xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision cbdf59ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <asm/cacheflush.h>
27 #include <asm/dis.h>
28 #include <asm/facility.h>
29 #include <asm/nospec-branch.h>
30 #include <asm/set_memory.h>
31 #include "bpf_jit.h"
32 
33 struct bpf_jit {
34 	u32 seen;		/* Flags to remember seen eBPF instructions */
35 	u32 seen_reg[16];	/* Array to remember which registers are used */
36 	u32 *addrs;		/* Array with relative instruction addresses */
37 	u8 *prg_buf;		/* Start of program */
38 	int size;		/* Size of program and literal pool */
39 	int size_prg;		/* Size of program */
40 	int prg;		/* Current position in program */
41 	int lit_start;		/* Start of literal pool */
42 	int lit;		/* Current position in literal pool */
43 	int base_ip;		/* Base address for literal pool */
44 	int ret0_ip;		/* Address of return 0 */
45 	int exit_ip;		/* Address of exit */
46 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
47 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
48 	int tail_call_start;	/* Tail call start offset */
49 	int labels[1];		/* Labels for local jumps */
50 };
51 
52 #define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
53 
54 #define SEEN_MEM	(1 << 0)	/* use mem[] for temporary storage */
55 #define SEEN_RET0	(1 << 1)	/* ret0_ip points to a valid return 0 */
56 #define SEEN_LITERAL	(1 << 2)	/* code uses literals */
57 #define SEEN_FUNC	(1 << 3)	/* calls C functions */
58 #define SEEN_TAIL_CALL	(1 << 4)	/* code uses tail calls */
59 #define SEEN_REG_AX	(1 << 5)	/* code uses constant blinding */
60 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
61 
62 /*
63  * s390 registers
64  */
65 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
66 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
67 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
68 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
69 #define REG_0		REG_W0			/* Register 0 */
70 #define REG_1		REG_W1			/* Register 1 */
71 #define REG_2		BPF_REG_1		/* Register 2 */
72 #define REG_14		BPF_REG_0		/* Register 14 */
73 
74 /*
75  * Mapping of BPF registers to s390 registers
76  */
77 static const int reg2hex[] = {
78 	/* Return code */
79 	[BPF_REG_0]	= 14,
80 	/* Function parameters */
81 	[BPF_REG_1]	= 2,
82 	[BPF_REG_2]	= 3,
83 	[BPF_REG_3]	= 4,
84 	[BPF_REG_4]	= 5,
85 	[BPF_REG_5]	= 6,
86 	/* Call saved registers */
87 	[BPF_REG_6]	= 7,
88 	[BPF_REG_7]	= 8,
89 	[BPF_REG_8]	= 9,
90 	[BPF_REG_9]	= 10,
91 	/* BPF stack pointer */
92 	[BPF_REG_FP]	= 13,
93 	/* Register for blinding */
94 	[BPF_REG_AX]	= 12,
95 	/* Work registers for s390x backend */
96 	[REG_W0]	= 0,
97 	[REG_W1]	= 1,
98 	[REG_L]		= 11,
99 	[REG_15]	= 15,
100 };
101 
102 static inline u32 reg(u32 dst_reg, u32 src_reg)
103 {
104 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
105 }
106 
107 static inline u32 reg_high(u32 reg)
108 {
109 	return reg2hex[reg] << 4;
110 }
111 
112 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
113 {
114 	u32 r1 = reg2hex[b1];
115 
116 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 		jit->seen_reg[r1] = 1;
118 }
119 
120 #define REG_SET_SEEN(b1)					\
121 ({								\
122 	reg_set_seen(jit, b1);					\
123 })
124 
125 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
126 
127 /*
128  * EMIT macros for code generation
129  */
130 
131 #define _EMIT2(op)						\
132 ({								\
133 	if (jit->prg_buf)					\
134 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
135 	jit->prg += 2;						\
136 })
137 
138 #define EMIT2(op, b1, b2)					\
139 ({								\
140 	_EMIT2(op | reg(b1, b2));				\
141 	REG_SET_SEEN(b1);					\
142 	REG_SET_SEEN(b2);					\
143 })
144 
145 #define _EMIT4(op)						\
146 ({								\
147 	if (jit->prg_buf)					\
148 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
149 	jit->prg += 4;						\
150 })
151 
152 #define EMIT4(op, b1, b2)					\
153 ({								\
154 	_EMIT4(op | reg(b1, b2));				\
155 	REG_SET_SEEN(b1);					\
156 	REG_SET_SEEN(b2);					\
157 })
158 
159 #define EMIT4_RRF(op, b1, b2, b3)				\
160 ({								\
161 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
162 	REG_SET_SEEN(b1);					\
163 	REG_SET_SEEN(b2);					\
164 	REG_SET_SEEN(b3);					\
165 })
166 
167 #define _EMIT4_DISP(op, disp)					\
168 ({								\
169 	unsigned int __disp = (disp) & 0xfff;			\
170 	_EMIT4(op | __disp);					\
171 })
172 
173 #define EMIT4_DISP(op, b1, b2, disp)				\
174 ({								\
175 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
176 		    reg_high(b2) << 8, disp);			\
177 	REG_SET_SEEN(b1);					\
178 	REG_SET_SEEN(b2);					\
179 })
180 
181 #define EMIT4_IMM(op, b1, imm)					\
182 ({								\
183 	unsigned int __imm = (imm) & 0xffff;			\
184 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
185 	REG_SET_SEEN(b1);					\
186 })
187 
188 #define EMIT4_PCREL(op, pcrel)					\
189 ({								\
190 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
191 	_EMIT4(op | __pcrel);					\
192 })
193 
194 #define _EMIT6(op1, op2)					\
195 ({								\
196 	if (jit->prg_buf) {					\
197 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
