xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <linux/mm.h>
27 #include <linux/kernel.h>
28 #include <asm/cacheflush.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include "bpf_jit.h"
34 
35 struct bpf_jit {
36 	u32 seen;		/* Flags to remember seen eBPF instructions */
37 	u32 seen_reg[16];	/* Array to remember which registers are used */
38 	u32 *addrs;		/* Array with relative instruction addresses */
39 	u8 *prg_buf;		/* Start of program */
40 	int size;		/* Size of program and literal pool */
41 	int size_prg;		/* Size of program */
42 	int prg;		/* Current position in program */
43 	int lit32_start;	/* Start of 32-bit literal pool */
44 	int lit32;		/* Current position in 32-bit literal pool */
45 	int lit64_start;	/* Start of 64-bit literal pool */
46 	int lit64;		/* Current position in 64-bit literal pool */
47 	int base_ip;		/* Base address for literal pool */
48 	int exit_ip;		/* Address of exit */
49 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
50 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
51 	int tail_call_start;	/* Tail call start offset */
52 	int excnt;		/* Number of exception table entries */
53 	int labels[1];		/* Labels for local jumps */
54 };
55 
56 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
57 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
58 #define SEEN_FUNC	BIT(2)		/* calls C functions */
59 #define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
60 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
61 
62 /*
63  * s390 registers
64  */
65 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
66 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
67 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
68 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
69 #define REG_0		REG_W0			/* Register 0 */
70 #define REG_1		REG_W1			/* Register 1 */
71 #define REG_2		BPF_REG_1		/* Register 2 */
72 #define REG_14		BPF_REG_0		/* Register 14 */
73 
74 /*
75  * Mapping of BPF registers to s390 registers
76  */
77 static const int reg2hex[] = {
78 	/* Return code */
79 	[BPF_REG_0]	= 14,
80 	/* Function parameters */
81 	[BPF_REG_1]	= 2,
82 	[BPF_REG_2]	= 3,
83 	[BPF_REG_3]	= 4,
84 	[BPF_REG_4]	= 5,
85 	[BPF_REG_5]	= 6,
86 	/* Call saved registers */
87 	[BPF_REG_6]	= 7,
88 	[BPF_REG_7]	= 8,
89 	[BPF_REG_8]	= 9,
90 	[BPF_REG_9]	= 10,
91 	/* BPF stack pointer */
92 	[BPF_REG_FP]	= 13,
93 	/* Register for blinding */
94 	[BPF_REG_AX]	= 12,
95 	/* Work registers for s390x backend */
96 	[REG_W0]	= 0,
97 	[REG_W1]	= 1,
98 	[REG_L]		= 11,
99 	[REG_15]	= 15,
100 };
101 
102 static inline u32 reg(u32 dst_reg, u32 src_reg)
103 {
104 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
105 }
106 
107 static inline u32 reg_high(u32 reg)
108 {
109 	return reg2hex[reg] << 4;
110 }
111 
112 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
113 {
114 	u32 r1 = reg2hex[b1];
115 
116 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 		jit->seen_reg[r1] = 1;
118 }
119 
120 #define REG_SET_SEEN(b1)					\
121 ({								\
122 	reg_set_seen(jit, b1);					\
123 })
124 
125 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
126 
127 /*
128  * EMIT macros for code generation
129  */
130 
131 #define _EMIT2(op)						\
132 ({								\
133 	if (jit->prg_buf)					\
134 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
135 	jit->prg += 2;						\
136 })
137 
138 #define EMIT2(op, b1, b2)					\
139 ({								\
140 	_EMIT2((op) | reg(b1, b2));				\
141 	REG_SET_SEEN(b1);					\
142 	REG_SET_SEEN(b2);					\
143 })
144 
145 #define _EMIT4(op)						\
146 ({								\
147 	if (jit->prg_buf)					\
148 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
149 	jit->prg += 4;						\
150 })
151 
152 #define EMIT4(op, b1, b2)					\
153 ({								\
154 	_EMIT4((op) | reg(b1, b2));				\
155 	REG_SET_SEEN(b1);					\
156 	REG_SET_SEEN(b2);					\
157 })
158 
159 #define EMIT4_RRF(op, b1, b2, b3)				\
160 ({								\
161 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
162 	REG_SET_SEEN(b1);					\
163 	REG_SET_SEEN(b2);					\
164 	REG_SET_SEEN(b3);					\
165 })
166 
167 #define _EMIT4_DISP(op, disp)					\
168 ({								\
169 	unsigned int __disp = (disp) & 0xfff;			\
170 	_EMIT4((op) | __disp);					\
171 })
172 
173 #define EMIT4_DISP(op, b1, b2, disp)				\
174 ({								\
175 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
176 		    reg_high(b2) << 8, (disp));			\
177 	REG_SET_SEEN(b1);					\
178 	REG_SET_SEEN(b2);					\
179 })
180 
181 #define EMIT4_IMM(op, b1, imm)					\
182 ({								\
183 	unsigned int __imm = (imm) & 0xffff;			\
184 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
185 	REG_SET_SEEN(b1);					\
186 })
187 
188 #define EMIT4_PCREL(op, pcrel)					\
189 ({								\
190 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
191 	_EMIT4((op) | __pcrel);					\
192 })
193 
194 #define EMIT4_PCREL_RIC(op, mask, target)			\
195 ({								\
196 	int __rel = ((target) - jit->prg) / 2;			\
197 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
198 })
199 
200 #define _EMIT6(op1, op2)					\
201 ({								\
202 	if (jit->prg_buf) {					\
203 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
204 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
205 	}							\
206 	jit->prg += 6;						\
207 })
208 
209 #define _EMIT6_DISP(op1, op2, disp)				\
210 ({								\
211 	unsigned int __disp = (disp) & 0xfff;			\
212 	_EMIT6((op1) | __disp, op2);				\
213 })
214 
215 #define _EMIT6_DISP_LH(op1, op2, disp)				\
216 ({								\
217 	u32 _disp = (u32) (disp);				\
218 	unsigned int __disp_h = _disp & 0xff000;		\
219 	unsigned int __disp_l = _disp & 0x00fff;		\
220 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
221 })
222 
223 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
224 ({								\
225 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
226 		       reg_high(b3) << 8, op2, disp);		\
227 	REG_SET_SEEN(b1);					\
228 	REG_SET_SEEN(b2);					\
229 	REG_SET_SEEN(b3);					\
230 })
231 
232 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
233 ({								\
234 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
235 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
236 	       (op2) | (mask) << 12);				\
237 	REG_SET_SEEN(b1);					\
238 	REG_SET_SEEN(b2);					\
239 })
240 
241 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
242 ({								\
243 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
244 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
245 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
246 	REG_SET_SEEN(b1);					\
247 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
248 })
249 
250 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
251 ({								\
252 	/* Branch instruction needs 6 bytes */			\
253 	int rel = (addrs[(i) + (off) + 1] - (addrs[(i) + 1] - 6)) / 2;\
