend */
95 	[REG_W0]	= 0,
96 	[REG_W1]	= 1,
97 	[REG_L]		= 11,
98 	[REG_15]	= 15,
99 };
100 
101 static inline u32 reg(u32 dst_reg, u32 src_reg)
102 {
103 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104 }
105 
106 static inline u32 reg_high(u32 reg)
107 {
108 	return reg2hex[reg] << 4;
109 }
110 
111 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112 {
113 	u32 r1 = reg2hex[b1];
114 
115 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
116 		jit->seen_reg[r1] = 1;
117 }
118 
119 #define REG_SET_SEEN(b1)					\
120 ({								\
121 	reg_set_seen(jit, b1);					\
122 })
123 
124 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125 
126 /*
127  * EMIT macros for code generation
128  */
129 
130 #define _EMIT2(op)						\
131 ({								\
132 	if (jit->prg_buf)					\
133 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
134 	jit->prg += 2;						\
135 })
136 
137 #define EMIT2(op, b1, b2)					\
138 ({								\
139 	_EMIT2((op) | reg(b1, b2));				\
140 	REG_SET_SEEN(b1);					\
141 	REG_SET_SEEN(b2);					\
142 })
143 
144 #define _EMIT4(op)						\
145 ({								\
146 	if (jit->prg_buf)					\
147 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
148 	jit->prg += 4;						\
149 })
150 
151 #define EMIT4(op, b1, b2)					\
152 ({								\
153 	_EMIT4((op) | reg(b1, b2));				\
154 	REG_SET_SEEN(b1);					\
155 	REG_SET_SEEN(b2);					\
156 })
157 
158 #define EMIT4_RRF(op, b1, b2, b3)				\
159 ({								\
160 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
161 	REG_SET_SEEN(b1);					\
162 	REG_SET_SEEN(b2);					\
163 	REG_SET_SEEN(b3);					\
164 })
165 
166 #define _EMIT4_DISP(op, disp)					\
167 ({								\
168 	unsigned int __disp = (disp) & 0xfff;			\
169 	_EMIT4((op) | __disp);					\
170 })
171 
172 #define EMIT4_DISP(op, b1, b2, disp)				\
173 ({								\
174 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
175 		    reg_high(b2) << 8, (disp));			\
176 	REG_SET_SEEN(b1);					\
177 	REG_SET_SEEN(b2);					\
178 })
179 
180 #define EMIT4_IMM(op, b1, imm)					\
181 ({								\
182 	unsigned int __imm = (imm) & 0xffff;			\
183 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
184 	REG_SET_SEEN(b1);					\
185 })
186 
187 #define EMIT4_PCREL(op, pcrel)					\
188 ({								\
189 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
190 	_EMIT4((op) | __pcrel);					\
191 })
192 
193 #define EMIT4_PCREL_RIC(op, mask, target)			\
194 ({								\
195 	int __rel = ((target) - jit->prg) / 2;			\
196 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
197 })
198 
199 #define _EMIT6(op1, op2)					\
200 ({								\
201 	if (jit->prg_buf) {					\
202 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
203 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
204 	}							\
205 	jit->prg += 6;						\
206 })
207 
208 #define _EMIT6_DISP(op1, op2, disp)				\
209 ({								\
210 	unsigned int __disp = (disp) & 0xfff;			\
211 	_EMIT6((op1) | __disp, op2);				\
212 })
213 
214 #define _EMIT6_DISP_LH(op1, op2, disp)				\
215 ({								\
216 	u32 _disp = (u32) (disp);				\
217 	unsigned int __disp_h = _disp & 0xff000;		\
218 	unsigned int __disp_l = _disp & 0x00fff;		\
219 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
220 })
221 
222 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
223 ({								\
224 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
225 		       reg_high(b3) << 8, op2, disp);		\
226 	REG_SET_SEEN(b1);					\
227 	REG_SET_SEEN(b2);					\
228 	REG_SET_SEEN(b3);					\
229 })
230 
231 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
232 ({								\
233 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
234 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
235 	       (op2) | (mask) << 12);				\
236 	REG_SET_SEEN(b1);					\
237 	REG_SET_SEEN(b2);					\
238 })
239 
240 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
241 ({								\
242 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
243 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
244 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
245 	REG_SET_SEEN(b1);					\
246 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
247 })
248 
249 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
250 ({								\
251 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
252 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
253 	REG_SET_SEEN(b1);					\
254 	REG_SET_SEEN(b2);					\
255 })
256 
257 #define EMIT6_PCREL_RILB(op, b, target)				\
258 ({								\
259 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
260 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
261 	REG_SET_SEEN(b);					\
262 })
263 
264 #define EMIT6_PCREL_RIL(op, target)				\
265 ({								\
266 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
267 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
268 })
269 
270 #define EMIT6_PCREL_RILC(op, mask, target)			\
271 ({								\
272 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
273 })
274 
275 #define _EMIT6_IMM(op, imm)					\
276 ({								\
277 	unsigned int __imm = (imm);				\
278 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
279 })
280 
281 #define EMIT6_IMM(op, b1, imm)					\
282 ({								\
283 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
284 	REG_SET_SEEN(b1);					\
285 })
286 
287 #define _EMIT_CONST_U32(val)					\
288 ({								\
289 	unsigned int ret;					\
290 	ret = jit->lit32;					\
291 	if (jit->prg_buf)					\
292 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
293 	jit->lit32 += 4;					\
294 	ret;							\
295 })
296 
297 #define EMIT_CONST_U32(val)					\
298 ({								\
299 	jit->seen |= SEEN_LITERAL;				\
300 	_EMIT_CONST_U32(val) - jit->base_ip;			\
301 })
302 
303 #define _EMIT_CONST_U64(val)					\
304 ({								\
305 	unsigned int ret;					\
306 	ret = jit->lit64;					\
307 	if (jit->prg_buf)					\
308 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
309 	jit->lit64 += 8;					\
310 	ret;							\
311 })
312 
313 #define EMIT_CONST_U64(val)					\
314 ({								\
315 	jit->seen |= SEEN_LITERAL;				\
316 	_EMIT_CONST_U64(val) - jit->base_ip;			\
317 })
318 
319 #define EMIT_ZERO(b1)						\
320 ({								\
321 	if (!fp->aux->verifier_zext) {				\
322 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
323 		EMIT4(0xb9160000, b1, b1);			\
324 		REG_SET_SEEN(b1);				\
325 	}							\
326 })
327 
328 /*
329  * Return whether this is the first pass. The first pass is special, since we
330  * don't know any sizes yet, and thus must be conservative.
331  */
332 static bool is_first_pass(struct bpf_jit *jit)
333 {
334 	return jit->size == 0;
335 }
336 
337 /*
338  * Return whether this is the code generation pass. The code generation pass is
339  * special, since we should change as little as possible.