198 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
199 	}							\
200 	jit->prg += 6;						\
201 })
202 
203 #define _EMIT6_DISP(op1, op2, disp)				\
204 ({								\
205 	unsigned int __disp = (disp) & 0xfff;			\
206 	_EMIT6(op1 | __disp, op2);				\
207 })
208 
209 #define _EMIT6_DISP_LH(op1, op2, disp)				\
210 ({								\
211 	u32 _disp = (u32) disp;					\
212 	unsigned int __disp_h = _disp & 0xff000;		\
213 	unsigned int __disp_l = _disp & 0x00fff;		\
214 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
215 })
216 
217 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
218 ({								\
219 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
220 		       reg_high(b3) << 8, op2, disp);		\
221 	REG_SET_SEEN(b1);					\
222 	REG_SET_SEEN(b2);					\
223 	REG_SET_SEEN(b3);					\
224 })
225 
226 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
227 ({								\
228 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
229 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
230 	       op2 | mask << 12);				\
231 	REG_SET_SEEN(b1);					\
232 	REG_SET_SEEN(b2);					\
233 })
234 
235 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
236 ({								\
237 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
238 	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
239 		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
240 	REG_SET_SEEN(b1);					\
241 	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
242 })
243 
244 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
245 ({								\
246 	/* Branch instruction needs 6 bytes */			\
247 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
248 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
249 	REG_SET_SEEN(b1);					\
250 	REG_SET_SEEN(b2);					\
251 })
252 
253 #define EMIT6_PCREL_RILB(op, b, target)				\
254 ({								\
255 	int rel = (target - jit->prg) / 2;			\
256 	_EMIT6(op | reg_high(b) << 16 | rel >> 16, rel & 0xffff);	\
257 	REG_SET_SEEN(b);					\
258 })
259 
260 #define EMIT6_PCREL_RIL(op, target)				\
261 ({								\
262 	int rel = (target - jit->prg) / 2;			\
263 	_EMIT6(op | rel >> 16, rel & 0xffff);			\
264 })
265 
266 #define _EMIT6_IMM(op, imm)					\
267 ({								\
268 	unsigned int __imm = (imm);				\
269 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
270 })
271 
272 #define EMIT6_IMM(op, b1, imm)					\
273 ({								\
274 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
275 	REG_SET_SEEN(b1);					\
276 })
277 
278 #define EMIT_CONST_U32(val)					\
279 ({								\
280 	unsigned int ret;					\
281 	ret = jit->lit - jit->base_ip;				\
282 	jit->seen |= SEEN_LITERAL;				\
283 	if (jit->prg_buf)					\
284 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
285 	jit->lit += 4;						\
286 	ret;							\
287 })
288 
289 #define EMIT_CONST_U64(val)					\
290 ({								\
291 	unsigned int ret;					\
292 	ret = jit->lit - jit->base_ip;				\
293 	jit->seen |= SEEN_LITERAL;				\
294 	if (jit->prg_buf)					\
295 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
296 	jit->lit += 8;						\
297 	ret;							\
298 })
299 
300 #define EMIT_ZERO(b1)						\
301 ({								\
302 	if (!fp->aux->verifier_zext) {				\
303 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
304 		EMIT4(0xb9160000, b1, b1);			\
305 		REG_SET_SEEN(b1);				\
306 	}							\
307 })
308 
309 /*
310  * Fill whole space with illegal instructions
311  */
312 static void jit_fill_hole(void *area, unsigned int size)
313 {
314 	memset(area, 0, size);
315 }
316 
317 /*
318  * Save registers from "rs" (register start) to "re" (register end) on stack
319  */
320 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
321 {
322 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
323 
324 	if (rs == re)
325 		/* stg %rs,off(%r15) */
326 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
327 	else
328 		/* stmg %rs,%re,off(%r15) */
329 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
330 }
331 
332 /*
333  * Restore registers from "rs" (register start) to "re" (register end) on stack
334  */
335 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
336 {
337 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
338 
339 	if (jit->seen & SEEN_STACK)
340 		off += STK_OFF + stack_depth;
341 
342 	if (rs == re)
343 		/* lg %rs,off(%r15) */
344 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
345 	else
346 		/* lmg %rs,%re,off(%r15) */
347 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
348 }
349 
350 /*
351  * Return first seen register (from start)
352  */
353 static int get_start(struct bpf_jit *jit, int start)
354 {
355 	int i;
356 
357 	for (i = start; i <= 15; i++) {
358 		if (jit->seen_reg[i])
359 			return i;
360 	}
361 	return 0;
362 }
363 
364 /*
365  * Return last seen register (from start) (gap >= 2)
366  */
367 static int get_end(struct bpf_jit *jit, int start)
368 {
369 	int i;
370 
371 	for (i = start; i < 15; i++) {
372 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
373 			return i - 1;
374 	}
375 	return jit->seen_reg[15] ? 15 : 14;
376 }
377 
378 #define REGS_SAVE	1
379 #define REGS_RESTORE	0
380 /*
381  * Save and restore clobbered registers (6-15) on stack.