254 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
255 	REG_SET_SEEN(b1);					\
256 	REG_SET_SEEN(b2);					\
257 })
258 
259 #define EMIT6_PCREL_RILB(op, b, target)				\
260 ({								\
261 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
262 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
263 	REG_SET_SEEN(b);					\
264 })
265 
266 #define EMIT6_PCREL_RIL(op, target)				\
267 ({								\
268 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
269 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
270 })
271 
272 #define EMIT6_PCREL_RILC(op, mask, target)			\
273 ({								\
274 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
275 })
276 
277 #define _EMIT6_IMM(op, imm)					\
278 ({								\
279 	unsigned int __imm = (imm);				\
280 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
281 })
282 
283 #define EMIT6_IMM(op, b1, imm)					\
284 ({								\
285 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
286 	REG_SET_SEEN(b1);					\
287 })
288 
289 #define _EMIT_CONST_U32(val)					\
290 ({								\
291 	unsigned int ret;					\
292 	ret = jit->lit32;					\
293 	if (jit->prg_buf)					\
294 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
295 	jit->lit32 += 4;					\
296 	ret;							\
297 })
298 
299 #define EMIT_CONST_U32(val)					\
300 ({								\
301 	jit->seen |= SEEN_LITERAL;				\
302 	_EMIT_CONST_U32(val) - jit->base_ip;			\
303 })
304 
305 #define _EMIT_CONST_U64(val)					\
306 ({								\
307 	unsigned int ret;					\
308 	ret = jit->lit64;					\
309 	if (jit->prg_buf)					\
310 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
311 	jit->lit64 += 8;					\
312 	ret;							\
313 })
314 
315 #define EMIT_CONST_U64(val)					\
316 ({								\
317 	jit->seen |= SEEN_LITERAL;				\
318 	_EMIT_CONST_U64(val) - jit->base_ip;			\
319 })
320 
321 #define EMIT_ZERO(b1)						\
322 ({								\
323 	if (!fp->aux->verifier_zext) {				\
324 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
325 		EMIT4(0xb9160000, b1, b1);			\
326 		REG_SET_SEEN(b1);				\
327 	}							\
328 })
329 
330 /*
331  * Return whether this is the first pass. The first pass is special, since we
332  * don't know any sizes yet, and thus must be conservative.
333  */
334 static bool is_first_pass(struct bpf_jit *jit)
335 {
336 	return jit->size == 0;
337 }
338 
339 /*
340  * Return whether this is the code generation pass. The code generation pass is
341  * special, since we should change as little as possible.
342  */
343 static bool is_codegen_pass(struct bpf_jit *jit)
344 {
345 	return jit->prg_buf;
346 }
347 
348 /*
349  * Return whether "rel" can be encoded as a short PC-relative offset
350  */
351 static bool is_valid_rel(int rel)
352 {
353 	return rel >= -65536 && rel <= 65534;
354 }
355 
356 /*
357  * Return whether "off" can be reached using a short PC-relative offset
358  */
359 static bool can_use_rel(struct bpf_jit *jit, int off)
360 {
361 	return is_valid_rel(off - jit->prg);
362 }
363 
364 /*
365  * Return whether given displacement can be encoded using
366  * Long-Displacement Facility
367  */
368 static bool is_valid_ldisp(int disp)
369 {
370 	return disp >= -524288 && disp <= 524287;
371 }
372 
373 /*
374  * Return whether the next 32-bit literal pool entry can be referenced using
375  * Long-Displacement Facility
376  */
377 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
378 {
379 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
380 }
381 
382 /*
383  * Return whether the next 64-bit literal pool entry can be referenced using
384  * Long-Displacement Facility
385  */
386 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
387 {
388 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
389 }
390 
391 /*
392  * Fill whole space with illegal instructions
393  */
394 static void jit_fill_hole(void *area, unsigned int size)
395 {
396 	memset(area, 0, size);
397 }
398 
399 /*
400  * Save registers from "rs" (register start) to "re" (register end) on stack
401  */
402 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
403 {
404 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
405 
406 	if (rs == re)
407 		/* stg %rs,off(%r15) */
408 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
409 	else
410 		/* stmg %rs,%re,off(%r15) */
411 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
412 }
413 
414 /*
415  * Restore registers from "rs" (register start) to "re" (register end) on stack
416  */
417 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
418 {
419 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
420 
421 	if (jit->seen & SEEN_STACK)
422 		off += STK_OFF + stack_depth;
423 
424 	if (rs == re)
425 		/* lg %rs,off(%r15) */
426 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
427 	else
428 		/* lmg %rs,%re,off(%r15) */
429 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
430 }
431 
432 /*
433  * Return first seen register (from start)
434  */
435 static int get_start(struct bpf_jit *jit, int start)
436 {
437 	int i;
438 
439 	for (i = start; i <= 15; i++) {
440 		if (jit->seen_reg[i])
441 			return i;
442 	}
443 	return 0;
444 }
445 
446 /*
447  * Return last seen register (from start) (gap >= 2)
448  */
449 static int get_end(struct bpf_jit *jit, int start)
450 {
451 	int i;
452 
453 	for (i = start; i < 15; i++) {
454 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
455 			return i - 1;
456 	}
457 	return jit->seen_reg[15] ? 15 : 14;
458 }
459 
460 #define REGS_SAVE	1
461 #define REGS_RESTORE	0
462 /*
463  * Save and restore clobbered registers (6-15) on stack.
464  * We save/restore registers in chunks with gap >= 2 registers.
465  */
466 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
467 {
468 	const int last = 15, save_restore_size = 6;
469 	int re = 6, rs;
470 
471 	if (is_first_pass(jit)) {
472 		/*
473 		 * We don't know yet which registers are used. Reserve space
474 		 * conservatively.
475 		 */
476 		jit->prg += (last - re + 1) * save_restore_size;
477 		return;
478 	}
479 
480 	do {
481 		rs = get_start(jit, re);
482 		if (!rs)
483 			break;
484 		re = get_end(jit, rs + 1);
485 		if (op == REGS_SAVE)
486 			save_regs(jit, rs, re);
487 		else
488 			restore_regs(jit, rs, re, stack_depth);
489 		re++;
490 	} while (re <= last);
491 }
492 
493 static void bpf_skip(struct bpf_jit *jit, int size)
494 {
495 	if (size >= 6 && !is_valid_rel(size)) {
496 		/* brcl 0xf,size */
497 		EMIT6_PCREL_RIL(0xc0f4000000, size);
498 		size -= 6;
499 	} else if (size >= 4 && is_valid_rel(size)) {
500 		/* brc 0xf,size */
501 		EMIT4_PCREL(0xa7f40000, size);
502 		size -= 4;
503 	}
504 	while (size >= 2) {
505 		/* bcr 0,%0 */
506 		_EMIT2(0x0700);
507 		size -= 2;
508 	}
509 }
510 
511 /*
512  * Emit function prologue
513  *
514  * Save registers and create stack frame if necessary.
515  * See stack frame layout desription in "bpf_jit.h"!
