xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision efe4a1ac)
1 /*
2  * BPF Jit compiler for s390.
3  *
4  * Minimum build requirements:
5  *
6  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
7  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
9  *  - PACK_STACK
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <asm/cacheflush.h>
26 #include <asm/dis.h>
27 #include <asm/set_memory.h>
28 #include "bpf_jit.h"
29 
30 int bpf_jit_enable __read_mostly;
31 
32 struct bpf_jit {
33 	u32 seen;		/* Flags to remember seen eBPF instructions */
34 	u32 seen_reg[16];	/* Array to remember which registers are used */
35 	u32 *addrs;		/* Array with relative instruction addresses */
36 	u8 *prg_buf;		/* Start of program */
37 	int size;		/* Size of program and literal pool */
38 	int size_prg;		/* Size of program */
39 	int prg;		/* Current position in program */
40 	int lit_start;		/* Start of literal pool */
41 	int lit;		/* Current position in literal pool */
42 	int base_ip;		/* Base address for literal pool */
43 	int ret0_ip;		/* Address of return 0 */
44 	int exit_ip;		/* Address of exit */
45 	int tail_call_start;	/* Tail call start offset */
46 	int labels[1];		/* Labels for local jumps */
47 };
48 
49 #define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
50 
51 #define SEEN_SKB	1	/* skb access */
52 #define SEEN_MEM	2	/* use mem[] for temporary storage */
53 #define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
54 #define SEEN_LITERAL	8	/* code uses literals */
55 #define SEEN_FUNC	16	/* calls C functions */
56 #define SEEN_TAIL_CALL	32	/* code uses tail calls */
57 #define SEEN_SKB_CHANGE	64	/* code changes skb data */
58 #define SEEN_REG_AX	128	/* code uses constant blinding */
59 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
60 
61 /*
62  * s390 registers
63  */
64 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
65 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
66 #define REG_SKB_DATA	(MAX_BPF_JIT_REG + 2)	/* SKB data register */
67 #define REG_L		(MAX_BPF_JIT_REG + 3)	/* Literal pool register */
68 #define REG_15		(MAX_BPF_JIT_REG + 4)	/* Register 15 */
69 #define REG_0		REG_W0			/* Register 0 */
70 #define REG_1		REG_W1			/* Register 1 */
71 #define REG_2		BPF_REG_1		/* Register 2 */
72 #define REG_14		BPF_REG_0		/* Register 14 */
73 
74 /*
75  * Mapping of BPF registers to s390 registers
76  */
77 static const int reg2hex[] = {
78 	/* Return code */
79 	[BPF_REG_0]	= 14,
80 	/* Function parameters */
81 	[BPF_REG_1]	= 2,
82 	[BPF_REG_2]	= 3,
83 	[BPF_REG_3]	= 4,
84 	[BPF_REG_4]	= 5,
85 	[BPF_REG_5]	= 6,
86 	/* Call saved registers */
87 	[BPF_REG_6]	= 7,
88 	[BPF_REG_7]	= 8,
89 	[BPF_REG_8]	= 9,
90 	[BPF_REG_9]	= 10,
91 	/* BPF stack pointer */
92 	[BPF_REG_FP]	= 13,
93 	/* Register for blinding (shared with REG_SKB_DATA) */
94 	[BPF_REG_AX]	= 12,
95 	/* SKB data pointer */
96 	[REG_SKB_DATA]	= 12,
97 	/* Work registers for s390x backend */
98 	[REG_W0]	= 0,
99 	[REG_W1]	= 1,
100 	[REG_L]		= 11,
101 	[REG_15]	= 15,
102 };
103 
104 static inline u32 reg(u32 dst_reg, u32 src_reg)
105 {
106 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
107 }
108 
109 static inline u32 reg_high(u32 reg)
110 {
111 	return reg2hex[reg] << 4;
112 }
113 
114 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
115 {
116 	u32 r1 = reg2hex[b1];
117 
118 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
119 		jit->seen_reg[r1] = 1;
120 }
121 
122 #define REG_SET_SEEN(b1)					\
123 ({								\
124 	reg_set_seen(jit, b1);					\
125 })
126 
127 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
128 
129 /*
130  * EMIT macros for code generation
131  */
132 
133 #define _EMIT2(op)						\
134 ({								\
135 	if (jit->prg_buf)					\
136 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
137 	jit->prg += 2;						\
138 })
139 
140 #define EMIT2(op, b1, b2)					\
141 ({								\
142 	_EMIT2(op | reg(b1, b2));				\
143 	REG_SET_SEEN(b1);					\
144 	REG_SET_SEEN(b2);					\
145 })
146 
147 #define _EMIT4(op)						\
148 ({								\
149 	if (jit->prg_buf)					\
150 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
151 	jit->prg += 4;						\
152 })
153 
154 #define EMIT4(op, b1, b2)					\
155 ({								\
156 	_EMIT4(op | reg(b1, b2));				\
157 	REG_SET_SEEN(b1);					\
158 	REG_SET_SEEN(b2);					\
159 })
160 
161 #define EMIT4_RRF(op, b1, b2, b3)				\
162 ({								\
163 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
164 	REG_SET_SEEN(b1);					\
165 	REG_SET_SEEN(b2);					\
166 	REG_SET_SEEN(b3);					\
167 })
168 
169 #define _EMIT4_DISP(op, disp)					\
170 ({								\
171 	unsigned int __disp = (disp) & 0xfff;			\
172 	_EMIT4(op | __disp);					\
173 })
174 
175 #define EMIT4_DISP(op, b1, b2, disp)				\
176 ({								\
177 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
178 		    reg_high(b2) << 8, disp);			\
179 	REG_SET_SEEN(b1);					\
180 	REG_SET_SEEN(b2);					\
181 })
182 
183 #define EMIT4_IMM(op, b1, imm)					\
184 ({								\
185 	unsigned int __imm = (imm) & 0xffff;			\
186 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