382  * We save/restore registers in chunks with gap >= 2 registers.
383  */
384 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
385 {
386 
387 	int re = 6, rs;
388 
389 	do {
390 		rs = get_start(jit, re);
391 		if (!rs)
392 			break;
393 		re = get_end(jit, rs + 1);
394 		if (op == REGS_SAVE)
395 			save_regs(jit, rs, re);
396 		else
397 			restore_regs(jit, rs, re, stack_depth);
398 		re++;
399 	} while (re <= 15);
400 }
401 
402 /*
403  * Emit function prologue
404  *
405  * Save registers and create stack frame if necessary.
406  * See stack frame layout desription in "bpf_jit.h"!
407  */
408 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
409 {
410 	if (jit->seen & SEEN_TAIL_CALL) {
411 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
412 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
413 	} else {
414 		/* j tail_call_start: NOP if no tail calls are used */
415 		EMIT4_PCREL(0xa7f40000, 6);
416 		_EMIT2(0);
417 	}
418 	/* Tail calls have to skip above initialization */
419 	jit->tail_call_start = jit->prg;
420 	/* Save registers */
421 	save_restore_regs(jit, REGS_SAVE, stack_depth);
422 	/* Setup literal pool */
423 	if (jit->seen & SEEN_LITERAL) {
424 		/* basr %r13,0 */
425 		EMIT2(0x0d00, REG_L, REG_0);
426 		jit->base_ip = jit->prg;
427 	}
428 	/* Setup stack and backchain */
429 	if (jit->seen & SEEN_STACK) {
430 		if (jit->seen & SEEN_FUNC)
431 			/* lgr %w1,%r15 (backchain) */
432 			EMIT4(0xb9040000, REG_W1, REG_15);
433 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
434 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
435 		/* aghi %r15,-STK_OFF */
436 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
437 		if (jit->seen & SEEN_FUNC)
438 			/* stg %w1,152(%r15) (backchain) */
439 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
440 				      REG_15, 152);
441 	}
442 }
443 
444 /*
445  * Function epilogue
446  */
447 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
448 {
449 	/* Return 0 */
450 	if (jit->seen & SEEN_RET0) {
451 		jit->ret0_ip = jit->prg;
452 		/* lghi %b0,0 */
453 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
454 	}
455 	jit->exit_ip = jit->prg;
456 	/* Load exit code: lgr %r2,%b0 */
457 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
458 	/* Restore registers */
459 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
460 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
461 		jit->r14_thunk_ip = jit->prg;
462 		/* Generate __s390_indirect_jump_r14 thunk */
463 		if (test_facility(35)) {
464 			/* exrl %r0,.+10 */
465 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
466 		} else {
467 			/* larl %r1,.+14 */
468 			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
469 			/* ex 0,0(%r1) */
470 			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
471 		}
472 		/* j . */
473 		EMIT4_PCREL(0xa7f40000, 0);
474 	}
475 	/* br %r14 */
476 	_EMIT2(0x07fe);
477 
478 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
479 	    (jit->seen & SEEN_FUNC)) {
480 		jit->r1_thunk_ip = jit->prg;
481 		/* Generate __s390_indirect_jump_r1 thunk */
482 		if (test_facility(35)) {
483 			/* exrl %r0,.+10 */
484 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
485 			/* j . */
486 			EMIT4_PCREL(0xa7f40000, 0);
487 			/* br %r1 */
488 			_EMIT2(0x07f1);
489 		} else {
490 			/* ex 0,S390_lowcore.br_r1_tampoline */
491 			EMIT4_DISP(0x44000000, REG_0, REG_0,
492 				   offsetof(struct lowcore, br_r1_trampoline));
493 			/* j . */
494 			EMIT4_PCREL(0xa7f40000, 0);
495 		}
496 	}
497 }
498 
499 /*
500  * Compile one eBPF instruction into s390x code
501  *
502  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
503  * stack space for the large switch statement.