516  */
517 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
518 {
519 	if (jit->seen & SEEN_TAIL_CALL) {
520 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
521 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
522 	} else {
523 		/*
524 		 * There are no tail calls. Insert nops in order to have
525 		 * tail_call_start at a predictable offset.
526 		 */
527 		bpf_skip(jit, 6);
528 	}
529 	/* Tail calls have to skip above initialization */
530 	jit->tail_call_start = jit->prg;
531 	/* Save registers */
532 	save_restore_regs(jit, REGS_SAVE, stack_depth);
533 	/* Setup literal pool */
534 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
535 		if (!is_first_pass(jit) &&
536 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
537 			/* basr %l,0 */
538 			EMIT2(0x0d00, REG_L, REG_0);
539 			jit->base_ip = jit->prg;
540 		} else {
541 			/* larl %l,lit32_start */
542 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
543 			jit->base_ip = jit->lit32_start;
544 		}
545 	}
546 	/* Setup stack and backchain */
547 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
548 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
549 			/* lgr %w1,%r15 (backchain) */
550 			EMIT4(0xb9040000, REG_W1, REG_15);
551 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
552 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
553 		/* aghi %r15,-STK_OFF */
554 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
555 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
556 			/* stg %w1,152(%r15) (backchain) */
557 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
558 				      REG_15, 152);
559 	}
560 }
561 
562 /*
563  * Function epilogue
564  */
565 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
566 {
567 	jit->exit_ip = jit->prg;
568 	/* Load exit code: lgr %r2,%b0 */
569 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
570 	/* Restore registers */
571 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
572 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
573 		jit->r14_thunk_ip = jit->prg;
574 		/* Generate __s390_indirect_jump_r14 thunk */
575 		if (test_facility(35)) {
576 			/* exrl %r0,.+10 */
577 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
578 		} else {
579 			/* larl %r1,.+14 */
580 			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
581 			/* ex 0,0(%r1) */
582 			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
583 		}
584 		/* j . */
585 		EMIT4_PCREL(0xa7f40000, 0);
586 	}
587 	/* br %r14 */
588 	_EMIT2(0x07fe);
589 
590 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
591 	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
592 		jit->r1_thunk_ip = jit->prg;
593 		/* Generate __s390_indirect_jump_r1 thunk */
594 		if (test_facility(35)) {
595 			/* exrl %r0,.+10 */
596 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
597 			/* j . */
598 			EMIT4_PCREL(0xa7f40000, 0);
599 			/* br %r1 */
600 			_EMIT2(0x07f1);
601 		} else {
602 			/* ex 0,S390_lowcore.br_r1_tampoline */
603 			EMIT4_DISP(0x44000000, REG_0, REG_0,
604 				   offsetof(struct lowcore, br_r1_trampoline));
605 			/* j . */
606 			EMIT4_PCREL(0xa7f40000, 0);
607 		}
608 	}
609 }
610 
611 static int get_probe_mem_regno(const u8 *insn)
612 {
613 	/*
614 	 * insn must point to llgc, llgh, llgf or lg, which have destination
615 	 * register at the same position.
616 	 */
617 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
618 		return -1;
619 	if (insn[5] != 0x90 && /* llgc */
620 	    insn[5] != 0x91 && /* llgh */
621 	    insn[5] != 0x16 && /* llgf */
622 	    insn[5] != 0x04) /* lg */
623 		return -1;
624 	return insn[1] >> 4;
625 }
626 
627 static bool ex_handler_bpf(const struct exception_table_entry *x,
628 			   struct pt_regs *regs)
629 {
630 	int regno;
631 	u8 *insn;
632 
633 	regs->psw.addr = extable_fixup(x);
634 	insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
635 	regno = get_probe_mem_regno(insn);
636 	if (WARN_ON_ONCE(regno < 0))
637 		/* JIT bug - unexpected instruction. */
638 		return false;
639 	regs->gprs[regno] = 0;
640 	return true;
641 }
642 
643 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
644 			     int probe_prg, int nop_prg)
645 {
646 	struct exception_table_entry *ex;
647 	s64 delta;
648 	u8 *insn;
649 	int prg;
650 	int i;
651 
652 	if (!fp->aux->extable)
653 		/* Do nothing during early JIT passes. */
654 		return 0;
655 	insn = jit->prg_buf + probe_prg;
656 	if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
657 		/* JIT bug - unexpected probe instruction. */
658 		return -1;
659 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
660 		/* JIT bug - gap between probe and nop instructions. */
661 		return -1;
662 	for (i = 0; i < 2; i++) {
663 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
664 			/* Verifier bug - not enough entries. */
665 			return -1;
666 		ex = &fp->aux->extable[jit->excnt];
667 		/* Add extable entries for probe and nop instructions. */
668 		prg = i == 0 ? probe_prg : nop_prg;
669 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
670 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
671 			/* JIT bug - code and extable must be close. */
672 			return -1;
673 		ex->insn = delta;
674 		/*
675 		 * Always land on the nop. Note that extable infrastructure
676 		 * ignores fixup field, it is handled by ex_handler_bpf().
677 		 */
678 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
679 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
680 			/* JIT bug - landing pad and extable must be close. */
681 			return -1;
682 		ex->fixup = delta;
683 		ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
684 		jit->excnt++;
685 	}
686 	return 0;
687 }
688 
689 /*
690  * Compile one eBPF instruction into s390x code
691  *
692  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
693  * stack space for the large switch statement.