340  */
341 static bool is_codegen_pass(struct bpf_jit *jit)
342 {
343 	return jit->prg_buf;
344 }
345 
346 /*
347  * Return whether "rel" can be encoded as a short PC-relative offset
348  */
349 static bool is_valid_rel(int rel)
350 {
351 	return rel >= -65536 && rel <= 65534;
352 }
353 
354 /*
355  * Return whether "off" can be reached using a short PC-relative offset
356  */
357 static bool can_use_rel(struct bpf_jit *jit, int off)
358 {
359 	return is_valid_rel(off - jit->prg);
360 }
361 
362 /*
363  * Return whether given displacement can be encoded using
364  * Long-Displacement Facility
365  */
366 static bool is_valid_ldisp(int disp)
367 {
368 	return disp >= -524288 && disp <= 524287;
369 }
370 
371 /*
372  * Return whether the next 32-bit literal pool entry can be referenced using
373  * Long-Displacement Facility
374  */
375 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
376 {
377 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
378 }
379 
380 /*
381  * Return whether the next 64-bit literal pool entry can be referenced using
382  * Long-Displacement Facility
383  */
384 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
385 {
386 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
387 }
388 
389 /*
390  * Fill whole space with illegal instructions
391  */
392 static void jit_fill_hole(void *area, unsigned int size)
393 {
394 	memset(area, 0, size);
395 }
396 
397 /*
398  * Save registers from "rs" (register start) to "re" (register end) on stack
399  */
400 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
401 {
402 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
403 
404 	if (rs == re)
405 		/* stg %rs,off(%r15) */
406 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
407 	else
408 		/* stmg %rs,%re,off(%r15) */
409 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
410 }
411 
412 /*
413  * Restore registers from "rs" (register start) to "re" (register end) on stack
414  */
415 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
416 {
417 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
418 
419 	if (jit->seen & SEEN_STACK)
420 		off += STK_OFF + stack_depth;
421 
422 	if (rs == re)
423 		/* lg %rs,off(%r15) */
424 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
425 	else
426 		/* lmg %rs,%re,off(%r15) */
427 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
428 }
429 
430 /*
431  * Return first seen register (from start)
432  */
433 static int get_start(struct bpf_jit *jit, int start)
434 {
435 	int i;
436 
437 	for (i = start; i <= 15; i++) {
438 		if (jit->seen_reg[i])
439 			return i;
440 	}
441 	return 0;
442 }
443 
444 /*
445  * Return last seen register (from start) (gap >= 2)
446  */
447 static int get_end(struct bpf_jit *jit, int start)
448 {
449 	int i;
450 
451 	for (i = start; i < 15; i++) {
452 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
453 			return i - 1;
454 	}
455 	return jit->seen_reg[15] ? 15 : 14;
456 }
457 
458 #define REGS_SAVE	1
459 #define REGS_RESTORE	0
460 /*
461  * Save and restore clobbered registers (6-15) on stack.
462  * We save/restore registers in chunks with gap >= 2 registers.
463  */
464 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
465 {
466 	const int last = 15, save_restore_size = 6;
467 	int re = 6, rs;
468 
469 	if (is_first_pass(jit)) {
470 		/*
471 		 * We don't know yet which registers are used. Reserve space
472 		 * conservatively.
473 		 */
474 		jit->prg += (last - re + 1) * save_restore_size;
475 		return;
476 	}
477 
478 	do {
479 		rs = get_start(jit, re);
480 		if (!rs)
481 			break;
482 		re = get_end(jit, rs + 1);
483 		if (op == REGS_SAVE)
484 			save_regs(jit, rs, re);
485 		else
486 			restore_regs(jit, rs, re, stack_depth);
487 		re++;
488 	} while (re <= last);
489 }
490 
491 static void bpf_skip(struct bpf_jit *jit, int size)
492 {
493 	if (size >= 6 && !is_valid_rel(size)) {
494 		/* brcl 0xf,size */
495 		EMIT6_PCREL_RIL(0xc0f4000000, size);
496 		size -= 6;
497 	} else if (size >= 4 && is_valid_rel(size)) {
498 		/* brc 0xf,size */
499 		EMIT4_PCREL(0xa7f40000, size);
500 		size -= 4;
501 	}
502 	while (size >= 2) {
503 		/* bcr 0,%0 */
504 		_EMIT2(0x0700);
505 		size -= 2;
506 	}
507 }
508 
509 /*
510  * Emit function prologue
511  *
512  * Save registers and create stack frame if necessary.
513  * See stack frame layout desription in "bpf_jit.h"!
514  */
515 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
516 {
517 	if (jit->seen & SEEN_TAIL_CALL) {
518 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
519 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
520 	} else {
521 		/*
522 		 * There are no tail calls. Insert nops in order to have
523 		 * tail_call_start at a predictable offset.
524 		 */
525 		bpf_skip(jit, 6);
526 	}
527 	/* Tail calls have to skip above initialization */
528 	jit->tail_call_start = jit->prg;
529 	/* Save registers */
530 	save_restore_regs(jit, REGS_SAVE, stack_depth);
531 	/* Setup literal pool */
532 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
533 		if (!is_first_pass(jit) &&
534 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
535 			/* basr %l,0 */
536 			EMIT2(0x0d00, REG_L, REG_0);
537 			jit->base_ip = jit->prg;
538 		} else {
539 			/* larl %l,lit32_start */
540 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
541 			jit->base_ip = jit->lit32_start;
542 		}
543 	}
544 	/* Setup stack and backchain */
545 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
546 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
547 			/* lgr %w1,%r15 (backchain) */
548 			EMIT4(0xb9040000, REG_W1, REG_15);
549 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
550 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
551 		/* aghi %r15,-STK_OFF */
552 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
553 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
554 			/* stg %w1,152(%r15) (backchain) */
555 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
556 				      REG_15, 152);
557 	}
558 }
559 
560 /*
561  * Function epilogue
562  */
563 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
564 {
565 	jit->exit_ip = jit->prg;
566 	/* Load exit code: lgr %r2,%b0 */
567 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
568 	/* Restore registers */
569 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
570 	if (nospec_uses_trampoline()) {
571 		jit->r14_thunk_ip = jit->prg;
572 		/* Generate __s390_indirect_jump_r14 thunk */
573 		/* exrl %r0,.+10 */
574 		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
575 		/* j . */
576 		EMIT4_PCREL(0xa7f40000, 0);
577 	}
578 	/* br %r14 */
579 	_EMIT2(0x07fe);
580 
581 	if ((nospec_uses_trampoline()) &&
582 	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
583 		jit->r1_thunk_ip = jit->prg;
584 		/* Generate __s390_indirect_jump_r1 thunk */
585 		/* exrl %r0,.+10 */
586 		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
587 		/* j . */
588 		EMIT4_PCREL(0xa7f40000, 0);
589 		/* br %r1 */
590 		_EMIT2(0x07f1);
591 	}
592 }
593 
594 static int get_probe_mem_regno(const u8 *insn)
595 {
596 	/*
597 	 * insn must point to llgc, llgh, llgf or lg, which have destination
598 	 * register at the same position.