187 	REG_SET_SEEN(b1);					\
188 })
189 
190 #define EMIT4_PCREL(op, pcrel)					\
191 ({								\
192 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
193 	_EMIT4(op | __pcrel);					\
194 })
195 
196 #define _EMIT6(op1, op2)					\
197 ({								\
198 	if (jit->prg_buf) {					\
199 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
200 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
201 	}							\
202 	jit->prg += 6;						\
203 })
204 
205 #define _EMIT6_DISP(op1, op2, disp)				\
206 ({								\
207 	unsigned int __disp = (disp) & 0xfff;			\
208 	_EMIT6(op1 | __disp, op2);				\
209 })
210 
211 #define _EMIT6_DISP_LH(op1, op2, disp)				\
212 ({								\
213 	u32 _disp = (u32) disp;					\
214 	unsigned int __disp_h = _disp & 0xff000;		\
215 	unsigned int __disp_l = _disp & 0x00fff;		\
216 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
217 })
218 
219 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
220 ({								\
221 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
222 		       reg_high(b3) << 8, op2, disp);		\
223 	REG_SET_SEEN(b1);					\
224 	REG_SET_SEEN(b2);					\
225 	REG_SET_SEEN(b3);					\
226 })
227 
228 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
229 ({								\
230 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
231 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
232 	       op2 | mask << 12);				\
233 	REG_SET_SEEN(b1);					\
234 	REG_SET_SEEN(b2);					\
235 })
236 
237 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
238 ({								\
239 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
240 	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
241 		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
242 	REG_SET_SEEN(b1);					\
243 	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
244 })
245 
246 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
247 ({								\
248 	/* Branch instruction needs 6 bytes */			\
249 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
250 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
251 	REG_SET_SEEN(b1);					\
252 	REG_SET_SEEN(b2);					\
253 })
254 
255 #define _EMIT6_IMM(op, imm)					\
256 ({								\
257 	unsigned int __imm = (imm);				\
258 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
259 })
260 
261 #define EMIT6_IMM(op, b1, imm)					\
262 ({								\
263 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
264 	REG_SET_SEEN(b1);					\
265 })
266 
267 #define EMIT_CONST_U32(val)					\
268 ({								\
269 	unsigned int ret;					\
270 	ret = jit->lit - jit->base_ip;				\
271 	jit->seen |= SEEN_LITERAL;				\
272 	if (jit->prg_buf)					\
273 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
274 	jit->lit += 4;						\
275 	ret;							\
276 })
277 
278 #define EMIT_CONST_U64(val)					\
279 ({								\
280 	unsigned int ret;					\
281 	ret = jit->lit - jit->base_ip;				\
282 	jit->seen |= SEEN_LITERAL;				\
283 	if (jit->prg_buf)					\
284 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
285 	jit->lit += 8;						\
286 	ret;							\
287 })
288 
289 #define EMIT_ZERO(b1)						\
290 ({								\
291 	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
292 	EMIT4(0xb9160000, b1, b1);				\
293 	REG_SET_SEEN(b1);					\
294 })
295 
296 /*
297  * Fill whole space with illegal instructions
298  */
299 static void jit_fill_hole(void *area, unsigned int size)
300 {
301 	memset(area, 0, size);
302 }
303 
304 /*
305  * Save registers from "rs" (register start) to "re" (register end) on stack
306  */
307 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
308 {
309 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
310 
311 	if (rs == re)
312 		/* stg %rs,off(%r15) */
313 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
314 	else
315 		/* stmg %rs,%re,off(%r15) */
316 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
317 }
318 
319 /*
320  * Restore registers from "rs" (register start) to "re" (register end) on stack
321  */
322 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
323 {
324 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
325 
326 	if (jit->seen & SEEN_STACK)
327 		off += STK_OFF;
328 
329 	if (rs == re)
330 		/* lg %rs,off(%r15) */
331 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
332 	else
333 		/* lmg %rs,%re,off(%r15) */
334 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
335 }
336 
337 /*
338  * Return first seen register (from start)
339  */
340 static int get_start(struct bpf_jit *jit, int start)
341 {
342 	int i;
343 
344 	for (i = start; i <= 15; i++) {
345 		if (jit->seen_reg[i])
346 			return i;
347 	}
348 	return 0;
349 }
350 
351 /*
352  * Return last seen register (from start) (gap >= 2)
353  */
354 static int get_end(struct bpf_jit *jit, int start)
355 {
356 	int i;
357 
358 	for (i = start; i < 15; i++) {
359 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
360 			return i - 1;
361 	}
362 	return jit->seen_reg[15] ? 15 : 14;
363 }
364 
365 #define REGS_SAVE	1
366 #define REGS_RESTORE	0
367 /*
368  * Save and restore clobbered registers (6-15) on stack.