694  */
695 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
696 				 int i, bool extra_pass, u32 stack_depth)
697 {
698 	struct bpf_insn *insn = &fp->insnsi[i];
699 	u32 dst_reg = insn->dst_reg;
700 	u32 src_reg = insn->src_reg;
701 	int last, insn_count = 1;
702 	u32 *addrs = jit->addrs;
703 	s32 imm = insn->imm;
704 	s16 off = insn->off;
705 	int probe_prg = -1;
706 	unsigned int mask;
707 	int nop_prg;
708 	int err;
709 
710 	if (BPF_CLASS(insn->code) == BPF_LDX &&
711 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
712 		probe_prg = jit->prg;
713 
714 	switch (insn->code) {
715 	/*
716 	 * BPF_MOV
717 	 */
718 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
719 		/* llgfr %dst,%src */
720 		EMIT4(0xb9160000, dst_reg, src_reg);
721 		if (insn_is_zext(&insn[1]))
722 			insn_count = 2;
723 		break;
724 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
725 		/* lgr %dst,%src */
726 		EMIT4(0xb9040000, dst_reg, src_reg);
727 		break;
728 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
729 		/* llilf %dst,imm */
730 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
731 		if (insn_is_zext(&insn[1]))
732 			insn_count = 2;
733 		break;
734 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
735 		/* lgfi %dst,imm */
736 		EMIT6_IMM(0xc0010000, dst_reg, imm);
737 		break;
738 	/*
739 	 * BPF_LD 64
740 	 */
741 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
742 	{
743 		/* 16 byte instruction that uses two 'struct bpf_insn' */
744 		u64 imm64;
745 
746 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
747 		/* lgrl %dst,imm */
748 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
749 		insn_count = 2;
750 		break;
751 	}
752 	/*
753 	 * BPF_ADD
754 	 */
755 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
756 		/* ar %dst,%src */
757 		EMIT2(0x1a00, dst_reg, src_reg);
758 		EMIT_ZERO(dst_reg);
759 		break;
760 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
761 		/* agr %dst,%src */
762 		EMIT4(0xb9080000, dst_reg, src_reg);
763 		break;
764 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
765 		if (!imm)
766 			break;
767 		/* alfi %dst,imm */
768 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
769 		EMIT_ZERO(dst_reg);
770 		break;
771 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
772 		if (!imm)
773 			break;
774 		/* agfi %dst,imm */
775 		EMIT6_IMM(0xc2080000, dst_reg, imm);
776 		break;
777 	/*
778 	 * BPF_SUB
779 	 */
780 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
781 		/* sr %dst,%src */
782 		EMIT2(0x1b00, dst_reg, src_reg);
783 		EMIT_ZERO(dst_reg);
784 		break;
785 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
786 		/* sgr %dst,%src */
787 		EMIT4(0xb9090000, dst_reg, src_reg);
788 		break;
789 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
790 		if (!imm)
791 			break;
792 		/* alfi %dst,-imm */
793 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
794 		EMIT_ZERO(dst_reg);
795 		break;
796 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
797 		if (!imm)
798 			break;
799 		/* agfi %dst,-imm */
800 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
801 		break;
802 	/*
803 	 * BPF_MUL
804 	 */
805 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
806 		/* msr %dst,%src */
807 		EMIT4(0xb2520000, dst_reg, src_reg);
808 		EMIT_ZERO(dst_reg);
809 		break;
810 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
811 		/* msgr %dst,%src */
812 		EMIT4(0xb90c0000, dst_reg, src_reg);
813 		break;
814 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
815 		if (imm == 1)
816 			break;
817 		/* msfi %r5,imm */
818 		EMIT6_IMM(0xc2010000, dst_reg, imm);
819 		EMIT_ZERO(dst_reg);
820 		break;
821 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
822 		if (imm == 1)
823 			break;
824 		/* msgfi %dst,imm */
825 		EMIT6_IMM(0xc2000000, dst_reg, imm);
826 		break;
827 	/*
828 	 * BPF_DIV / BPF_MOD
829 	 */
830 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
831 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
832 	{
833 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
834 
835 		/* lhi %w0,0 */
836 		EMIT4_IMM(0xa7080000, REG_W0, 0);
837 		/* lr %w1,%dst */
838 		EMIT2(0x1800, REG_W1, dst_reg);
839 		/* dlr %w0,%src */
840 		EMIT4(0xb9970000, REG_W0, src_reg);
841 		/* llgfr %dst,%rc */
842 		EMIT4(0xb9160000, dst_reg, rc_reg);
843 		if (insn_is_zext(&insn[1]))
844 			insn_count = 2;
845 		break;
846 	}
847 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
848 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
849 	{
850 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
851 
852 		/* lghi %w0,0 */
853 		EMIT4_IMM(0xa7090000, REG_W0, 0);
854 		/* lgr %w1,%dst */
855 		EMIT4(0xb9040000, REG_W1, dst_reg);
856 		/* dlgr %w0,%dst */
857 		EMIT4(0xb9870000, REG_W0, src_reg);
858 		/* lgr %dst,%rc */
859 		EMIT4(0xb9040000, dst_reg, rc_reg);
860 		break;
861 	}
862 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
863 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
864 	{
865 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
866 
867 		if (imm == 1) {
868 			if (BPF_OP(insn->code) == BPF_MOD)
869 				/* lhgi %dst,0 */
870 				EMIT4_IMM(0xa7090000, dst_reg, 0);
871 			break;
872 		}
873 		/* lhi %w0,0 */
874 		EMIT4_IMM(0xa7080000, REG_W0, 0);
875 		/* lr %w1,%dst */
876 		EMIT2(0x1800, REG_W1, dst_reg);
877 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
878 			/* dl %w0,<d(imm)>(%l) */
879 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
880 				      EMIT_CONST_U32(imm));
881 		} else {
882 			/* lgfrl %dst,imm */
883 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
884 					 _EMIT_CONST_U32(imm));
885 			jit->seen |= SEEN_LITERAL;
886 			/* dlr %w0,%dst */
887 			EMIT4(0xb9970000, REG_W0, dst_reg);
888 		}
889 		/* llgfr %dst,%rc */
890 		EMIT4(0xb9160000, dst_reg, rc_reg);
891 		if (insn_is_zext(&insn[1]))
892 			insn_count = 2;
893 		break;
894 	}
895 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
896 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
897 	{
898 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
899 
900 		if (imm == 1) {
901 			if (BPF_OP(insn->code) == BPF_MOD)
902 				/* lhgi %dst,0 */
903 				EMIT4_IMM(0xa7090000, dst_reg, 0);
904 			break;
905 		}
906 		/* lghi %w0,0 */
907 		EMIT4_IMM(0xa7090000, REG_W0, 0);
908 		/* lgr %w1,%dst */
909 		EMIT4(0xb9040000, REG_W1, dst_reg);
910 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
911 			/* dlg %w0,<d(imm)>(%l) */
912 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
913 				      EMIT_CONST_U64(imm));
914 		} else {
915 			/* lgrl %dst,imm */
916 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
917 					 _EMIT_CONST_U64(imm));
918 			jit->seen |= SEEN_LITERAL;
919 			/* dlgr %w0,%dst */
920 			EMIT4(0xb9870000, REG_W0, dst_reg);
921 		}
922 		/* lgr %dst,%rc */
923 		EMIT4(0xb9040000, dst_reg, rc_reg);
924 		break;
925 	}
926 	/*
927 	 * BPF_AND
928 	 */
929 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
930 		/* nr %dst,%src */
931 		EMIT2(0x1400, dst_reg, src_reg);
932 		EMIT_ZERO(dst_reg);
933 		break;
934 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
935 		/* ngr %dst,%src */
936 		EMIT4(0xb9800000, dst_reg, src_reg);
937 		break;
938 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
939 		/* nilf %dst,imm */
940 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
941 		EMIT_ZERO(dst_reg);
942 		break;
943 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
944 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
945 			/* ng %dst,<d(imm)>(%l) */
946 			EMIT6_DISP_LH(0xe3000000, 0x0080,
947 				      dst_reg, REG_0, REG_L,
948 				      EMIT_CONST_U64(imm));