504  */
505 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
506 {
507 	struct bpf_insn *insn = &fp->insnsi[i];
508 	int jmp_off, last, insn_count = 1;
509 	u32 dst_reg = insn->dst_reg;
510 	u32 src_reg = insn->src_reg;
511 	u32 *addrs = jit->addrs;
512 	s32 imm = insn->imm;
513 	s16 off = insn->off;
514 	unsigned int mask;
515 
516 	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
517 		jit->seen |= SEEN_REG_AX;
518 	switch (insn->code) {
519 	/*
520 	 * BPF_MOV
521 	 */
522 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
523 		/* llgfr %dst,%src */
524 		EMIT4(0xb9160000, dst_reg, src_reg);
525 		if (insn_is_zext(&insn[1]))
526 			insn_count = 2;
527 		break;
528 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
529 		/* lgr %dst,%src */
530 		EMIT4(0xb9040000, dst_reg, src_reg);
531 		break;
532 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
533 		/* llilf %dst,imm */
534 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
535 		if (insn_is_zext(&insn[1]))
536 			insn_count = 2;
537 		break;
538 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
539 		/* lgfi %dst,imm */
540 		EMIT6_IMM(0xc0010000, dst_reg, imm);
541 		break;
542 	/*
543 	 * BPF_LD 64
544 	 */
545 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
546 	{
547 		/* 16 byte instruction that uses two 'struct bpf_insn' */
548 		u64 imm64;
549 
550 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
551 		/* lg %dst,<d(imm)>(%l) */
552 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
553 			      EMIT_CONST_U64(imm64));
554 		insn_count = 2;
555 		break;
556 	}
557 	/*
558 	 * BPF_ADD
559 	 */
560 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
561 		/* ar %dst,%src */
562 		EMIT2(0x1a00, dst_reg, src_reg);
563 		EMIT_ZERO(dst_reg);
564 		break;
565 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
566 		/* agr %dst,%src */
567 		EMIT4(0xb9080000, dst_reg, src_reg);
568 		break;
569 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
570 		if (!imm)
571 			break;
572 		/* alfi %dst,imm */
573 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
574 		EMIT_ZERO(dst_reg);
575 		break;
576 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
577 		if (!imm)
578 			break;
579 		/* agfi %dst,imm */
580 		EMIT6_IMM(0xc2080000, dst_reg, imm);
581 		break;
582 	/*
583 	 * BPF_SUB
584 	 */
585 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
586 		/* sr %dst,%src */
587 		EMIT2(0x1b00, dst_reg, src_reg);
588 		EMIT_ZERO(dst_reg);
589 		break;
590 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
591 		/* sgr %dst,%src */
592 		EMIT4(0xb9090000, dst_reg, src_reg);
593 		break;
594 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
595 		if (!imm)
596 			break;
597 		/* alfi %dst,-imm */
598 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
599 		EMIT_ZERO(dst_reg);
600 		break;
601 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
602 		if (!imm)
603 			break;
604 		/* agfi %dst,-imm */
605 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
606 		break;
607 	/*
608 	 * BPF_MUL
609 	 */
610 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
611 		/* msr %dst,%src */
612 		EMIT4(0xb2520000, dst_reg, src_reg);
613 		EMIT_ZERO(dst_reg);
614 		break;
615 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
616 		/* msgr %dst,%src */
617 		EMIT4(0xb90c0000, dst_reg, src_reg);
618 		break;
619 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
620 		if (imm == 1)
621 			break;
622 		/* msfi %r5,imm */
623 		EMIT6_IMM(0xc2010000, dst_reg, imm);
624 		EMIT_ZERO(dst_reg);
625 		break;
626 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
627 		if (imm == 1)
628 			break;
629 		/* msgfi %dst,imm */
630 		EMIT6_IMM(0xc2000000, dst_reg, imm);
631 		break;
632 	/*
633 	 * BPF_DIV / BPF_MOD
634 	 */
635 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
636 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
637 	{
638 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
639 
640 		/* lhi %w0,0 */
641 		EMIT4_IMM(0xa7080000, REG_W0, 0);
642 		/* lr %w1,%dst */
643 		EMIT2(0x1800, REG_W1, dst_reg);
644 		/* dlr %w0,%src */
645 		EMIT4(0xb9970000, REG_W0, src_reg);
646 		/* llgfr %dst,%rc */
647 		EMIT4(0xb9160000, dst_reg, rc_reg);
648 		if (insn_is_zext(&insn[1]))
649 			insn_count = 2;
650 		break;
651 	}
652 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
653 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
654 	{
655 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
656 
657 		/* lghi %w0,0 */
658 		EMIT4_IMM(0xa7090000, REG_W0, 0);
659 		/* lgr %w1,%dst */
660 		EMIT4(0xb9040000, REG_W1, dst_reg);
661 		/* dlgr %w0,%dst */
662 		EMIT4(0xb9870000, REG_W0, src_reg);
663 		/* lgr %dst,%rc */
664 		EMIT4(0xb9040000, dst_reg, rc_reg);
665 		break;
666 	}
667 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
668 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
669 	{
670 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
671 
672 		if (imm == 1) {
673 			if (BPF_OP(insn->code) == BPF_MOD)
674 				/* lhgi %dst,0 */
675 				EMIT4_IMM(0xa7090000, dst_reg, 0);
676 			break;
677 		}
678 		/* lhi %w0,0 */
679 		EMIT4_IMM(0xa7080000, REG_W0, 0);
680 		/* lr %w1,%dst */
681 		EMIT2(0x1800, REG_W1, dst_reg);
682 		/* dl %w0,<d(imm)>(%l) */
683 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
684 			      EMIT_CONST_U32(imm));
685 		/* llgfr %dst,%rc */
686 		EMIT4(0xb9160000, dst_reg, rc_reg);
687 		if (insn_is_zext(&insn[1]))
688 			insn_count = 2;
689 		break;
690 	}
691 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
692 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
693 	{
694 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
695 
696 		if (imm == 1) {