369  * We save/restore registers in chunks with gap >= 2 registers.
370  */
371 static void save_restore_regs(struct bpf_jit *jit, int op)
372 {
373 
374 	int re = 6, rs;
375 
376 	do {
377 		rs = get_start(jit, re);
378 		if (!rs)
379 			break;
380 		re = get_end(jit, rs + 1);
381 		if (op == REGS_SAVE)
382 			save_regs(jit, rs, re);
383 		else
384 			restore_regs(jit, rs, re);
385 		re++;
386 	} while (re <= 15);
387 }
388 
389 /*
390  * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
391  * we store the SKB header length on the stack and the SKB data
392  * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
393  */
394 static void emit_load_skb_data_hlen(struct bpf_jit *jit)
395 {
396 	/* Header length: llgf %w1,<len>(%b1) */
397 	EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
398 		      offsetof(struct sk_buff, len));
399 	/* s %w1,<data_len>(%b1) */
400 	EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
401 		   offsetof(struct sk_buff, data_len));
402 	/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
403 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
404 	if (!(jit->seen & SEEN_REG_AX))
405 		/* lg %skb_data,data_off(%b1) */
406 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
407 			      BPF_REG_1, offsetof(struct sk_buff, data));
408 }
409 
410 /*
411  * Emit function prologue
412  *
413  * Save registers and create stack frame if necessary.
414  * See stack frame layout desription in "bpf_jit.h"!
415  */
416 static void bpf_jit_prologue(struct bpf_jit *jit)
417 {
418 	if (jit->seen & SEEN_TAIL_CALL) {
419 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
420 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
421 	} else {
422 		/* j tail_call_start: NOP if no tail calls are used */
423 		EMIT4_PCREL(0xa7f40000, 6);
424 		_EMIT2(0);
425 	}
426 	/* Tail calls have to skip above initialization */
427 	jit->tail_call_start = jit->prg;
428 	/* Save registers */
429 	save_restore_regs(jit, REGS_SAVE);
430 	/* Setup literal pool */
431 	if (jit->seen & SEEN_LITERAL) {
432 		/* basr %r13,0 */
433 		EMIT2(0x0d00, REG_L, REG_0);
434 		jit->base_ip = jit->prg;
435 	}
436 	/* Setup stack and backchain */
437 	if (jit->seen & SEEN_STACK) {
438 		if (jit->seen & SEEN_FUNC)
439 			/* lgr %w1,%r15 (backchain) */
440 			EMIT4(0xb9040000, REG_W1, REG_15);
441 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
442 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
443 		/* aghi %r15,-STK_OFF */
444 		EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
445 		if (jit->seen & SEEN_FUNC)
446 			/* stg %w1,152(%r15) (backchain) */
447 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
448 				      REG_15, 152);
449 	}
450 	if (jit->seen & SEEN_SKB)
451 		emit_load_skb_data_hlen(jit);
452 	if (jit->seen & SEEN_SKB_CHANGE)
453 		/* stg %b1,ST_OFF_SKBP(%r0,%r15) */
454 		EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
455 			      STK_OFF_SKBP);
456 }
457 
458 /*
459  * Function epilogue
460  */
461 static void bpf_jit_epilogue(struct bpf_jit *jit)
462 {
463 	/* Return 0 */
464 	if (jit->seen & SEEN_RET0) {
465 		jit->ret0_ip = jit->prg;
466 		/* lghi %b0,0 */
467 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
468 	}
469 	jit->exit_ip = jit->prg;
470 	/* Load exit code: lgr %r2,%b0 */
471 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
472 	/* Restore registers */
473 	save_restore_regs(jit, REGS_RESTORE);
474 	/* br %r14 */
475 	_EMIT2(0x07fe);
476 }
477 
478 /*
479  * Compile one eBPF instruction into s390x code
480  *
481  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
482  * stack space for the large switch statement.