599 	 */
600 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
601 		return -1;
602 	if (insn[5] != 0x90 && /* llgc */
603 	    insn[5] != 0x91 && /* llgh */
604 	    insn[5] != 0x16 && /* llgf */
605 	    insn[5] != 0x04) /* lg */
606 		return -1;
607 	return insn[1] >> 4;
608 }
609 
610 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
611 {
612 	regs->psw.addr = extable_fixup(x);
613 	regs->gprs[x->data] = 0;
614 	return true;
615 }
616 
617 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
618 			     int probe_prg, int nop_prg)
619 {
620 	struct exception_table_entry *ex;
621 	int reg, prg;
622 	s64 delta;
623 	u8 *insn;
624 	int i;
625 
626 	if (!fp->aux->extable)
627 		/* Do nothing during early JIT passes. */
628 		return 0;
629 	insn = jit->prg_buf + probe_prg;
630 	reg = get_probe_mem_regno(insn);
631 	if (WARN_ON_ONCE(reg < 0))
632 		/* JIT bug - unexpected probe instruction. */
633 		return -1;
634 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
635 		/* JIT bug - gap between probe and nop instructions. */
636 		return -1;
637 	for (i = 0; i < 2; i++) {
638 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
639 			/* Verifier bug - not enough entries. */
640 			return -1;
641 		ex = &fp->aux->extable[jit->excnt];
642 		/* Add extable entries for probe and nop instructions. */
643 		prg = i == 0 ? probe_prg : nop_prg;
644 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
645 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
646 			/* JIT bug - code and extable must be close. */
647 			return -1;
648 		ex->insn = delta;
649 		/*
650 		 * Always land on the nop. Note that extable infrastructure
651 		 * ignores fixup field, it is handled by ex_handler_bpf().
652 		 */
653 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
654 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
655 			/* JIT bug - landing pad and extable must be close. */
656 			return -1;
657 		ex->fixup = delta;
658 		ex->type = EX_TYPE_BPF;
659 		ex->data = reg;
660 		jit->excnt++;
661 	}
662 	return 0;
663 }
664 
665 /*
666  * Compile one eBPF instruction into s390x code
667  *
668  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
669  * stack space for the large switch statement.
670  */
671 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
672 				 int i, bool extra_pass, u32 stack_depth)
673 {
674 	struct bpf_insn *insn = &fp->insnsi[i];
675 	u32 dst_reg = insn->dst_reg;
676 	u32 src_reg = insn->src_reg;
677 	int last, insn_count = 1;
678 	u32 *addrs = jit->addrs;
679 	s32 imm = insn->imm;
680 	s16 off = insn->off;
681 	int probe_prg = -1;
682 	unsigned int mask;
683 	int nop_prg;
684 	int err;
685 
686 	if (BPF_CLASS(insn->code) == BPF_LDX &&
687 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
688 		probe_prg = jit->prg;
689 
690 	switch (insn->code) {
691 	/*
692 	 * BPF_MOV
693 	 */
694 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
695 		/* llgfr %dst,%src */
696 		EMIT4(0xb9160000, dst_reg, src_reg);
697 		if (insn_is_zext(&insn[1]))
698 			insn_count = 2;
699 		break;
700 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
701 		/* lgr %dst,%src */
702 		EMIT4(0xb9040000, dst_reg, src_reg);
703 		break;
704 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
705 		/* llilf %dst,imm */
706 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
707 		if (insn_is_zext(&insn[1]))
708 			insn_count = 2;
709 		break;
710 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
711 		/* lgfi %dst,imm */
712 		EMIT6_IMM(0xc0010000, dst_reg, imm);
713 		break;
714 	/*
715 	 * BPF_LD 64
716 	 */
717 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
718 	{
719 		/* 16 byte instruction that uses two 'struct bpf_insn' */
720 		u64 imm64;
721 
722 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
723 		/* lgrl %dst,imm */
724 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
725 		insn_count = 2;
726 		break;
727 	}
728 	/*
729 	 * BPF_ADD
730 	 */
731 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
732 		/* ar %dst,%src */
733 		EMIT2(0x1a00, dst_reg, src_reg);
734 		EMIT_ZERO(dst_reg);
735 		break;
736 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
737 		/* agr %dst,%src */
738 		EMIT4(0xb9080000, dst_reg, src_reg);
739 		break;
740 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
741 		if (imm != 0) {
742 			/* alfi %dst,imm */
743 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
744 		}
745 		EMIT_ZERO(dst_reg);
746 		break;
747 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
748 		if (!imm)
749 			break;
750 		/* agfi %dst,imm */
751 		EMIT6_IMM(0xc2080000, dst_reg, imm);
752 		break;
753 	/*
754 	 * BPF_SUB
755 	 */
756 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
757 		/* sr %dst,%src */
758 		EMIT2(0x1b00, dst_reg, src_reg);
759 		EMIT_ZERO(dst_reg);
760 		break;
761 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
762 		/* sgr %dst,%src */
763 		EMIT4(0xb9090000, dst_reg, src_reg);
764 		break;
765 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
766 		if (imm != 0) {
767 			/* alfi %dst,-imm */
768 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
769 		}
770 		EMIT_ZERO(dst_reg);
771 		break;
772 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
773 		if (!imm)
774 			break;
775 		if (imm == -0x80000000) {
776 			/* algfi %dst,0x80000000 */
777 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
778 		} else {
779 			/* agfi %dst,-imm */
780 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
781 		}
782 		break;
783 	/*
784 	 * BPF_MUL
785 	 */
786 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
787 		/* msr %dst,%src */
788 		EMIT4(0xb2520000, dst_reg, src_reg);
789 		EMIT_ZERO(dst_reg);
790 		break;
791 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
792 		/* msgr %dst,%src */
793 		EMIT4(0xb90c0000, dst_reg, src_reg);
794 		break;
795 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
796 		if (imm != 1) {
797 			/* msfi %r5,imm */
798 			EMIT6_IMM(0xc2010000, dst_reg, imm);
799 		}
800 		EMIT_ZERO(dst_reg);
801 		break;
802 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
803 		if (imm == 1)
804 			break;
805 		/* msgfi %dst,imm */
806 		EMIT6_IMM(0xc2000000, dst_reg, imm);
807 		break;
808 	/*
809 	 * BPF_DIV / BPF_MOD
810 	 */
811 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
812 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
813 	{
814 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
815 
816 		/* lhi %w0,0 */
817 		EMIT4_IMM(0xa7080000, REG_W0, 0);
818 		/* lr %w1,%dst */
819 		EMIT2(0x1800, REG_W1, dst_reg);
820 		/* dlr %w0,%src */
821 		EMIT4(0xb9970000, REG_W0, src_reg);
822 		/* llgfr %dst,%rc */
823 		EMIT4(0xb9160000, dst_reg, rc_reg);