949 		} else {
950 			/* lgrl %w0,imm */
951 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
952 					 _EMIT_CONST_U64(imm));
953 			jit->seen |= SEEN_LITERAL;
954 			/* ngr %dst,%w0 */
955 			EMIT4(0xb9800000, dst_reg, REG_W0);
956 		}
957 		break;
958 	/*
959 	 * BPF_OR
960 	 */
961 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
962 		/* or %dst,%src */
963 		EMIT2(0x1600, dst_reg, src_reg);
964 		EMIT_ZERO(dst_reg);
965 		break;
966 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
967 		/* ogr %dst,%src */
968 		EMIT4(0xb9810000, dst_reg, src_reg);
969 		break;
970 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
971 		/* oilf %dst,imm */
972 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
973 		EMIT_ZERO(dst_reg);
974 		break;
975 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
976 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
977 			/* og %dst,<d(imm)>(%l) */
978 			EMIT6_DISP_LH(0xe3000000, 0x0081,
979 				      dst_reg, REG_0, REG_L,
980 				      EMIT_CONST_U64(imm));
981 		} else {
982 			/* lgrl %w0,imm */
983 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
984 					 _EMIT_CONST_U64(imm));
985 			jit->seen |= SEEN_LITERAL;
986 			/* ogr %dst,%w0 */
987 			EMIT4(0xb9810000, dst_reg, REG_W0);
988 		}
989 		break;
990 	/*
991 	 * BPF_XOR
992 	 */
993 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
994 		/* xr %dst,%src */
995 		EMIT2(0x1700, dst_reg, src_reg);
996 		EMIT_ZERO(dst_reg);
997 		break;
998 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
999 		/* xgr %dst,%src */
1000 		EMIT4(0xb9820000, dst_reg, src_reg);
1001 		break;
1002 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1003 		if (!imm)
1004 			break;
1005 		/* xilf %dst,imm */
1006 		EMIT6_IMM(0xc0070000, dst_reg, imm);
1007 		EMIT_ZERO(dst_reg);
1008 		break;
1009 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1010 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1011 			/* xg %dst,<d(imm)>(%l) */
1012 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1013 				      dst_reg, REG_0, REG_L,
1014 				      EMIT_CONST_U64(imm));
1015 		} else {
1016 			/* lgrl %w0,imm */
1017 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1018 					 _EMIT_CONST_U64(imm));
1019 			jit->seen |= SEEN_LITERAL;
1020 			/* xgr %dst,%w0 */
1021 			EMIT4(0xb9820000, dst_reg, REG_W0);
1022 		}
1023 		break;
1024 	/*
1025 	 * BPF_LSH
1026 	 */
1027 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1028 		/* sll %dst,0(%src) */
1029 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1030 		EMIT_ZERO(dst_reg);
1031 		break;
1032 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1033 		/* sllg %dst,%dst,0(%src) */
1034 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1035 		break;
1036 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1037 		if (imm == 0)
1038 			break;
1039 		/* sll %dst,imm(%r0) */
1040 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1041 		EMIT_ZERO(dst_reg);
1042 		break;
1043 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1044 		if (imm == 0)
1045 			break;
1046 		/* sllg %dst,%dst,imm(%r0) */
1047 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1048 		break;
1049 	/*
1050 	 * BPF_RSH
1051 	 */
1052 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1053 		/* srl %dst,0(%src) */
1054 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1055 		EMIT_ZERO(dst_reg);
1056 		break;
1057 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1058 		/* srlg %dst,%dst,0(%src) */
1059 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1060 		break;
1061 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1062 		if (imm == 0)
1063 			break;
1064 		/* srl %dst,imm(%r0) */
1065 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1066 		EMIT_ZERO(dst_reg);
1067 		break;
1068 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1069 		if (imm == 0)
1070 			break;
1071 		/* srlg %dst,%dst,imm(%r0) */
1072 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1073 		break;
1074 	/*
1075 	 * BPF_ARSH
1076 	 */
1077 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1078 		/* sra %dst,%dst,0(%src) */
1079 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1080 		EMIT_ZERO(dst_reg);
1081 		break;
1082 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1083 		/* srag %dst,%dst,0(%src) */
1084 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1085 		break;
1086 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1087 		if (imm == 0)
1088 			break;
1089 		/* sra %dst,imm(%r0) */
1090 		EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1091 		EMIT_ZERO(dst_reg);
1092 		break;
1093 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1094 		if (imm == 0)
1095 			break;
1096 		/* srag %dst,%dst,imm(%r0) */
1097 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1098 		break;
1099 	/*
1100 	 * BPF_NEG
1101 	 */
1102 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1103 		/* lcr %dst,%dst */
1104 		EMIT2(0x1300, dst_reg, dst_reg);
1105 		EMIT_ZERO(dst_reg);
1106 		break;
1107 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1108 		/* lcgr %dst,%dst */
1109 		EMIT4(0xb9030000, dst_reg, dst_reg);
1110 		break;
1111 	/*
1112 	 * BPF_FROM_BE/LE
1113 	 */
1114 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1115 		/* s390 is big endian, therefore only clear high order bytes */
1116 		switch (imm) {
1117 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1118 			/* llghr %dst,%dst */
1119 			EMIT4(0xb9850000, dst_reg, dst_reg);
1120 			if (insn_is_zext(&insn[1]))
1121 				insn_count = 2;
1122 			break;
1123 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1124 			if (!fp->aux->verifier_zext)
1125 				/* llgfr %dst,%dst */
1126 				EMIT4(0xb9160000, dst_reg, dst_reg);
1127 			break;
1128 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1129 			break;
1130 		}
1131 		break;
1132 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1133 		switch (imm) {
1134 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1135 			/* lrvr %dst,%dst */
1136 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1137 			/* srl %dst,16(%r0) */
1138 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1139 			/* llghr %dst,%dst */
1140 			EMIT4(0xb9850000, dst_reg, dst_reg);
1141 			if (insn_is_zext(&insn[1]))
1142 				insn_count = 2;
1143 			break;
1144 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1145 			/* lrvr %dst,%dst */
1146 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1147 			if (!fp->aux->verifier_zext)
1148 				/* llgfr %dst,%dst */
1149 				EMIT4(0xb9160000, dst_reg, dst_reg);
1150 			break;
1151 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1152 			/* lrvgr %dst,%dst */
1153 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1154 			break;
1155 		}
1156 		break;
1157 	/*
1158 	 * BPF_ST(X)
1159 	 */
1160 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1161 		/* stcy %src,off(%dst) */
1162 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1163 		jit->seen |= SEEN_MEM;
1164 		break;
1165 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1166 		/* sthy %src,off(%dst) */
1167 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1168 		jit->seen |= SEEN_MEM;
1169 		break;
1170 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1171 		/* sty %src,off(%dst) */
1172 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1173 		jit->seen |= SEEN_MEM;
1174 		break;
1175 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1176 		/* stg %src,off(%dst) */
1177 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1178 		jit->seen |= SEEN_MEM;
1179 		break;
1180 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1181 		/* lhi %w0,imm */