483  */
484 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
485 {
486 	struct bpf_insn *insn = &fp->insnsi[i];
487 	int jmp_off, last, insn_count = 1;
488 	unsigned int func_addr, mask;
489 	u32 dst_reg = insn->dst_reg;
490 	u32 src_reg = insn->src_reg;
491 	u32 *addrs = jit->addrs;
492 	s32 imm = insn->imm;
493 	s16 off = insn->off;
494 
495 	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
496 		jit->seen |= SEEN_REG_AX;
497 	switch (insn->code) {
498 	/*
499 	 * BPF_MOV
500 	 */
501 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
502 		/* llgfr %dst,%src */
503 		EMIT4(0xb9160000, dst_reg, src_reg);
504 		break;
505 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
506 		/* lgr %dst,%src */
507 		EMIT4(0xb9040000, dst_reg, src_reg);
508 		break;
509 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
510 		/* llilf %dst,imm */
511 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
512 		break;
513 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
514 		/* lgfi %dst,imm */
515 		EMIT6_IMM(0xc0010000, dst_reg, imm);
516 		break;
517 	/*
518 	 * BPF_LD 64
519 	 */
520 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
521 	{
522 		/* 16 byte instruction that uses two 'struct bpf_insn' */
523 		u64 imm64;
524 
525 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
526 		/* lg %dst,<d(imm)>(%l) */
527 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
528 			      EMIT_CONST_U64(imm64));
529 		insn_count = 2;
530 		break;
531 	}
532 	/*
533 	 * BPF_ADD
534 	 */
535 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
536 		/* ar %dst,%src */
537 		EMIT2(0x1a00, dst_reg, src_reg);
538 		EMIT_ZERO(dst_reg);
539 		break;
540 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
541 		/* agr %dst,%src */
542 		EMIT4(0xb9080000, dst_reg, src_reg);
543 		break;
544 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
545 		if (!imm)
546 			break;
547 		/* alfi %dst,imm */
548 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
549 		EMIT_ZERO(dst_reg);
550 		break;
551 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
552 		if (!imm)
553 			break;
554 		/* agfi %dst,imm */
555 		EMIT6_IMM(0xc2080000, dst_reg, imm);
556 		break;
557 	/*
558 	 * BPF_SUB
559 	 */
560 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
561 		/* sr %dst,%src */
562 		EMIT2(0x1b00, dst_reg, src_reg);
563 		EMIT_ZERO(dst_reg);
564 		break;
565 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
566 		/* sgr %dst,%src */
567 		EMIT4(0xb9090000, dst_reg, src_reg);
568 		break;
569 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
570 		if (!imm)
571 			break;
572 		/* alfi %dst,-imm */
573 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
574 		EMIT_ZERO(dst_reg);
575 		break;
576 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
577 		if (!imm)
578 			break;
579 		/* agfi %dst,-imm */
580 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
581 		break;
582 	/*
583 	 * BPF_MUL
584 	 */
585 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
586 		/* msr %dst,%src */
587 		EMIT4(0xb2520000, dst_reg, src_reg);
588 		EMIT_ZERO(dst_reg);
589 		break;
590 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
591 		/* msgr %dst,%src */
592 		EMIT4(0xb90c0000, dst_reg, src_reg);
593 		break;
594 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
595 		if (imm == 1)
596 			break;
597 		/* msfi %r5,imm */
598 		EMIT6_IMM(0xc2010000, dst_reg, imm);
599 		EMIT_ZERO(dst_reg);
600 		break;
601 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
602 		if (imm == 1)
603 			break;
604 		/* msgfi %dst,imm */
605 		EMIT6_IMM(0xc2000000, dst_reg, imm);
606 		break;
607 	/*
608 	 * BPF_DIV / BPF_MOD
609 	 */
610 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
611 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
612 	{
613 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
614 
615 		jit->seen |= SEEN_RET0;
616 		/* ltr %src,%src (if src == 0 goto fail) */
617 		EMIT2(0x1200, src_reg, src_reg);
618 		/* jz <ret0> */
619 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
620 		/* lhi %w0,0 */
621 		EMIT4_IMM(0xa7080000, REG_W0, 0);
622 		/* lr %w1,%dst */
623 		EMIT2(0x1800, REG_W1, dst_reg);
624 		/* dlr %w0,%src */
625 		EMIT4(0xb9970000, REG_W0, src_reg);
626 		/* llgfr %dst,%rc */
627 		EMIT4(0xb9160000, dst_reg, rc_reg);
628 		break;
629 	}
630 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
631 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
632 	{
633 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
634 
635 		jit->seen |= SEEN_RET0;
636 		/* ltgr %src,%src (if src == 0 goto fail) */
637 		EMIT4(0xb9020000, src_reg, src_reg);
638 		/* jz <ret0> */
639 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
640 		/* lghi %w0,0 */
641 		EMIT4_IMM(0xa7090000, REG_W0, 0);
642 		/* lgr %w1,%dst */
643 		EMIT4(0xb9040000, REG_W1, dst_reg);
644 		/* dlgr %w0,%dst */
645 		EMIT4(0xb9870000, REG_W0, src_reg);
646 		/* lgr %dst,%rc */
647 		EMIT4(0xb9040000, dst_reg, rc_reg);
648 		break;
649 	}
650 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
651 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
652 	{
653 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
654 
655 		if (imm == 1) {
656 			if (BPF_OP(insn->code) == BPF_MOD)
657 				/* lhgi %dst,0 */
658 				EMIT4_IMM(0xa7090000, dst_reg, 0);
659 			break;
660 		}
661 		/* lhi %w0,0 */
662 		EMIT4_IMM(0xa7080000, REG_W0, 0);
663 		/* lr %w1,%dst */