697 			if (BPF_OP(insn->code) == BPF_MOD)
698 				/* lhgi %dst,0 */
699 				EMIT4_IMM(0xa7090000, dst_reg, 0);
700 			break;
701 		}
702 		/* lghi %w0,0 */
703 		EMIT4_IMM(0xa7090000, REG_W0, 0);
704 		/* lgr %w1,%dst */
705 		EMIT4(0xb9040000, REG_W1, dst_reg);
706 		/* dlg %w0,<d(imm)>(%l) */
707 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
708 			      EMIT_CONST_U64(imm));
709 		/* lgr %dst,%rc */
710 		EMIT4(0xb9040000, dst_reg, rc_reg);
711 		break;
712 	}
713 	/*
714 	 * BPF_AND
715 	 */
716 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
717 		/* nr %dst,%src */
718 		EMIT2(0x1400, dst_reg, src_reg);
719 		EMIT_ZERO(dst_reg);
720 		break;
721 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
722 		/* ngr %dst,%src */
723 		EMIT4(0xb9800000, dst_reg, src_reg);
724 		break;
725 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
726 		/* nilf %dst,imm */
727 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
728 		EMIT_ZERO(dst_reg);
729 		break;
730 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
731 		/* ng %dst,<d(imm)>(%l) */
732 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
733 			      EMIT_CONST_U64(imm));
734 		break;
735 	/*
736 	 * BPF_OR
737 	 */
738 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
739 		/* or %dst,%src */
740 		EMIT2(0x1600, dst_reg, src_reg);
741 		EMIT_ZERO(dst_reg);
742 		break;
743 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
744 		/* ogr %dst,%src */
745 		EMIT4(0xb9810000, dst_reg, src_reg);
746 		break;
747 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
748 		/* oilf %dst,imm */
749 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
750 		EMIT_ZERO(dst_reg);
751 		break;
752 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
753 		/* og %dst,<d(imm)>(%l) */
754 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
755 			      EMIT_CONST_U64(imm));
756 		break;
757 	/*
758 	 * BPF_XOR
759 	 */
760 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
761 		/* xr %dst,%src */
762 		EMIT2(0x1700, dst_reg, src_reg);
763 		EMIT_ZERO(dst_reg);
764 		break;
765 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
766 		/* xgr %dst,%src */
767 		EMIT4(0xb9820000, dst_reg, src_reg);
768 		break;
769 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
770 		if (!imm)
771 			break;
772 		/* xilf %dst,imm */
773 		EMIT6_IMM(0xc0070000, dst_reg, imm);
774 		EMIT_ZERO(dst_reg);
775 		break;
776 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
777 		/* xg %dst,<d(imm)>(%l) */
778 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
779 			      EMIT_CONST_U64(imm));
780 		break;
781 	/*
782 	 * BPF_LSH
783 	 */
784 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
785 		/* sll %dst,0(%src) */
786 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
787 		EMIT_ZERO(dst_reg);
788 		break;
789 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
790 		/* sllg %dst,%dst,0(%src) */
791 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
792 		break;
793 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
794 		if (imm == 0)
795 			break;
796 		/* sll %dst,imm(%r0) */
797 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
798 		EMIT_ZERO(dst_reg);
799 		break;
800 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
801 		if (imm == 0)
802 			break;
803 		/* sllg %dst,%dst,imm(%r0) */
804 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
805 		break;
806 	/*
807 	 * BPF_RSH
808 	 */
809 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
810 		/* srl %dst,0(%src) */
811 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
812 		EMIT_ZERO(dst_reg);
813 		break;
814 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
815 		/* srlg %dst,%dst,0(%src) */
816 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
817 		break;
818 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
819 		if (imm == 0)
820 			break;
821 		/* srl %dst,imm(%r0) */
822 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
823 		EMIT_ZERO(dst_reg);
824 		break;
825 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
826 		if (imm == 0)
827 			break;
828 		/* srlg %dst,%dst,imm(%r0) */
829 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
830 		break;
831 	/*
832 	 * BPF_ARSH
833 	 */
834 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
835 		/* sra %dst,%dst,0(%src) */
836 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
837 		EMIT_ZERO(dst_reg);
838 		break;
839 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
840 		/* srag %dst,%dst,0(%src) */
841 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
842 		break;
843 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
844 		if (imm == 0)
845 			break;
846 		/* sra %dst,imm(%r0) */
847 		EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
848 		EMIT_ZERO(dst_reg);
849 		break;
850 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
851 		if (imm == 0)
852 			break;
853 		/* srag %dst,%dst,imm(%r0) */
854 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
855 		break;
856 	/*
857 	 * BPF_NEG
858 	 */
859 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
860 		/* lcr %dst,%dst */
861 		EMIT2(0x1300, dst_reg, dst_reg);
862 		EMIT_ZERO(dst_reg);
863 		break;
864 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
865 		/* lcgr %dst,%dst */
866 		EMIT4(0xb9130000, dst_reg, dst_reg);
867 		break;
868 	/*
869 	 * BPF_FROM_BE/LE
870 	 */
871 	case BPF_ALU | BPF_END | BPF_FROM_BE:
872 		/* s390 is big endian, therefore only clear high order bytes */
873 		switch (imm) {
874 		case 16: /* dst = (u16) cpu_to_be16(dst) */
875 			/* llghr %dst,%dst */
876 			EMIT4(0xb9850000, dst_reg, dst_reg);
877 			if (insn_is_zext(&insn[1]))
878 				insn_count = 2;