1182 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1183 		/* stcy %w0,off(dst) */
1184 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1185 		jit->seen |= SEEN_MEM;
1186 		break;
1187 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1188 		/* lhi %w0,imm */
1189 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1190 		/* sthy %w0,off(dst) */
1191 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1192 		jit->seen |= SEEN_MEM;
1193 		break;
1194 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1195 		/* llilf %w0,imm  */
1196 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1197 		/* sty %w0,off(%dst) */
1198 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1199 		jit->seen |= SEEN_MEM;
1200 		break;
1201 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1202 		/* lgfi %w0,imm */
1203 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1204 		/* stg %w0,off(%dst) */
1205 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1206 		jit->seen |= SEEN_MEM;
1207 		break;
1208 	/*
1209 	 * BPF_STX XADD (atomic_add)
1210 	 */
1211 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
1212 		/* laal %w0,%src,off(%dst) */
1213 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
1214 			      dst_reg, off);
1215 		jit->seen |= SEEN_MEM;
1216 		break;
1217 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
1218 		/* laalg %w0,%src,off(%dst) */
1219 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
1220 			      dst_reg, off);
1221 		jit->seen |= SEEN_MEM;
1222 		break;
1223 	/*
1224 	 * BPF_LDX
1225 	 */
1226 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1227 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1228 		/* llgc %dst,0(off,%src) */
1229 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1230 		jit->seen |= SEEN_MEM;
1231 		if (insn_is_zext(&insn[1]))
1232 			insn_count = 2;
1233 		break;
1234 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1235 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1236 		/* llgh %dst,0(off,%src) */
1237 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1238 		jit->seen |= SEEN_MEM;
1239 		if (insn_is_zext(&insn[1]))
1240 			insn_count = 2;
1241 		break;
1242 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1243 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1244 		/* llgf %dst,off(%src) */
1245 		jit->seen |= SEEN_MEM;
1246 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1247 		if (insn_is_zext(&insn[1]))
1248 			insn_count = 2;
1249 		break;
1250 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1251 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1252 		/* lg %dst,0(off,%src) */
1253 		jit->seen |= SEEN_MEM;
1254 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1255 		break;
1256 	/*
1257 	 * BPF_JMP / CALL
1258 	 */
1259 	case BPF_JMP | BPF_CALL:
1260 	{
1261 		u64 func;
1262 		bool func_addr_fixed;
1263 		int ret;
1264 
1265 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1266 					    &func, &func_addr_fixed);
1267 		if (ret < 0)
1268 			return -1;
1269 
1270 		REG_SET_SEEN(BPF_REG_5);
1271 		jit->seen |= SEEN_FUNC;
1272 		/* lgrl %w1,func */
1273 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1274 		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1275 			/* brasl %r14,__s390_indirect_jump_r1 */
1276 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1277 		} else {
1278 			/* basr %r14,%w1 */
1279 			EMIT2(0x0d00, REG_14, REG_W1);
1280 		}
1281 		/* lgr %b0,%r2: load return value into %b0 */
1282 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1283 		break;
1284 	}
1285 	case BPF_JMP | BPF_TAIL_CALL:
1286 		/*
1287 		 * Implicit input:
1288 		 *  B1: pointer to ctx
1289 		 *  B2: pointer to bpf_array
1290 		 *  B3: index in bpf_array
1291 		 */
1292 		jit->seen |= SEEN_TAIL_CALL;
1293 
1294 		/*
1295 		 * if (index >= array->map.max_entries)
1296 		 *         goto out;
1297 		 */
1298 
1299 		/* llgf %w1,map.max_entries(%b2) */
1300 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1301 			      offsetof(struct bpf_array, map.max_entries));
1302 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1303 		if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1304 			/* clrj %b3,%w1,0xa,label0 */
1305 			EMIT6_PCREL_LABEL(0xec000000, 0x0077, BPF_REG_3,
1306 					  REG_W1, 0, 0xa);
1307 		} else {
1308 			/* clr %b3,%w1 */
1309 			EMIT2(0x1500, BPF_REG_3, REG_W1);
1310 			/* brcl 0xa,label0 */
1311 			EMIT6_PCREL_RILC(0xc0040000, 0xa, jit->labels[0]);
1312 		}
1313 
1314 		/*
1315 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1316 		 *         goto out;
1317 		 */
1318 
1319 		if (jit->seen & SEEN_STACK)
1320 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1321 		else
1322 			off = STK_OFF_TCCNT;
1323 		/* lhi %w0,1 */
1324 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1325 		/* laal %w1,%w0,off(%r15) */
1326 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1327 		if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1328 			/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1329 			EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1330 					      MAX_TAIL_CALL_CNT, 0, 0x2);
1331 		} else {
1332 			/* clfi %w1,MAX_TAIL_CALL_CNT */
1333 			EMIT6_IMM(0xc20f0000, REG_W1, MAX_TAIL_CALL_CNT);
1334 			/* brcl 0x2,label0 */
1335 			EMIT6_PCREL_RILC(0xc0040000, 0x2, jit->labels[0]);
1336 		}
1337 
1338 		/*
1339 		 * prog = array->ptrs[index];
1340 		 * if (prog == NULL)
1341 		 *         goto out;
1342 		 */
1343 
1344 		/* llgfr %r1,%b3: %r1 = (u32) index */
1345 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1346 		/* sllg %r1,%r1,3: %r1 *= 8 */
1347 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1348 		/* ltg %r1,prog(%b2,%r1) */
1349 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1350 			      REG_1, offsetof(struct bpf_array, ptrs));
1351 		if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1352 			/* brc 0x8,label0 */
1353 			EMIT4_PCREL_RIC(0xa7040000, 0x8, jit->labels[0]);
1354 		} else {
1355 			/* brcl 0x8,label0 */
1356 			EMIT6_PCREL_RILC(0xc0040000, 0x8, jit->labels[0]);
1357 		}
1358 
1359 		/*
1360 		 * Restore registers before calling function
1361 		 */
1362 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1363 
1364 		/*
1365 		 * goto *(prog->bpf_func + tail_call_start);
1366 		 */
1367 
1368 		/* lg %r1,bpf_func(%r1) */
1369 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1370 			      offsetof(struct bpf_prog, bpf_func));
1371 		/* bc 0xf,tail_call_start(%r1) */
1372 		_EMIT4(0x47f01000 + jit->tail_call_start);
1373 		/* out: */
1374 		jit->labels[0] = jit->prg;
1375 		break;
1376 	case BPF_JMP | BPF_EXIT: /* return b0 */
1377 		last = (i == fp->len - 1) ? 1 : 0;
1378 		if (last)
1379 			break;
1380 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1381 			/* brc 0xf, <exit> */
1382 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1383 		else
1384 			/* brcl 0xf, <exit> */
1385 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1386 		break;
1387 	/*
1388 	 * Branch relative (number of skipped instructions) to offset on
1389 	 * condition.
1390 	 *
1391 	 * Condition code to mask mapping:
1392 	 *
1393 	 * CC | Description	   | Mask
1394 	 * ------------------------------
1395 	 * 0  | Operands equal	   |	8
1396 	 * 1  | First operand low  |	4
1397 	 * 2  | First operand high |	2
1398 	 * 3  | Unused		   |	1
1399 	 *
1400 	 * For s390x relative branches: ip = ip + off_bytes
1401 	 * For BPF relative branches:	insn = insn + off_insns + 1
1402 	 *
1403 	 * For example for s390x with offset 0 we jump to the branch
1404 	 * instruction itself (loop) and for BPF with offset 0 we
1405 	 * branch to the instruction behind the branch.