824 		if (insn_is_zext(&insn[1]))
825 			insn_count = 2;
826 		break;
827 	}
828 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
829 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
830 	{
831 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
832 
833 		/* lghi %w0,0 */
834 		EMIT4_IMM(0xa7090000, REG_W0, 0);
835 		/* lgr %w1,%dst */
836 		EMIT4(0xb9040000, REG_W1, dst_reg);
837 		/* dlgr %w0,%dst */
838 		EMIT4(0xb9870000, REG_W0, src_reg);
839 		/* lgr %dst,%rc */
840 		EMIT4(0xb9040000, dst_reg, rc_reg);
841 		break;
842 	}
843 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
844 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
845 	{
846 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
847 
848 		if (imm == 1) {
849 			if (BPF_OP(insn->code) == BPF_MOD)
850 				/* lhgi %dst,0 */
851 				EMIT4_IMM(0xa7090000, dst_reg, 0);
852 			else
853 				EMIT_ZERO(dst_reg);
854 			break;
855 		}
856 		/* lhi %w0,0 */
857 		EMIT4_IMM(0xa7080000, REG_W0, 0);
858 		/* lr %w1,%dst */
859 		EMIT2(0x1800, REG_W1, dst_reg);
860 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
861 			/* dl %w0,<d(imm)>(%l) */
862 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
863 				      EMIT_CONST_U32(imm));
864 		} else {
865 			/* lgfrl %dst,imm */
866 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
867 					 _EMIT_CONST_U32(imm));
868 			jit->seen |= SEEN_LITERAL;
869 			/* dlr %w0,%dst */
870 			EMIT4(0xb9970000, REG_W0, dst_reg);
871 		}
872 		/* llgfr %dst,%rc */
873 		EMIT4(0xb9160000, dst_reg, rc_reg);
874 		if (insn_is_zext(&insn[1]))
875 			insn_count = 2;
876 		break;
877 	}
878 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
879 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
880 	{
881 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
882 
883 		if (imm == 1) {
884 			if (BPF_OP(insn->code) == BPF_MOD)
885 				/* lhgi %dst,0 */
886 				EMIT4_IMM(0xa7090000, dst_reg, 0);
887 			break;
888 		}
889 		/* lghi %w0,0 */
890 		EMIT4_IMM(0xa7090000, REG_W0, 0);
891 		/* lgr %w1,%dst */
892 		EMIT4(0xb9040000, REG_W1, dst_reg);
893 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
894 			/* dlg %w0,<d(imm)>(%l) */
895 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
896 				      EMIT_CONST_U64(imm));
897 		} else {
898 			/* lgrl %dst,imm */
899 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
900 					 _EMIT_CONST_U64(imm));
901 			jit->seen |= SEEN_LITERAL;
902 			/* dlgr %w0,%dst */
903 			EMIT4(0xb9870000, REG_W0, dst_reg);
904 		}
905 		/* lgr %dst,%rc */
906 		EMIT4(0xb9040000, dst_reg, rc_reg);
907 		break;
908 	}
909 	/*
910 	 * BPF_AND
911 	 */
912 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
913 		/* nr %dst,%src */
914 		EMIT2(0x1400, dst_reg, src_reg);
915 		EMIT_ZERO(dst_reg);
916 		break;
917 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
918 		/* ngr %dst,%src */
919 		EMIT4(0xb9800000, dst_reg, src_reg);
920 		break;
921 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
922 		/* nilf %dst,imm */
923 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
924 		EMIT_ZERO(dst_reg);
925 		break;
926 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
927 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
928 			/* ng %dst,<d(imm)>(%l) */
929 			EMIT6_DISP_LH(0xe3000000, 0x0080,
930 				      dst_reg, REG_0, REG_L,
931 				      EMIT_CONST_U64(imm));
932 		} else {
933 			/* lgrl %w0,imm */
934 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
935 					 _EMIT_CONST_U64(imm));
936 			jit->seen |= SEEN_LITERAL;
937 			/* ngr %dst,%w0 */
938 			EMIT4(0xb9800000, dst_reg, REG_W0);
939 		}
940 		break;
941 	/*
942 	 * BPF_OR
943 	 */
944 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
945 		/* or %dst,%src */
946 		EMIT2(0x1600, dst_reg, src_reg);
947 		EMIT_ZERO(dst_reg);
948 		break;
949 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
950 		/* ogr %dst,%src */
951 		EMIT4(0xb9810000, dst_reg, src_reg);
952 		break;
953 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
954 		/* oilf %dst,imm */
955 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
956 		EMIT_ZERO(dst_reg);
957 		break;
958 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
959 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
960 			/* og %dst,<d(imm)>(%l) */
961 			EMIT6_DISP_LH(0xe3000000, 0x0081,
962 				      dst_reg, REG_0, REG_L,
963 				      EMIT_CONST_U64(imm));
964 		} else {
965 			/* lgrl %w0,imm */
966 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
967 					 _EMIT_CONST_U64(imm));
968 			jit->seen |= SEEN_LITERAL;
969 			/* ogr %dst,%w0 */
970 			EMIT4(0xb9810000, dst_reg, REG_W0);
971 		}
972 		break;
973 	/*
974 	 * BPF_XOR
975 	 */
976 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
977 		/* xr %dst,%src */
978 		EMIT2(0x1700, dst_reg, src_reg);
979 		EMIT_ZERO(dst_reg);
980 		break;
981 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
982 		/* xgr %dst,%src */
983 		EMIT4(0xb9820000, dst_reg, src_reg);
984 		break;
985 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
986 		if (imm != 0) {
987 			/* xilf %dst,imm */
988 			EMIT6_IMM(0xc0070000, dst_reg, imm);
989 		}
990 		EMIT_ZERO(dst_reg);
991 		break;
992 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
993 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
994 			/* xg %dst,<d(imm)>(%l) */
995 			EMIT6_DISP_LH(0xe3000000, 0x0082,
996 				      dst_reg, REG_0, REG_L,
997 				      EMIT_CONST_U64(imm));
998 		} else {
999 			/* lgrl %w0,imm */
1000 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1001 					 _EMIT_CONST_U64(imm));
1002 			jit->seen |= SEEN_LITERAL;
1003 			/* xgr %dst,%w0 */
1004 			EMIT4(0xb9820000, dst_reg, REG_W0);
1005 		}
1006 		break;
1007 	/*
1008 	 * BPF_LSH
1009 	 */
1010 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1011 		/* sll %dst,0(%src) */
1012 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1013 		EMIT_ZERO(dst_reg);
1014 		break;
1015 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1016 		/* sllg %dst,%dst,0(%src) */
1017 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1018 		break;
1019 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1020 		if (imm != 0) {
1021 			/* sll %dst,imm(%r0) */
1022 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1023 		}
1024 		EMIT_ZERO(dst_reg);
1025 		break;
1026 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1027 		if (imm == 0)
1028 			break;
1029 		/* sllg %dst,%dst,imm(%r0) */
1030 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1031 		break;
1032 	/*
1033 	 * BPF_RSH
1034 	 */
1035 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1036 		/* srl %dst,0(%src) */