879 			break;
880 		case 32: /* dst = (u32) cpu_to_be32(dst) */
881 			if (!fp->aux->verifier_zext)
882 				/* llgfr %dst,%dst */
883 				EMIT4(0xb9160000, dst_reg, dst_reg);
884 			break;
885 		case 64: /* dst = (u64) cpu_to_be64(dst) */
886 			break;
887 		}
888 		break;
889 	case BPF_ALU | BPF_END | BPF_FROM_LE:
890 		switch (imm) {
891 		case 16: /* dst = (u16) cpu_to_le16(dst) */
892 			/* lrvr %dst,%dst */
893 			EMIT4(0xb91f0000, dst_reg, dst_reg);
894 			/* srl %dst,16(%r0) */
895 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
896 			/* llghr %dst,%dst */
897 			EMIT4(0xb9850000, dst_reg, dst_reg);
898 			if (insn_is_zext(&insn[1]))
899 				insn_count = 2;
900 			break;
901 		case 32: /* dst = (u32) cpu_to_le32(dst) */
902 			/* lrvr %dst,%dst */
903 			EMIT4(0xb91f0000, dst_reg, dst_reg);
904 			if (!fp->aux->verifier_zext)
905 				/* llgfr %dst,%dst */
906 				EMIT4(0xb9160000, dst_reg, dst_reg);
907 			break;
908 		case 64: /* dst = (u64) cpu_to_le64(dst) */
909 			/* lrvgr %dst,%dst */
910 			EMIT4(0xb90f0000, dst_reg, dst_reg);
911 			break;
912 		}
913 		break;
914 	/*
915 	 * BPF_ST(X)
916 	 */
917 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
918 		/* stcy %src,off(%dst) */
919 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
920 		jit->seen |= SEEN_MEM;
921 		break;
922 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
923 		/* sthy %src,off(%dst) */
924 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
925 		jit->seen |= SEEN_MEM;
926 		break;
927 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
928 		/* sty %src,off(%dst) */
929 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
930 		jit->seen |= SEEN_MEM;
931 		break;
932 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
933 		/* stg %src,off(%dst) */
934 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
935 		jit->seen |= SEEN_MEM;
936 		break;
937 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
938 		/* lhi %w0,imm */
939 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
940 		/* stcy %w0,off(dst) */
941 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
942 		jit->seen |= SEEN_MEM;
943 		break;
944 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
945 		/* lhi %w0,imm */
946 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
947 		/* sthy %w0,off(dst) */
948 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
949 		jit->seen |= SEEN_MEM;
950 		break;
951 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
952 		/* llilf %w0,imm  */
953 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
954 		/* sty %w0,off(%dst) */
955 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
956 		jit->seen |= SEEN_MEM;
957 		break;
958 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
959 		/* lgfi %w0,imm */
960 		EMIT6_IMM(0xc0010000, REG_W0, imm);
961 		/* stg %w0,off(%dst) */
962 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
963 		jit->seen |= SEEN_MEM;
964 		break;
965 	/*
966 	 * BPF_STX XADD (atomic_add)
967 	 */
968 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
969 		/* laal %w0,%src,off(%dst) */
970 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
971 			      dst_reg, off);
972 		jit->seen |= SEEN_MEM;
973 		break;
974 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
975 		/* laalg %w0,%src,off(%dst) */
976 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
977 			      dst_reg, off);
978 		jit->seen |= SEEN_MEM;
979 		break;
980 	/*
981 	 * BPF_LDX
982 	 */
983 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
984 		/* llgc %dst,0(off,%src) */
985 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
986 		jit->seen |= SEEN_MEM;
987 		if (insn_is_zext(&insn[1]))
988 			insn_count = 2;
989 		break;
990 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
991 		/* llgh %dst,0(off,%src) */
992 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
993 		jit->seen |= SEEN_MEM;
994 		if (insn_is_zext(&insn[1]))
995 			insn_count = 2;
996 		break;
997 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
998 		/* llgf %dst,off(%src) */
999 		jit->seen |= SEEN_MEM;
1000 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1001 		if (insn_is_zext(&insn[1]))
1002 			insn_count = 2;
1003 		break;
1004 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1005 		/* lg %dst,0(off,%src) */
1006 		jit->seen |= SEEN_MEM;
1007 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1008 		break;
1009 	/*
1010 	 * BPF_JMP / CALL
1011 	 */
1012 	case BPF_JMP | BPF_CALL:
1013 	{
1014 		/*
1015 		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
1016 		 */
1017 		const u64 func = (u64)__bpf_call_base + imm;
1018 
1019 		REG_SET_SEEN(BPF_REG_5);
1020 		jit->seen |= SEEN_FUNC;
1021 		/* lg %w1,<d(imm)>(%l) */
1022 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
1023 			      EMIT_CONST_U64(func));
1024 		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1025 			/* brasl %r14,__s390_indirect_jump_r1 */
1026 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1027 		} else {
1028 			/* basr %r14,%w1 */
1029 			EMIT2(0x0d00, REG_14, REG_W1);
1030 		}
1031 		/* lgr %b0,%r2: load return value into %b0 */
1032 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1033 		break;
1034 	}
1035 	case BPF_JMP | BPF_TAIL_CALL:
1036 		/*
1037 		 * Implicit input:
1038 		 *  B1: pointer to ctx
1039 		 *  B2: pointer to bpf_array
1040 		 *  B3: index in bpf_array
1041 		 */
1042 		jit->seen |= SEEN_TAIL_CALL;
1043 
1044 		/*
1045 		 * if (index >= array->map.max_entries)
1046 		 *         goto out;
1047 		 */
1048 
1049 		/* llgf %w1,map.max_entries(%b2) */
1050 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1051 			      offsetof(struct bpf_array, map.max_entries));