1406 	 */
1407 	case BPF_JMP | BPF_JA: /* if (true) */
1408 		mask = 0xf000; /* j */
1409 		goto branch_oc;
1410 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1411 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1412 		mask = 0x2000; /* jh */
1413 		goto branch_ks;
1414 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1415 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1416 		mask = 0x4000; /* jl */
1417 		goto branch_ks;
1418 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1419 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1420 		mask = 0xa000; /* jhe */
1421 		goto branch_ks;
1422 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1423 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1424 		mask = 0xc000; /* jle */
1425 		goto branch_ks;
1426 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1427 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1428 		mask = 0x2000; /* jh */
1429 		goto branch_ku;
1430 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1431 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1432 		mask = 0x4000; /* jl */
1433 		goto branch_ku;
1434 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1435 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1436 		mask = 0xa000; /* jhe */
1437 		goto branch_ku;
1438 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1439 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1440 		mask = 0xc000; /* jle */
1441 		goto branch_ku;
1442 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1443 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1444 		mask = 0x7000; /* jne */
1445 		goto branch_ku;
1446 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1447 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1448 		mask = 0x8000; /* je */
1449 		goto branch_ku;
1450 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1451 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1452 		mask = 0x7000; /* jnz */
1453 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1454 			/* llilf %w1,imm (load zero extend imm) */
1455 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1456 			/* nr %w1,%dst */
1457 			EMIT2(0x1400, REG_W1, dst_reg);
1458 		} else {
1459 			/* lgfi %w1,imm (load sign extend imm) */
1460 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1461 			/* ngr %w1,%dst */
1462 			EMIT4(0xb9800000, REG_W1, dst_reg);
1463 		}
1464 		goto branch_oc;
1465 
1466 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1467 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1468 		mask = 0x2000; /* jh */
1469 		goto branch_xs;
1470 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1471 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1472 		mask = 0x4000; /* jl */
1473 		goto branch_xs;
1474 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1475 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1476 		mask = 0xa000; /* jhe */
1477 		goto branch_xs;
1478 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1479 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1480 		mask = 0xc000; /* jle */
1481 		goto branch_xs;
1482 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1483 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1484 		mask = 0x2000; /* jh */
1485 		goto branch_xu;
1486 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1487 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1488 		mask = 0x4000; /* jl */
1489 		goto branch_xu;
1490 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1491 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1492 		mask = 0xa000; /* jhe */
1493 		goto branch_xu;
1494 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1495 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1496 		mask = 0xc000; /* jle */
1497 		goto branch_xu;
1498 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1499 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1500 		mask = 0x7000; /* jne */
1501 		goto branch_xu;
1502 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1503 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1504 		mask = 0x8000; /* je */
1505 		goto branch_xu;
1506 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1507 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1508 	{
1509 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1510 
1511 		mask = 0x7000; /* jnz */
1512 		/* nrk or ngrk %w1,%dst,%src */
1513 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1514 			  REG_W1, dst_reg, src_reg);
1515 		goto branch_oc;
1516 branch_ks:
1517 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1518 		/* cfi or cgfi %dst,imm */
1519 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1520 			  dst_reg, imm);
1521 		if (!is_first_pass(jit) &&
1522 		    can_use_rel(jit, addrs[i + off + 1])) {
1523 			/* brc mask,off */
1524 			EMIT4_PCREL_RIC(0xa7040000,
1525 					mask >> 12, addrs[i + off + 1]);
1526 		} else {
1527 			/* brcl mask,off */
1528 			EMIT6_PCREL_RILC(0xc0040000,
1529 					 mask >> 12, addrs[i + off + 1]);
1530 		}
1531 		break;
1532 branch_ku:
1533 		/* lgfi %w1,imm (load sign extend imm) */
1534 		src_reg = REG_1;
1535 		EMIT6_IMM(0xc0010000, src_reg, imm);
1536 		goto branch_xu;
1537 branch_xs:
1538 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1539 		if (!is_first_pass(jit) &&
1540 		    can_use_rel(jit, addrs[i + off + 1])) {
1541 			/* crj or cgrj %dst,%src,mask,off */
1542 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1543 				    dst_reg, src_reg, i, off, mask);
1544 		} else {
1545 			/* cr or cgr %dst,%src */
1546 			if (is_jmp32)
1547 				EMIT2(0x1900, dst_reg, src_reg);
1548 			else
1549 				EMIT4(0xb9200000, dst_reg, src_reg);
1550 			/* brcl mask,off */
1551 			EMIT6_PCREL_RILC(0xc0040000,
1552 					 mask >> 12, addrs[i + off + 1]);
1553 		}
1554 		break;
1555 branch_xu:
1556 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1557 		if (!is_first_pass(jit) &&
1558 		    can_use_rel(jit, addrs[i + off + 1])) {
1559 			/* clrj or clgrj %dst,%src,mask,off */
1560 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1561 				    dst_reg, src_reg, i, off, mask);
1562 		} else {
1563 			/* clr or clgr %dst,%src */
1564 			if (is_jmp32)
1565 				EMIT2(0x1500, dst_reg, src_reg);
1566 			else
1567 				EMIT4(0xb9210000, dst_reg, src_reg);
1568 			/* brcl mask,off */
1569 			EMIT6_PCREL_RILC(0xc0040000,
1570 					 mask >> 12, addrs[i + off + 1]);
1571 		}
1572 		break;
1573 branch_oc:
1574 		if (!is_first_pass(jit) &&
1575 		    can_use_rel(jit, addrs[i + off + 1])) {
1576 			/* brc mask,off */
1577 			EMIT4_PCREL_RIC(0xa7040000,
1578 					mask >> 12, addrs[i + off + 1]);
1579 		} else {
1580 			/* brcl mask,off */
1581 			EMIT6_PCREL_RILC(0xc0040000,
1582 					 mask >> 12, addrs[i + off + 1]);
1583 		}
1584 		break;
1585 	}
1586 	default: /* too complex, give up */
1587 		pr_err("Unknown opcode %02x\n", insn->code);
1588 		return -1;
1589 	}
1590 
1591 	if (probe_prg != -1) {
1592 		/*
1593 		 * Handlers of certain exceptions leave psw.addr pointing to
1594 		 * the instruction directly after the failing one. Therefore,
1595 		 * create two exception table entries and also add a nop in
1596 		 * case two probing instructions come directly after each
1597 		 * other.