1037 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1038 		EMIT_ZERO(dst_reg);
1039 		break;
1040 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1041 		/* srlg %dst,%dst,0(%src) */
1042 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1043 		break;
1044 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1045 		if (imm != 0) {
1046 			/* srl %dst,imm(%r0) */
1047 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1048 		}
1049 		EMIT_ZERO(dst_reg);
1050 		break;
1051 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1052 		if (imm == 0)
1053 			break;
1054 		/* srlg %dst,%dst,imm(%r0) */
1055 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1056 		break;
1057 	/*
1058 	 * BPF_ARSH
1059 	 */
1060 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1061 		/* sra %dst,%dst,0(%src) */
1062 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1063 		EMIT_ZERO(dst_reg);
1064 		break;
1065 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1066 		/* srag %dst,%dst,0(%src) */
1067 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1068 		break;
1069 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1070 		if (imm != 0) {
1071 			/* sra %dst,imm(%r0) */
1072 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1073 		}
1074 		EMIT_ZERO(dst_reg);
1075 		break;
1076 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1077 		if (imm == 0)
1078 			break;
1079 		/* srag %dst,%dst,imm(%r0) */
1080 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1081 		break;
1082 	/*
1083 	 * BPF_NEG
1084 	 */
1085 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1086 		/* lcr %dst,%dst */
1087 		EMIT2(0x1300, dst_reg, dst_reg);
1088 		EMIT_ZERO(dst_reg);
1089 		break;
1090 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1091 		/* lcgr %dst,%dst */
1092 		EMIT4(0xb9030000, dst_reg, dst_reg);
1093 		break;
1094 	/*
1095 	 * BPF_FROM_BE/LE
1096 	 */
1097 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1098 		/* s390 is big endian, therefore only clear high order bytes */
1099 		switch (imm) {
1100 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1101 			/* llghr %dst,%dst */
1102 			EMIT4(0xb9850000, dst_reg, dst_reg);
1103 			if (insn_is_zext(&insn[1]))
1104 				insn_count = 2;
1105 			break;
1106 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1107 			if (!fp->aux->verifier_zext)
1108 				/* llgfr %dst,%dst */
1109 				EMIT4(0xb9160000, dst_reg, dst_reg);
1110 			break;
1111 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1112 			break;
1113 		}
1114 		break;
1115 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1116 		switch (imm) {
1117 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1118 			/* lrvr %dst,%dst */
1119 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1120 			/* srl %dst,16(%r0) */
1121 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1122 			/* llghr %dst,%dst */
1123 			EMIT4(0xb9850000, dst_reg, dst_reg);
1124 			if (insn_is_zext(&insn[1]))
1125 				insn_count = 2;
1126 			break;
1127 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1128 			/* lrvr %dst,%dst */
1129 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1130 			if (!fp->aux->verifier_zext)
1131 				/* llgfr %dst,%dst */
1132 				EMIT4(0xb9160000, dst_reg, dst_reg);
1133 			break;
1134 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1135 			/* lrvgr %dst,%dst */
1136 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1137 			break;
1138 		}
1139 		break;
1140 	/*
1141 	 * BPF_NOSPEC (speculation barrier)
1142 	 */
1143 	case BPF_ST | BPF_NOSPEC:
1144 		break;
1145 	/*
1146 	 * BPF_ST(X)
1147 	 */
1148 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1149 		/* stcy %src,off(%dst) */
1150 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1151 		jit->seen |= SEEN_MEM;
1152 		break;
1153 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1154 		/* sthy %src,off(%dst) */
1155 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1156 		jit->seen |= SEEN_MEM;
1157 		break;
1158 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1159 		/* sty %src,off(%dst) */
1160 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1161 		jit->seen |= SEEN_MEM;
1162 		break;
1163 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1164 		/* stg %src,off(%dst) */
1165 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1166 		jit->seen |= SEEN_MEM;
1167 		break;
1168 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1169 		/* lhi %w0,imm */
1170 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1171 		/* stcy %w0,off(dst) */
1172 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1173 		jit->seen |= SEEN_MEM;
1174 		break;
1175 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1176 		/* lhi %w0,imm */
1177 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1178 		/* sthy %w0,off(dst) */
1179 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1180 		jit->seen |= SEEN_MEM;
1181 		break;
1182 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1183 		/* llilf %w0,imm  */
1184 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1185 		/* sty %w0,off(%dst) */
1186 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1187 		jit->seen |= SEEN_MEM;
1188 		break;
1189 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1190 		/* lgfi %w0,imm */
1191 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1192 		/* stg %w0,off(%dst) */
1193 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1194 		jit->seen |= SEEN_MEM;
1195 		break;
1196 	/*
1197 	 * BPF_ATOMIC
1198 	 */
1199 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1200 	case BPF_STX | BPF_ATOMIC | BPF_W:
1201 	{
1202 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1203 
1204 		switch (insn->imm) {
1205 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1206 #define EMIT_ATOMIC(op32, op64) do {					\
1207 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1208 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1209 		      src_reg, dst_reg, off);				\
1210 	if (is32 && (insn->imm & BPF_FETCH))				\
1211 		EMIT_ZERO(src_reg);					\
1212 } while (0)
1213 		case BPF_ADD:
1214 		case BPF_ADD | BPF_FETCH:
1215 			/* {laal|laalg} */
1216 			EMIT_ATOMIC(0x00fa, 0x00ea);
1217 			break;
1218 		case BPF_AND:
1219 		case BPF_AND | BPF_FETCH:
1220 			/* {lan|lang} */
1221 			EMIT_ATOMIC(0x00f4, 0x00e4);
1222 			break;
1223 		case BPF_OR:
1224 		case BPF_OR | BPF_FETCH:
1225 			/* {lao|laog} */
1226 			EMIT_ATOMIC(0x00f6, 0x00e6);
1227 			break;
1228 		case BPF_XOR:
1229 		case BPF_XOR | BPF_FETCH:
1230 			/* {lax|laxg} */
1231 			EMIT_ATOMIC(0x00f7, 0x00e7);
1232 			break;
1233 #undef EMIT_ATOMIC
1234 		case BPF_XCHG:
1235 			/* {ly|lg} %w0,off(%dst) */
1236 			EMIT6_DISP_LH(0xe3000000,