1052 		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1053 		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1054 				  REG_W1, 0, 0xa);
1055 
1056 		/*
1057 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1058 		 *         goto out;
1059 		 */
1060 
1061 		if (jit->seen & SEEN_STACK)
1062 			off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1063 		else
1064 			off = STK_OFF_TCCNT;
1065 		/* lhi %w0,1 */
1066 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1067 		/* laal %w1,%w0,off(%r15) */
1068 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1069 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1070 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1071 				      MAX_TAIL_CALL_CNT, 0, 0x2);
1072 
1073 		/*
1074 		 * prog = array->ptrs[index];
1075 		 * if (prog == NULL)
1076 		 *         goto out;
1077 		 */
1078 
1079 		/* sllg %r1,%b3,3: %r1 = index * 8 */
1080 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1081 		/* lg %r1,prog(%b2,%r1) */
1082 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1083 			      REG_1, offsetof(struct bpf_array, ptrs));
1084 		/* clgij %r1,0,0x8,label0 */
1085 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1086 
1087 		/*
1088 		 * Restore registers before calling function
1089 		 */
1090 		save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1091 
1092 		/*
1093 		 * goto *(prog->bpf_func + tail_call_start);
1094 		 */
1095 
1096 		/* lg %r1,bpf_func(%r1) */
1097 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1098 			      offsetof(struct bpf_prog, bpf_func));
1099 		/* bc 0xf,tail_call_start(%r1) */
1100 		_EMIT4(0x47f01000 + jit->tail_call_start);
1101 		/* out: */
1102 		jit->labels[0] = jit->prg;
1103 		break;
1104 	case BPF_JMP | BPF_EXIT: /* return b0 */
1105 		last = (i == fp->len - 1) ? 1 : 0;
1106 		if (last && !(jit->seen & SEEN_RET0))
1107 			break;
1108 		/* j <exit> */
1109 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1110 		break;
1111 	/*
1112 	 * Branch relative (number of skipped instructions) to offset on
1113 	 * condition.
1114 	 *
1115 	 * Condition code to mask mapping:
1116 	 *
1117 	 * CC | Description	   | Mask
1118 	 * ------------------------------
1119 	 * 0  | Operands equal	   |	8
1120 	 * 1  | First operand low  |	4
1121 	 * 2  | First operand high |	2
1122 	 * 3  | Unused		   |	1
1123 	 *
1124 	 * For s390x relative branches: ip = ip + off_bytes
1125 	 * For BPF relative branches:	insn = insn + off_insns + 1
1126 	 *
1127 	 * For example for s390x with offset 0 we jump to the branch
1128 	 * instruction itself (loop) and for BPF with offset 0 we
1129 	 * branch to the instruction behind the branch.
1130 	 */
1131 	case BPF_JMP | BPF_JA: /* if (true) */
1132 		mask = 0xf000; /* j */
1133 		goto branch_oc;
1134 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1135 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1136 		mask = 0x2000; /* jh */
1137 		goto branch_ks;
1138 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1139 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1140 		mask = 0x4000; /* jl */
1141 		goto branch_ks;
1142 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1143 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1144 		mask = 0xa000; /* jhe */
1145 		goto branch_ks;
1146 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1147 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1148 		mask = 0xc000; /* jle */
1149 		goto branch_ks;
1150 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1151 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1152 		mask = 0x2000; /* jh */
1153 		goto branch_ku;
1154 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1155 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1156 		mask = 0x4000; /* jl */
1157 		goto branch_ku;
1158 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1159 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1160 		mask = 0xa000; /* jhe */
1161 		goto branch_ku;
1162 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1163 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1164 		mask = 0xc000; /* jle */
1165 		goto branch_ku;
1166 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1167 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1168 		mask = 0x7000; /* jne */
1169 		goto branch_ku;
1170 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1171 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1172 		mask = 0x8000; /* je */
1173 		goto branch_ku;
1174 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1175 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1176 		mask = 0x7000; /* jnz */
1177 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1178 			/* llilf %w1,imm (load zero extend imm) */
1179 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1180 			/* nr %w1,%dst */
1181 			EMIT2(0x1400, REG_W1, dst_reg);
1182 		} else {
1183 			/* lgfi %w1,imm (load sign extend imm) */
1184 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1185 			/* ngr %w1,%dst */
1186 			EMIT4(0xb9800000, REG_W1, dst_reg);
1187 		}
1188 		goto branch_oc;
1189 
1190 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1191 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1192 		mask = 0x2000; /* jh */
1193 		goto branch_xs;
1194 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1195 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1196 		mask = 0x4000; /* jl */
1197 		goto branch_xs;
1198 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1199 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1200 		mask = 0xa000; /* jhe */
1201 		goto branch_xs;
1202 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1203 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1204 		mask = 0xc000; /* jle */