664 		EMIT2(0x1800, REG_W1, dst_reg);
665 		/* dl %w0,<d(imm)>(%l) */
666 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
667 			      EMIT_CONST_U32(imm));
668 		/* llgfr %dst,%rc */
669 		EMIT4(0xb9160000, dst_reg, rc_reg);
670 		break;
671 	}
672 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
673 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
674 	{
675 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
676 
677 		if (imm == 1) {
678 			if (BPF_OP(insn->code) == BPF_MOD)
679 				/* lhgi %dst,0 */
680 				EMIT4_IMM(0xa7090000, dst_reg, 0);
681 			break;
682 		}
683 		/* lghi %w0,0 */
684 		EMIT4_IMM(0xa7090000, REG_W0, 0);
685 		/* lgr %w1,%dst */
686 		EMIT4(0xb9040000, REG_W1, dst_reg);
687 		/* dlg %w0,<d(imm)>(%l) */
688 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
689 			      EMIT_CONST_U64(imm));
690 		/* lgr %dst,%rc */
691 		EMIT4(0xb9040000, dst_reg, rc_reg);
692 		break;
693 	}
694 	/*
695 	 * BPF_AND
696 	 */
697 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
698 		/* nr %dst,%src */
699 		EMIT2(0x1400, dst_reg, src_reg);
700 		EMIT_ZERO(dst_reg);
701 		break;
702 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
703 		/* ngr %dst,%src */
704 		EMIT4(0xb9800000, dst_reg, src_reg);
705 		break;
706 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
707 		/* nilf %dst,imm */
708 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
709 		EMIT_ZERO(dst_reg);
710 		break;
711 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
712 		/* ng %dst,<d(imm)>(%l) */
713 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
714 			      EMIT_CONST_U64(imm));
715 		break;
716 	/*
717 	 * BPF_OR
718 	 */
719 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
720 		/* or %dst,%src */
721 		EMIT2(0x1600, dst_reg, src_reg);
722 		EMIT_ZERO(dst_reg);
723 		break;
724 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
725 		/* ogr %dst,%src */
726 		EMIT4(0xb9810000, dst_reg, src_reg);
727 		break;
728 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
729 		/* oilf %dst,imm */
730 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
731 		EMIT_ZERO(dst_reg);
732 		break;
733 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
734 		/* og %dst,<d(imm)>(%l) */
735 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
736 			      EMIT_CONST_U64(imm));
737 		break;
738 	/*
739 	 * BPF_XOR
740 	 */
741 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
742 		/* xr %dst,%src */
743 		EMIT2(0x1700, dst_reg, src_reg);
744 		EMIT_ZERO(dst_reg);
745 		break;
746 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
747 		/* xgr %dst,%src */
748 		EMIT4(0xb9820000, dst_reg, src_reg);
749 		break;
750 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
751 		if (!imm)
752 			break;
753 		/* xilf %dst,imm */
754 		EMIT6_IMM(0xc0070000, dst_reg, imm);
755 		EMIT_ZERO(dst_reg);
756 		break;
757 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
758 		/* xg %dst,<d(imm)>(%l) */
759 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
760 			      EMIT_CONST_U64(imm));
761 		break;
762 	/*
763 	 * BPF_LSH
764 	 */
765 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
766 		/* sll %dst,0(%src) */
767 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
768 		EMIT_ZERO(dst_reg);
769 		break;
770 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
771 		/* sllg %dst,%dst,0(%src) */
772 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
773 		break;
774 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
775 		if (imm == 0)
776 			break;
777 		/* sll %dst,imm(%r0) */
778 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
779 		EMIT_ZERO(dst_reg);
780 		break;
781 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
782 		if (imm == 0)
783 			break;
784 		/* sllg %dst,%dst,imm(%r0) */
785 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
786 		break;
787 	/*
788 	 * BPF_RSH
789 	 */
790 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
791 		/* srl %dst,0(%src) */
792 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
793 		EMIT_ZERO(dst_reg);
794 		break;
795 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
796 		/* srlg %dst,%dst,0(%src) */
797 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
798 		break;
799 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
800 		if (imm == 0)
801 			break;
802 		/* srl %dst,imm(%r0) */
803 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
804 		EMIT_ZERO(dst_reg);
805 		break;
806 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
807 		if (imm == 0)
808 			break;
809 		/* srlg %dst,%dst,imm(%r0) */
810 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
811 		break;
812 	/*
813 	 * BPF_ARSH
814 	 */
815 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
816 		/* srag %dst,%dst,0(%src) */
817 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
818 		break;
819 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
820 		if (imm == 0)
821 			break;
822 		/* srag %dst,%dst,imm(%r0) */
823 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
824 		break;
825 	/*
826 	 * BPF_NEG
827 	 */
828 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
829 		/* lcr %dst,%dst */
830 		EMIT2(0x1300, dst_reg, dst_reg);
831 		EMIT_ZERO(dst_reg);
832 		break;
833 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
834 		/* lcgr %dst,%dst */
835 		EMIT4(0xb9130000, dst_reg, dst_reg);
836 		break;
837 	/*
838 	 * BPF_FROM_BE/LE
839 	 */