1237 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1238 				      dst_reg, off);
1239 			/* 0: {csy|csg} %w0,%src,off(%dst) */
1240 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1241 				      REG_W0, src_reg, dst_reg, off);
1242 			/* brc 4,0b */
1243 			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1244 			/* {llgfr|lgr} %src,%w0 */
1245 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1246 			if (is32 && insn_is_zext(&insn[1]))
1247 				insn_count = 2;
1248 			break;
1249 		case BPF_CMPXCHG:
1250 			/* 0: {csy|csg} %b0,%src,off(%dst) */
1251 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1252 				      BPF_REG_0, src_reg, dst_reg, off);
1253 			break;
1254 		default:
1255 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1256 			return -1;
1257 		}
1258 
1259 		jit->seen |= SEEN_MEM;
1260 		break;
1261 	}
1262 	/*
1263 	 * BPF_LDX
1264 	 */
1265 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1266 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1267 		/* llgc %dst,0(off,%src) */
1268 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1269 		jit->seen |= SEEN_MEM;
1270 		if (insn_is_zext(&insn[1]))
1271 			insn_count = 2;
1272 		break;
1273 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1274 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1275 		/* llgh %dst,0(off,%src) */
1276 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1277 		jit->seen |= SEEN_MEM;
1278 		if (insn_is_zext(&insn[1]))
1279 			insn_count = 2;
1280 		break;
1281 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1282 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1283 		/* llgf %dst,off(%src) */
1284 		jit->seen |= SEEN_MEM;
1285 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1286 		if (insn_is_zext(&insn[1]))
1287 			insn_count = 2;
1288 		break;
1289 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1290 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1291 		/* lg %dst,0(off,%src) */
1292 		jit->seen |= SEEN_MEM;
1293 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1294 		break;
1295 	/*
1296 	 * BPF_JMP / CALL
1297 	 */
1298 	case BPF_JMP | BPF_CALL:
1299 	{
1300 		u64 func;
1301 		bool func_addr_fixed;
1302 		int ret;
1303 
1304 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1305 					    &func, &func_addr_fixed);
1306 		if (ret < 0)
1307 			return -1;
1308 
1309 		REG_SET_SEEN(BPF_REG_5);
1310 		jit->seen |= SEEN_FUNC;
1311 		/* lgrl %w1,func */
1312 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1313 		if (nospec_uses_trampoline()) {
1314 			/* brasl %r14,__s390_indirect_jump_r1 */
1315 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1316 		} else {
1317 			/* basr %r14,%w1 */
1318 			EMIT2(0x0d00, REG_14, REG_W1);
1319 		}
1320 		/* lgr %b0,%r2: load return value into %b0 */
1321 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1322 		break;
1323 	}
1324 	case BPF_JMP | BPF_TAIL_CALL: {
1325 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1326 
1327 		/*
1328 		 * Implicit input:
1329 		 *  B1: pointer to ctx
1330 		 *  B2: pointer to bpf_array
1331 		 *  B3: index in bpf_array
1332 		 */
1333 		jit->seen |= SEEN_TAIL_CALL;
1334 
1335 		/*
1336 		 * if (index >= array->map.max_entries)
1337 		 *         goto out;
1338 		 */
1339 
1340 		/* llgf %w1,map.max_entries(%b2) */
1341 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1342 			      offsetof(struct bpf_array, map.max_entries));
1343 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1344 		/* clrj %b3,%w1,0xa,out */
1345 		patch_1_clrj = jit->prg;
1346 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1347 				 jit->prg);
1348 
1349 		/*
1350 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1351 		 *         goto out;
1352 		 */
1353 
1354 		if (jit->seen & SEEN_STACK)
1355 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1356 		else
1357 			off = STK_OFF_TCCNT;
1358 		/* lhi %w0,1 */
1359 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1360 		/* laal %w1,%w0,off(%r15) */
1361 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1362 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1363 		patch_2_clij = jit->prg;
1364 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1365 				 2, jit->prg);
1366 
1367 		/*
1368 		 * prog = array->ptrs[index];
1369 		 * if (prog == NULL)
1370 		 *         goto out;
1371 		 */
1372 
1373 		/* llgfr %r1,%b3: %r1 = (u32) index */
1374 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1375 		/* sllg %r1,%r1,3: %r1 *= 8 */
1376 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1377 		/* ltg %r1,prog(%b2,%r1) */
1378 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1379 			      REG_1, offsetof(struct bpf_array, ptrs));
1380 		/* brc 0x8,out */
1381 		patch_3_brc = jit->prg;
1382 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1383 
1384 		/*
1385 		 * Restore registers before calling function
1386 		 */
1387 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1388 
1389 		/*
1390 		 * goto *(prog->bpf_func + tail_call_start);
1391 		 */
1392 
1393 		/* lg %r1,bpf_func(%r1) */
1394 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1395 			      offsetof(struct bpf_prog, bpf_func));
1396 		/* bc 0xf,tail_call_start(%r1) */
1397 		_EMIT4(0x47f01000 + jit->tail_call_start);
1398 		/* out: */
1399 		if (jit->prg_buf) {
1400 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1401 				(jit->prg - patch_1_clrj) >> 1;
1402 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1403 				(jit->prg - patch_2_clij) >> 1;
1404 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1405 				(jit->prg - patch_3_brc) >> 1;
1406 		}
1407 		break;
1408 	}
1409 	case BPF_JMP | BPF_EXIT: /* return b0 */
1410 		last = (i == fp->len - 1) ? 1 : 0;
1411 		if (last)
1412 			break;
1413 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1414 			/* brc 0xf, <exit> */
1415 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1416 		else
1417 			/* brcl 0xf, <exit> */
1418 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1419 		break;
1420 	/*
1421 	 * Branch relative (number of skipped instructions) to offset on
1422 	 * condition.
1423 	 *
1424 	 * Condition code to mask mapping:
1425 	 *
1426 	 * CC | Description	   | Mask
1427 	 * ------------------------------
1428 	 * 0  | Operands equal	   |	8
1429 	 * 1  | First operand low  |	4
1430 	 * 2  | First operand high |	2
1431 	 * 3  | Unused		   |	1
1432 	 *
1433 	 * For s390x relative branches: ip = ip + off_bytes
1434 	 * For BPF relative branches:	insn = insn + off_insns + 1
1435 	 *
1436 	 * For example for s390x with offset 0 we jump to the branch
1437 	 * instruction itself (loop) and for BPF with offset 0 we
1438 	 * branch to the instruction behind the branch.