1598 		 */
1599 		nop_prg = jit->prg;
1600 		/* bcr 0,%0 */
1601 		_EMIT2(0x0700);
1602 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1603 		if (err < 0)
1604 			return err;
1605 	}
1606 
1607 	return insn_count;
1608 }
1609 
1610 /*
1611  * Return whether new i-th instruction address does not violate any invariant
1612  */
1613 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1614 {
1615 	/* On the first pass anything goes */
1616 	if (is_first_pass(jit))
1617 		return true;
1618 
1619 	/* The codegen pass must not change anything */
1620 	if (is_codegen_pass(jit))
1621 		return jit->addrs[i] == jit->prg;
1622 
1623 	/* Passes in between must not increase code size */
1624 	return jit->addrs[i] >= jit->prg;
1625 }
1626 
1627 /*
1628  * Update the address of i-th instruction
1629  */
1630 static int bpf_set_addr(struct bpf_jit *jit, int i)
1631 {
1632 	int delta;
1633 
1634 	if (is_codegen_pass(jit)) {
1635 		delta = jit->prg - jit->addrs[i];
1636 		if (delta < 0)
1637 			bpf_skip(jit, -delta);
1638 	}
1639 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1640 		return -1;
1641 	jit->addrs[i] = jit->prg;
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Compile eBPF program into s390x code
1647  */
1648 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1649 			bool extra_pass, u32 stack_depth)
1650 {
1651 	int i, insn_count, lit32_size, lit64_size;
1652 
1653 	jit->lit32 = jit->lit32_start;
1654 	jit->lit64 = jit->lit64_start;
1655 	jit->prg = 0;
1656 	jit->excnt = 0;
1657 
1658 	bpf_jit_prologue(jit, stack_depth);
1659 	if (bpf_set_addr(jit, 0) < 0)
1660 		return -1;
1661 	for (i = 0; i < fp->len; i += insn_count) {
1662 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1663 		if (insn_count < 0)
1664 			return -1;
1665 		/* Next instruction address */
1666 		if (bpf_set_addr(jit, i + insn_count) < 0)
1667 			return -1;
1668 	}
1669 	bpf_jit_epilogue(jit, stack_depth);
1670 
1671 	lit32_size = jit->lit32 - jit->lit32_start;
1672 	lit64_size = jit->lit64 - jit->lit64_start;
1673 	jit->lit32_start = jit->prg;
1674 	if (lit32_size)
1675 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1676 	jit->lit64_start = jit->lit32_start + lit32_size;
1677 	if (lit64_size)
1678 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1679 	jit->size = jit->lit64_start + lit64_size;
1680 	jit->size_prg = jit->prg;
1681 
1682 	if (WARN_ON_ONCE(fp->aux->extable &&
1683 			 jit->excnt != fp->aux->num_exentries))
1684 		/* Verifier bug - too many entries. */
1685 		return -1;
1686 
1687 	return 0;
1688 }
1689 
1690 bool bpf_jit_needs_zext(void)
1691 {
1692 	return true;
1693 }
1694 
1695 struct s390_jit_data {
1696 	struct bpf_binary_header *header;
1697 	struct bpf_jit ctx;
1698 	int pass;
1699 };
1700 
1701 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1702 					       struct bpf_prog *fp)
1703 {
1704 	struct bpf_binary_header *header;
1705 	u32 extable_size;
1706 	u32 code_size;
1707 
1708 	/* We need two entries per insn. */
1709 	fp->aux->num_exentries *= 2;
1710 
1711 	code_size = roundup(jit->size,
1712 			    __alignof__(struct exception_table_entry));
1713 	extable_size = fp->aux->num_exentries *
1714 		sizeof(struct exception_table_entry);
1715 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1716 				      8, jit_fill_hole);
1717 	if (!header)
1718 		return NULL;
1719 	fp->aux->extable = (struct exception_table_entry *)
1720 		(jit->prg_buf + code_size);
1721 	return header;
1722 }
1723 
1724 /*
1725  * Compile eBPF program "fp"
1726  */
1727 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1728 {
1729 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1730 	struct bpf_prog *tmp, *orig_fp = fp;
1731 	struct bpf_binary_header *header;
1732 	struct s390_jit_data *jit_data;
1733 	bool tmp_blinded = false;
1734 	bool extra_pass = false;
1735 	struct bpf_jit jit;
1736 	int pass;
1737 
1738 	if (!fp->jit_requested)
1739 		return orig_fp;
1740 
1741 	tmp = bpf_jit_blind_constants(fp);
1742 	/*
1743 	 * If blinding was requested and we failed during blinding,
1744 	 * we must fall back to the interpreter.
1745 	 */
1746 	if (IS_ERR(tmp))
1747 		return orig_fp;
1748 	if (tmp != fp) {
1749 		tmp_blinded = true;
1750 		fp = tmp;
1751 	}
1752 
1753 	jit_data = fp->aux->jit_data;
1754 	if (!jit_data) {
1755 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1756 		if (!jit_data) {
1757 			fp = orig_fp;
1758 			goto out;
1759 		}
1760 		fp->aux->jit_data = jit_data;
1761 	}
1762 	if (jit_data->ctx.addrs) {
1763 		jit = jit_data->ctx;
1764 		header = jit_data->header;
1765 		extra_pass = true;
1766 		pass = jit_data->pass + 1;
1767 		goto skip_init_ctx;
1768 	}
1769 
1770 	memset(&jit, 0, sizeof(jit));
1771 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1772 	if (jit.addrs == NULL) {
1773 		fp = orig_fp;
1774 		goto out;
1775 	}
1776 	/*
1777 	 * Three initial passes:
1778 	 *   - 1/2: Determine clobbered registers
1779 	 *   - 3:   Calculate program size and addrs arrray
1780 	 */
1781 	for (pass = 1; pass <= 3; pass++) {
1782 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1783 			fp = orig_fp;
1784 			goto free_addrs;
1785 		}
1786 	}
1787 	/*
1788 	 * Final pass: Allocate and generate program
1789 	 */
1790 	header = bpf_jit_alloc(&jit, fp);
1791 	if (!header) {
1792 		fp = orig_fp;
1793 		goto free_addrs;
1794 	}
1795 skip_init_ctx:
1796 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1797 		bpf_jit_binary_free(header);
1798 		fp = orig_fp;
1799 		goto free_addrs;
1800 	}
1801 	if (bpf_jit_enable > 1) {
1802 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1803 		print_fn_code(jit.prg_buf, jit.size_prg);
1804 	}
1805 	if (!fp->is_func || extra_pass) {
1806 		bpf_jit_binary_lock_ro(header);
1807 	} else {
1808 		jit_data->header = header;
1809 		jit_data->ctx = jit;
1810 		jit_data->pass = pass;
1811 	}
1812 	fp->bpf_func = (void *) jit.prg_buf;
1813 	fp->jited = 1;
1814 	fp->jited_len = jit.size;
1815 
1816 	if (!fp->is_func || extra_pass) {
1817 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1818 free_addrs:
1819 		kvfree(jit.addrs);
1820 		kfree(jit_data);
1821 		fp->aux->jit_data = NULL;
1822 	}
1823 out:
1824 	if (tmp_blinded)
1825 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1826 					   tmp : orig_fp);
1827 	return fp;
1828 }
1829