840 	case BPF_ALU | BPF_END | BPF_FROM_BE:
841 		/* s390 is big endian, therefore only clear high order bytes */
842 		switch (imm) {
843 		case 16: /* dst = (u16) cpu_to_be16(dst) */
844 			/* llghr %dst,%dst */
845 			EMIT4(0xb9850000, dst_reg, dst_reg);
846 			break;
847 		case 32: /* dst = (u32) cpu_to_be32(dst) */
848 			/* llgfr %dst,%dst */
849 			EMIT4(0xb9160000, dst_reg, dst_reg);
850 			break;
851 		case 64: /* dst = (u64) cpu_to_be64(dst) */
852 			break;
853 		}
854 		break;
855 	case BPF_ALU | BPF_END | BPF_FROM_LE:
856 		switch (imm) {
857 		case 16: /* dst = (u16) cpu_to_le16(dst) */
858 			/* lrvr %dst,%dst */
859 			EMIT4(0xb91f0000, dst_reg, dst_reg);
860 			/* srl %dst,16(%r0) */
861 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
862 			/* llghr %dst,%dst */
863 			EMIT4(0xb9850000, dst_reg, dst_reg);
864 			break;
865 		case 32: /* dst = (u32) cpu_to_le32(dst) */
866 			/* lrvr %dst,%dst */
867 			EMIT4(0xb91f0000, dst_reg, dst_reg);
868 			/* llgfr %dst,%dst */
869 			EMIT4(0xb9160000, dst_reg, dst_reg);
870 			break;
871 		case 64: /* dst = (u64) cpu_to_le64(dst) */
872 			/* lrvgr %dst,%dst */
873 			EMIT4(0xb90f0000, dst_reg, dst_reg);
874 			break;
875 		}
876 		break;
877 	/*
878 	 * BPF_ST(X)
879 	 */
880 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
881 		/* stcy %src,off(%dst) */
882 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
883 		jit->seen |= SEEN_MEM;
884 		break;
885 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
886 		/* sthy %src,off(%dst) */
887 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
888 		jit->seen |= SEEN_MEM;
889 		break;
890 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
891 		/* sty %src,off(%dst) */
892 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
893 		jit->seen |= SEEN_MEM;
894 		break;
895 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
896 		/* stg %src,off(%dst) */
897 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
898 		jit->seen |= SEEN_MEM;
899 		break;
900 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
901 		/* lhi %w0,imm */
902 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
903 		/* stcy %w0,off(dst) */
904 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
905 		jit->seen |= SEEN_MEM;
906 		break;
907 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
908 		/* lhi %w0,imm */
909 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
910 		/* sthy %w0,off(dst) */
911 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
912 		jit->seen |= SEEN_MEM;
913 		break;
914 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
915 		/* llilf %w0,imm  */
916 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
917 		/* sty %w0,off(%dst) */
918 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
919 		jit->seen |= SEEN_MEM;
920 		break;
921 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
922 		/* lgfi %w0,imm */
923 		EMIT6_IMM(0xc0010000, REG_W0, imm);
924 		/* stg %w0,off(%dst) */
925 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
926 		jit->seen |= SEEN_MEM;
927 		break;
928 	/*
929 	 * BPF_STX XADD (atomic_add)
930 	 */
931 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
932 		/* laal %w0,%src,off(%dst) */
933 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
934 			      dst_reg, off);
935 		jit->seen |= SEEN_MEM;
936 		break;
937 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
938 		/* laalg %w0,%src,off(%dst) */
939 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
940 			      dst_reg, off);
941 		jit->seen |= SEEN_MEM;
942 		break;
943 	/*
944 	 * BPF_LDX
945 	 */
946 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
947 		/* llgc %dst,0(off,%src) */
948 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
949 		jit->seen |= SEEN_MEM;
950 		break;
951 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
952 		/* llgh %dst,0(off,%src) */
953 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
954 		jit->seen |= SEEN_MEM;
955 		break;
956 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
957 		/* llgf %dst,off(%src) */
958 		jit->seen |= SEEN_MEM;
959 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
960 		break;
961 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
962 		/* lg %dst,0(off,%src) */
963 		jit->seen |= SEEN_MEM;
964 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
965 		break;
966 	/*
967 	 * BPF_JMP / CALL
968 	 */
969 	case BPF_JMP | BPF_CALL:
970 	{
971 		/*
972 		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
973 		 */
974 		const u64 func = (u64)__bpf_call_base + imm;
975 
976 		REG_SET_SEEN(BPF_REG_5);
977 		jit->seen |= SEEN_FUNC;
978 		/* lg %w1,<d(imm)>(%l) */
979 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
980 			      EMIT_CONST_U64(func));
981 		/* basr %r14,%w1 */
982 		EMIT2(0x0d00, REG_14, REG_W1);
983 		/* lgr %b0,%r2: load return value into %b0 */
984 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
985 		if (bpf_helper_changes_pkt_data((void *)func)) {
986 			jit->seen |= SEEN_SKB_CHANGE;
987 			/* lg %b1,ST_OFF_SKBP(%r15) */
988 			EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
989 				      REG_15, STK_OFF_SKBP);
990 			emit_load_skb_data_hlen(jit);
991 		}
992 		break;
993 	}
994 	case BPF_JMP | BPF_CALL | BPF_X:
995 		/*
996 		 * Implicit input:
997 		 *  B1: pointer to ctx
998 		 *  B2: pointer to bpf_array
999 		 *  B3: index in bpf_array
1000 		 */
1001 		jit->seen |= SEEN_TAIL_CALL;
1002 