1439 	 */
1440 	case BPF_JMP | BPF_JA: /* if (true) */
1441 		mask = 0xf000; /* j */
1442 		goto branch_oc;
1443 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1444 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1445 		mask = 0x2000; /* jh */
1446 		goto branch_ks;
1447 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1448 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1449 		mask = 0x4000; /* jl */
1450 		goto branch_ks;
1451 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1452 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1453 		mask = 0xa000; /* jhe */
1454 		goto branch_ks;
1455 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1456 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1457 		mask = 0xc000; /* jle */
1458 		goto branch_ks;
1459 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1460 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1461 		mask = 0x2000; /* jh */
1462 		goto branch_ku;
1463 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1464 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1465 		mask = 0x4000; /* jl */
1466 		goto branch_ku;
1467 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1468 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1469 		mask = 0xa000; /* jhe */
1470 		goto branch_ku;
1471 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1472 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1473 		mask = 0xc000; /* jle */
1474 		goto branch_ku;
1475 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1476 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1477 		mask = 0x7000; /* jne */
1478 		goto branch_ku;
1479 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1480 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1481 		mask = 0x8000; /* je */
1482 		goto branch_ku;
1483 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1484 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1485 		mask = 0x7000; /* jnz */
1486 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1487 			/* llilf %w1,imm (load zero extend imm) */
1488 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1489 			/* nr %w1,%dst */
1490 			EMIT2(0x1400, REG_W1, dst_reg);
1491 		} else {
1492 			/* lgfi %w1,imm (load sign extend imm) */
1493 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1494 			/* ngr %w1,%dst */
1495 			EMIT4(0xb9800000, REG_W1, dst_reg);
1496 		}
1497 		goto branch_oc;
1498 
1499 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1500 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1501 		mask = 0x2000; /* jh */
1502 		goto branch_xs;
1503 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1504 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1505 		mask = 0x4000; /* jl */
1506 		goto branch_xs;
1507 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1508 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1509 		mask = 0xa000; /* jhe */
1510 		goto branch_xs;
1511 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1512 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1513 		mask = 0xc000; /* jle */
1514 		goto branch_xs;
1515 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1516 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1517 		mask = 0x2000; /* jh */
1518 		goto branch_xu;
1519 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1520 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1521 		mask = 0x4000; /* jl */
1522 		goto branch_xu;
1523 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1524 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1525 		mask = 0xa000; /* jhe */
1526 		goto branch_xu;
1527 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1528 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1529 		mask = 0xc000; /* jle */
1530 		goto branch_xu;
1531 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1532 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1533 		mask = 0x7000; /* jne */
1534 		goto branch_xu;
1535 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1536 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1537 		mask = 0x8000; /* je */
1538 		goto branch_xu;
1539 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1540 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1541 	{
1542 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1543 
1544 		mask = 0x7000; /* jnz */
1545 		/* nrk or ngrk %w1,%dst,%src */
1546 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1547 			  REG_W1, dst_reg, src_reg);
1548 		goto branch_oc;
1549 branch_ks:
1550 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1551 		/* cfi or cgfi %dst,imm */
1552 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1553 			  dst_reg, imm);
1554 		if (!is_first_pass(jit) &&
1555 		    can_use_rel(jit, addrs[i + off + 1])) {
1556 			/* brc mask,off */
1557 			EMIT4_PCREL_RIC(0xa7040000,
1558 					mask >> 12, addrs[i + off + 1]);
1559 		} else {
1560 			/* brcl mask,off */
1561 			EMIT6_PCREL_RILC(0xc0040000,
1562 					 mask >> 12, addrs[i + off + 1]);
1563 		}
1564 		break;
1565 branch_ku:
1566 		/* lgfi %w1,imm (load sign extend imm) */
1567 		src_reg = REG_1;
1568 		EMIT6_IMM(0xc0010000, src_reg, imm);
1569 		goto branch_xu;
1570 branch_xs:
1571 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1572 		if (!is_first_pass(jit) &&
1573 		    can_use_rel(jit, addrs[i + off + 1])) {
1574 			/* crj or cgrj %dst,%src,mask,off */
1575 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1576 				    dst_reg, src_reg, i, off, mask);
1577 		} else {
1578 			/* cr or cgr %dst,%src */
1579 			if (is_jmp32)
1580 				EMIT2(0x1900, dst_reg, src_reg);
1581 			else
1582 				EMIT4(0xb9200000, dst_reg, src_reg);
1583 			/* brcl mask,off */
1584 			EMIT6_PCREL_RILC(0xc0040000,
1585 					 mask >> 12, addrs[i + off + 1]);
1586 		}
1587 		break;
1588 branch_xu:
1589 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1590 		if (!is_first_pass(jit) &&
1591 		    can_use_rel(jit, addrs[i + off + 1])) {
1592 			/* clrj or clgrj %dst,%src,mask,off */
1593 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1594 				    dst_reg, src_reg, i, off, mask);
1595 		} else {
1596 			/* clr or clgr %dst,%src */
1597 			if (is_jmp32)
1598 				EMIT2(0x1500, dst_reg, src_reg);
1599 			else
1600 				EMIT4(0xb9210000, dst_reg, src_reg);
1601 			/* brcl mask,off */
1602 			EMIT6_PCREL_RILC(0xc0040000,
1603 					 mask >> 12, addrs[i + off + 1]);
1604 		}
1605 		break;
1606 branch_oc:
1607 		if (!is_first_pass(jit) &&
1608 		    can_use_rel(jit, addrs[i + off + 1])) {
1609 			/* brc mask,off */
1610 			EMIT4_PCREL_RIC(0xa7040000,
1611 					mask >> 12, addrs[i + off + 1]);
1612 		} else {
1613 			/* brcl mask,off */
1614 			EMIT6_PCREL_RILC(0xc0040000,
1615 					 mask >> 12, addrs[i + off + 1]);
1616 		}
1617 		break;
1618 	}
1619 	default: /* too complex, give up */
1620 		pr_err("Unknown opcode %02x\n", insn->code);
1621 		return -1;
1622 	}
1623 
1624 	if (probe_prg != -1) {
1625 		/*
1626 		 * Handlers of certain exceptions leave psw.addr pointing to
1627 		 * the instruction directly after the failing one. Therefore,
1628 		 * create two exception table entries and also add a nop in
1629 		 * case two probing instructions come directly after each
1630 		 * other.