1205 		goto branch_xs;
1206 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1207 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1208 		mask = 0x2000; /* jh */
1209 		goto branch_xu;
1210 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1211 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1212 		mask = 0x4000; /* jl */
1213 		goto branch_xu;
1214 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1215 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1216 		mask = 0xa000; /* jhe */
1217 		goto branch_xu;
1218 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1219 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1220 		mask = 0xc000; /* jle */
1221 		goto branch_xu;
1222 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1223 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1224 		mask = 0x7000; /* jne */
1225 		goto branch_xu;
1226 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1227 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1228 		mask = 0x8000; /* je */
1229 		goto branch_xu;
1230 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1231 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1232 	{
1233 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1234 
1235 		mask = 0x7000; /* jnz */
1236 		/* nrk or ngrk %w1,%dst,%src */
1237 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1238 			  REG_W1, dst_reg, src_reg);
1239 		goto branch_oc;
1240 branch_ks:
1241 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1242 		/* lgfi %w1,imm (load sign extend imm) */
1243 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1244 		/* crj or cgrj %dst,%w1,mask,off */
1245 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1246 			    dst_reg, REG_W1, i, off, mask);
1247 		break;
1248 branch_ku:
1249 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1250 		/* lgfi %w1,imm (load sign extend imm) */
1251 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1252 		/* clrj or clgrj %dst,%w1,mask,off */
1253 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1254 			    dst_reg, REG_W1, i, off, mask);
1255 		break;
1256 branch_xs:
1257 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1258 		/* crj or cgrj %dst,%src,mask,off */
1259 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1260 			    dst_reg, src_reg, i, off, mask);
1261 		break;
1262 branch_xu:
1263 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1264 		/* clrj or clgrj %dst,%src,mask,off */
1265 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1266 			    dst_reg, src_reg, i, off, mask);
1267 		break;
1268 branch_oc:
1269 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1270 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1271 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1272 		break;
1273 	}
1274 	default: /* too complex, give up */
1275 		pr_err("Unknown opcode %02x\n", insn->code);
1276 		return -1;
1277 	}
1278 	return insn_count;
1279 }
1280 
1281 /*
1282  * Compile eBPF program into s390x code
1283  */
1284 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1285 {
1286 	int i, insn_count;
1287 
1288 	jit->lit = jit->lit_start;
1289 	jit->prg = 0;
1290 
1291 	bpf_jit_prologue(jit, fp->aux->stack_depth);
1292 	for (i = 0; i < fp->len; i += insn_count) {
1293 		insn_count = bpf_jit_insn(jit, fp, i);
1294 		if (insn_count < 0)
1295 			return -1;
1296 		/* Next instruction address */
1297 		jit->addrs[i + insn_count] = jit->prg;
1298 	}
1299 	bpf_jit_epilogue(jit, fp->aux->stack_depth);
1300 
1301 	jit->lit_start = jit->prg;
1302 	jit->size = jit->lit;
1303 	jit->size_prg = jit->prg;
1304 	return 0;
1305 }
1306 
1307 bool bpf_jit_needs_zext(void)
1308 {
1309 	return true;
1310 }
1311 
1312 /*
1313  * Compile eBPF program "fp"
1314  */
1315 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1316 {
1317 	struct bpf_prog *tmp, *orig_fp = fp;
1318 	struct bpf_binary_header *header;
1319 	bool tmp_blinded = false;
1320 	struct bpf_jit jit;
1321 	int pass;
1322 
1323 	if (!fp->jit_requested)
1324 		return orig_fp;
1325 
1326 	tmp = bpf_jit_blind_constants(fp);
1327 	/*
1328 	 * If blinding was requested and we failed during blinding,
1329 	 * we must fall back to the interpreter.
1330 	 */
1331 	if (IS_ERR(tmp))
1332 		return orig_fp;
1333 	if (tmp != fp) {
1334 		tmp_blinded = true;
1335 		fp = tmp;
1336 	}
1337 
1338 	memset(&jit, 0, sizeof(jit));
1339 	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1340 	if (jit.addrs == NULL) {
1341 		fp = orig_fp;
1342 		goto out;
1343 	}
1344 	/*
1345 	 * Three initial passes:
1346 	 *   - 1/2: Determine clobbered registers
1347 	 *   - 3:   Calculate program size and addrs arrray
1348 	 */
1349 	for (pass = 1; pass <= 3; pass++) {
1350 		if (bpf_jit_prog(&jit, fp)) {
1351 			fp = orig_fp;
1352 			goto free_addrs;
1353 		}
1354 	}
1355 	/*
1356 	 * Final pass: Allocate and generate program
1357 	 */
1358 	if (jit.size >= BPF_SIZE_MAX) {
1359 		fp = orig_fp;
1360 		goto free_addrs;
1361 	}
1362 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1363 	if (!header) {
1364 		fp = orig_fp;
1365 		goto free_addrs;
1366 	}
1367 	if (bpf_jit_prog(&jit, fp)) {
1368 		bpf_jit_binary_free(header);
1369 		fp = orig_fp;
1370 		goto free_addrs;
1371 	}
1372 	if (bpf_jit_enable > 1) {
1373 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1374 		print_fn_code(jit.prg_buf, jit.size_prg);
1375 	}
1376 	bpf_jit_binary_lock_ro(header);
1377 	fp->bpf_func = (void *) jit.prg_buf;
1378 	fp->jited = 1;
1379 	fp->jited_len = jit.size;
1380 free_addrs:
1381 	kfree(jit.addrs);
1382 out:
1383 	if (tmp_blinded)
1384 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1385 					   tmp : orig_fp);
1386 	return fp;
1387 }
1388