1003 		/*
1004 		 * if (index >= array->map.max_entries)
1005 		 *         goto out;
1006 		 */
1007 
1008 		/* llgf %w1,map.max_entries(%b2) */
1009 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1010 			      offsetof(struct bpf_array, map.max_entries));
1011 		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1012 		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1013 				  REG_W1, 0, 0xa);
1014 
1015 		/*
1016 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1017 		 *         goto out;
1018 		 */
1019 
1020 		if (jit->seen & SEEN_STACK)
1021 			off = STK_OFF_TCCNT + STK_OFF;
1022 		else
1023 			off = STK_OFF_TCCNT;
1024 		/* lhi %w0,1 */
1025 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1026 		/* laal %w1,%w0,off(%r15) */
1027 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1028 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1029 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1030 				      MAX_TAIL_CALL_CNT, 0, 0x2);
1031 
1032 		/*
1033 		 * prog = array->ptrs[index];
1034 		 * if (prog == NULL)
1035 		 *         goto out;
1036 		 */
1037 
1038 		/* sllg %r1,%b3,3: %r1 = index * 8 */
1039 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1040 		/* lg %r1,prog(%b2,%r1) */
1041 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1042 			      REG_1, offsetof(struct bpf_array, ptrs));
1043 		/* clgij %r1,0,0x8,label0 */
1044 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1045 
1046 		/*
1047 		 * Restore registers before calling function
1048 		 */
1049 		save_restore_regs(jit, REGS_RESTORE);
1050 
1051 		/*
1052 		 * goto *(prog->bpf_func + tail_call_start);
1053 		 */
1054 
1055 		/* lg %r1,bpf_func(%r1) */
1056 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1057 			      offsetof(struct bpf_prog, bpf_func));
1058 		/* bc 0xf,tail_call_start(%r1) */
1059 		_EMIT4(0x47f01000 + jit->tail_call_start);
1060 		/* out: */
1061 		jit->labels[0] = jit->prg;
1062 		break;
1063 	case BPF_JMP | BPF_EXIT: /* return b0 */
1064 		last = (i == fp->len - 1) ? 1 : 0;
1065 		if (last && !(jit->seen & SEEN_RET0))
1066 			break;
1067 		/* j <exit> */
1068 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1069 		break;
1070 	/*
1071 	 * Branch relative (number of skipped instructions) to offset on
1072 	 * condition.
1073 	 *
1074 	 * Condition code to mask mapping:
1075 	 *
1076 	 * CC | Description	   | Mask
1077 	 * ------------------------------
1078 	 * 0  | Operands equal	   |	8
1079 	 * 1  | First operand low  |	4
1080 	 * 2  | First operand high |	2
1081 	 * 3  | Unused		   |	1
1082 	 *
1083 	 * For s390x relative branches: ip = ip + off_bytes
1084 	 * For BPF relative branches:	insn = insn + off_insns + 1
1085 	 *
1086 	 * For example for s390x with offset 0 we jump to the branch
1087 	 * instruction itself (loop) and for BPF with offset 0 we
1088 	 * branch to the instruction behind the branch.
1089 	 */
1090 	case BPF_JMP | BPF_JA: /* if (true) */
1091 		mask = 0xf000; /* j */
1092 		goto branch_oc;
1093 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1094 		mask = 0x2000; /* jh */
1095 		goto branch_ks;
1096 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1097 		mask = 0xa000; /* jhe */
1098 		goto branch_ks;
1099 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1100 		mask = 0x2000; /* jh */
1101 		goto branch_ku;
1102 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1103 		mask = 0xa000; /* jhe */
1104 		goto branch_ku;
1105 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1106 		mask = 0x7000; /* jne */
1107 		goto branch_ku;
1108 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1109 		mask = 0x8000; /* je */
1110 		goto branch_ku;
1111 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1112 		mask = 0x7000; /* jnz */
1113 		/* lgfi %w1,imm (load sign extend imm) */
1114 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1115 		/* ngr %w1,%dst */
1116 		EMIT4(0xb9800000, REG_W1, dst_reg);
1117 		goto branch_oc;
1118 
1119 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1120 		mask = 0x2000; /* jh */
1121 		goto branch_xs;
1122 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1123 		mask = 0xa000; /* jhe */
1124 		goto branch_xs;
1125 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1126 		mask = 0x2000; /* jh */
1127 		goto branch_xu;
1128 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1129 		mask = 0xa000; /* jhe */
1130 		goto branch_xu;
1131 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1132 		mask = 0x7000; /* jne */
1133 		goto branch_xu;
1134 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1135 		mask = 0x8000; /* je */
1136 		goto branch_xu;
1137 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1138 		mask = 0x7000; /* jnz */
1139 		/* ngrk %w1,%dst,%src */
1140 		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1141 		goto branch_oc;
1142 branch_ks:
1143 		/* lgfi %w1,imm (load sign extend imm) */
1144 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1145 		/* cgrj %dst,%w1,mask,off */
1146 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1147 		break;
1148 branch_ku:
1149 		/* lgfi %w1,imm (load sign extend imm) */
1150 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1151 		/* clgrj %dst,%w1,mask,off */
1152 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1153 		break;
1154 branch_xs:
1155 		/* cgrj %dst,%src,mask,off */
1156 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1157 		break;
1158 branch_xu:
1159 		/* clgrj %dst,%src,mask,off */
1160 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1161 		break;
1162 branch_oc:
1163 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1164 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1165 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1166 		break;
1167 	/*
1168 	 * BPF_LD
1169 	 */
1170 	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1171 	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1172 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1173 			func_addr = __pa(sk_load_byte_pos);
1174 		else
1175 			func_addr = __pa(sk_load_byte);
1176 		goto call_fn;
1177 	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1178 	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1179 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1180 			func_addr = __pa(sk_load_half_pos);
1181 		else
1182 			func_addr = __pa(sk_load_half);
1183 		goto call_fn;
1184 	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1185 	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1186 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1187 			func_addr = __pa(sk_load_word_pos);
1188 		else
1189 			func_addr = __pa(sk_load_word);
1190 		goto call_fn;
1191 call_fn:
1192 		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1193 		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1194 
1195 		/*
1196 		 * Implicit input:
1197 		 *  BPF_REG_6	 (R7) : skb pointer
1198 		 *  REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
1199 		 *
1200 		 * Calculated input:
1201 		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1202 		 *  BPF_REG_5	 (R6) : return address
1203 		 *
1204 		 * Output:
1205 		 *  BPF_REG_0	 (R14): data read from skb
1206 		 *
1207 		 * Scratch registers (BPF_REG_1-5)
1208 		 */
1209 
1210 		/* Call function: llilf %w1,func_addr  */
1211 		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1212 
1213 		/* Offset: lgfi %b2,imm */
1214 		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1215 		if (BPF_MODE(insn->code) == BPF_IND)
1216 			/* agfr %b2,%src (%src is s32 here) */
1217 			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1218 
1219 		/* Reload REG_SKB_DATA if BPF_REG_AX is used */
1220 		if (jit->seen & SEEN_REG_AX)
1221 			/* lg %skb_data,data_off(%b6) */
1222 			EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
1223 				      BPF_REG_6, offsetof(struct sk_buff, data));
1224 		/* basr %b5,%w1 (%b5 is call saved) */
1225 		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1226 
1227 		/*
1228 		 * Note: For fast access we jump directly after the
1229 		 * jnz instruction from bpf_jit.S
1230 		 */
1231 		/* jnz <ret0> */
1232 		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1233 		break;
1234 	default: /* too complex, give up */
1235 		pr_err("Unknown opcode %02x\n", insn->code);
1236 		return -1;
1237 	}
1238 	return insn_count;
1239 }
1240 
1241 /*
1242  * Compile eBPF program into s390x code
1243  */
1244 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1245 {
1246 	int i, insn_count;
1247 
1248 	jit->lit = jit->lit_start;
1249 	jit->prg = 0;
1250 
1251 	bpf_jit_prologue(jit);
1252 	for (i = 0; i < fp->len; i += insn_count) {
1253 		insn_count = bpf_jit_insn(jit, fp, i);
1254 		if (insn_count < 0)
1255 			return -1;
1256 		jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1257 	}
1258 	bpf_jit_epilogue(jit);
1259 
1260 	jit->lit_start = jit->prg;
1261 	jit->size = jit->lit;
1262 	jit->size_prg = jit->prg;
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Compile eBPF program "fp"
1268  */
1269 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1270 {
1271 	struct bpf_prog *tmp, *orig_fp = fp;
1272 	struct bpf_binary_header *header;
1273 	bool tmp_blinded = false;
1274 	struct bpf_jit jit;
1275 	int pass;
1276 
1277 	if (!bpf_jit_enable)
1278 		return orig_fp;
1279 
1280 	tmp = bpf_jit_blind_constants(fp);
1281 	/*
1282 	 * If blinding was requested and we failed during blinding,
1283 	 * we must fall back to the interpreter.
1284 	 */
1285 	if (IS_ERR(tmp))
1286 		return orig_fp;
1287 	if (tmp != fp) {
1288 		tmp_blinded = true;
1289 		fp = tmp;
1290 	}
1291 
1292 	memset(&jit, 0, sizeof(jit));
1293 	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1294 	if (jit.addrs == NULL) {
1295 		fp = orig_fp;
1296 		goto out;
1297 	}
1298 	/*
1299 	 * Three initial passes:
1300 	 *   - 1/2: Determine clobbered registers
1301 	 *   - 3:   Calculate program size and addrs arrray
1302 	 */
1303 	for (pass = 1; pass <= 3; pass++) {
1304 		if (bpf_jit_prog(&jit, fp)) {
1305 			fp = orig_fp;
1306 			goto free_addrs;
1307 		}
1308 	}
1309 	/*
1310 	 * Final pass: Allocate and generate program
1311 	 */
1312 	if (jit.size >= BPF_SIZE_MAX) {
1313 		fp = orig_fp;
1314 		goto free_addrs;
1315 	}
1316 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1317 	if (!header) {
1318 		fp = orig_fp;
1319 		goto free_addrs;
1320 	}
1321 	if (bpf_jit_prog(&jit, fp)) {
1322 		fp = orig_fp;
1323 		goto free_addrs;
1324 	}
1325 	if (bpf_jit_enable > 1) {
1326 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1327 		print_fn_code(jit.prg_buf, jit.size_prg);
1328 	}
1329 	bpf_jit_binary_lock_ro(header);
1330 	fp->bpf_func = (void *) jit.prg_buf;
1331 	fp->jited = 1;
1332 free_addrs:
1333 	kfree(jit.addrs);
1334 out:
1335 	if (tmp_blinded)
1336 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1337 					   tmp : orig_fp);
1338 	return fp;
1339 }
1340