1631 		 */
1632 		nop_prg = jit->prg;
1633 		/* bcr 0,%0 */
1634 		_EMIT2(0x0700);
1635 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1636 		if (err < 0)
1637 			return err;
1638 	}
1639 
1640 	return insn_count;
1641 }
1642 
1643 /*
1644  * Return whether new i-th instruction address does not violate any invariant
1645  */
1646 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1647 {
1648 	/* On the first pass anything goes */
1649 	if (is_first_pass(jit))
1650 		return true;
1651 
1652 	/* The codegen pass must not change anything */
1653 	if (is_codegen_pass(jit))
1654 		return jit->addrs[i] == jit->prg;
1655 
1656 	/* Passes in between must not increase code size */
1657 	return jit->addrs[i] >= jit->prg;
1658 }
1659 
1660 /*
1661  * Update the address of i-th instruction
1662  */
1663 static int bpf_set_addr(struct bpf_jit *jit, int i)
1664 {
1665 	int delta;
1666 
1667 	if (is_codegen_pass(jit)) {
1668 		delta = jit->prg - jit->addrs[i];
1669 		if (delta < 0)
1670 			bpf_skip(jit, -delta);
1671 	}
1672 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1673 		return -1;
1674 	jit->addrs[i] = jit->prg;
1675 	return 0;
1676 }
1677 
1678 /*
1679  * Compile eBPF program into s390x code
1680  */
1681 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1682 			bool extra_pass, u32 stack_depth)
1683 {
1684 	int i, insn_count, lit32_size, lit64_size;
1685 
1686 	jit->lit32 = jit->lit32_start;
1687 	jit->lit64 = jit->lit64_start;
1688 	jit->prg = 0;
1689 	jit->excnt = 0;
1690 
1691 	bpf_jit_prologue(jit, stack_depth);
1692 	if (bpf_set_addr(jit, 0) < 0)
1693 		return -1;
1694 	for (i = 0; i < fp->len; i += insn_count) {
1695 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1696 		if (insn_count < 0)
1697 			return -1;
1698 		/* Next instruction address */
1699 		if (bpf_set_addr(jit, i + insn_count) < 0)
1700 			return -1;
1701 	}
1702 	bpf_jit_epilogue(jit, stack_depth);
1703 
1704 	lit32_size = jit->lit32 - jit->lit32_start;
1705 	lit64_size = jit->lit64 - jit->lit64_start;
1706 	jit->lit32_start = jit->prg;
1707 	if (lit32_size)
1708 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1709 	jit->lit64_start = jit->lit32_start + lit32_size;
1710 	if (lit64_size)
1711 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1712 	jit->size = jit->lit64_start + lit64_size;
1713 	jit->size_prg = jit->prg;
1714 
1715 	if (WARN_ON_ONCE(fp->aux->extable &&
1716 			 jit->excnt != fp->aux->num_exentries))
1717 		/* Verifier bug - too many entries. */
1718 		return -1;
1719 
1720 	return 0;
1721 }
1722 
1723 bool bpf_jit_needs_zext(void)
1724 {
1725 	return true;
1726 }
1727 
1728 struct s390_jit_data {
1729 	struct bpf_binary_header *header;
1730 	struct bpf_jit ctx;
1731 	int pass;
1732 };
1733 
1734 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1735 					       struct bpf_prog *fp)
1736 {
1737 	struct bpf_binary_header *header;
1738 	u32 extable_size;
1739 	u32 code_size;
1740 
1741 	/* We need two entries per insn. */
1742 	fp->aux->num_exentries *= 2;
1743 
1744 	code_size = roundup(jit->size,
1745 			    __alignof__(struct exception_table_entry));
1746 	extable_size = fp->aux->num_exentries *
1747 		sizeof(struct exception_table_entry);
1748 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1749 				      8, jit_fill_hole);
1750 	if (!header)
1751 		return NULL;
1752 	fp->aux->extable = (struct exception_table_entry *)
1753 		(jit->prg_buf + code_size);
1754 	return header;
1755 }
1756 
1757 /*
1758  * Compile eBPF program "fp"
1759  */
1760 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1761 {
1762 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1763 	struct bpf_prog *tmp, *orig_fp = fp;
1764 	struct bpf_binary_header *header;
1765 	struct s390_jit_data *jit_data;
1766 	bool tmp_blinded = false;
1767 	bool extra_pass = false;
1768 	struct bpf_jit jit;
1769 	int pass;
1770 
1771 	if (!fp->jit_requested)
1772 		return orig_fp;
1773 
1774 	tmp = bpf_jit_blind_constants(fp);
1775 	/*
1776 	 * If blinding was requested and we failed during blinding,
1777 	 * we must fall back to the interpreter.
1778 	 */
1779 	if (IS_ERR(tmp))
1780 		return orig_fp;
1781 	if (tmp != fp) {
1782 		tmp_blinded = true;
1783 		fp = tmp;
1784 	}
1785 
1786 	jit_data = fp->aux->jit_data;
1787 	if (!jit_data) {
1788 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1789 		if (!jit_data) {
1790 			fp = orig_fp;
1791 			goto out;
1792 		}
1793 		fp->aux->jit_data = jit_data;
1794 	}
1795 	if (jit_data->ctx.addrs) {
1796 		jit = jit_data->ctx;
1797 		header = jit_data->header;
1798 		extra_pass = true;
1799 		pass = jit_data->pass + 1;
1800 		goto skip_init_ctx;
1801 	}
1802 
1803 	memset(&jit, 0, sizeof(jit));
1804 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1805 	if (jit.addrs == NULL) {
1806 		fp = orig_fp;
1807 		goto free_addrs;
1808 	}
1809 	/*
1810 	 * Three initial passes:
1811 	 *   - 1/2: Determine clobbered registers
1812 	 *   - 3:   Calculate program size and addrs array
1813 	 */
1814 	for (pass = 1; pass <= 3; pass++) {
1815 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1816 			fp = orig_fp;
1817 			goto free_addrs;
1818 		}
1819 	}
1820 	/*
1821 	 * Final pass: Allocate and generate program
1822 	 */
1823 	header = bpf_jit_alloc(&jit, fp);
1824 	if (!header) {
1825 		fp = orig_fp;
1826 		goto free_addrs;
1827 	}
1828 skip_init_ctx:
1829 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1830 		bpf_jit_binary_free(header);
1831 		fp = orig_fp;
1832 		goto free_addrs;
1833 	}
1834 	if (bpf_jit_enable > 1) {
1835 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1836 		print_fn_code(jit.prg_buf, jit.size_prg);
1837 	}
1838 	if (!fp->is_func || extra_pass) {
1839 		bpf_jit_binary_lock_ro(header);
1840 	} else {
1841 		jit_data->header = header;
1842 		jit_data->ctx = jit;
1843 		jit_data->pass = pass;
1844 	}
1845 	fp->bpf_func = (void *) jit.prg_buf;
1846 	fp->jited = 1;
1847 	fp->jited_len = jit.size;
1848 
1849 	if (!fp->is_func || extra_pass) {
1850 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1851 free_addrs:
1852 		kvfree(jit.addrs);
1853 		kfree(jit_data);
1854 		fp->aux->jit_data = NULL;
1855 	}
1856 out:
1857 	if (tmp_blinded)
1858 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1859 					   tmp : orig_fp);
1860 	return fp;
1861 }
1862