xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision c0e297dc)
1 /*
2  * BPF Jit compiler for s390.
3  *
4  * Minimum build requirements:
5  *
6  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
7  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
9  *  - PACK_STACK
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <asm/cacheflush.h>
26 #include <asm/dis.h>
27 #include "bpf_jit.h"
28 
29 int bpf_jit_enable __read_mostly;
30 
31 struct bpf_jit {
32 	u32 seen;		/* Flags to remember seen eBPF instructions */
33 	u32 seen_reg[16];	/* Array to remember which registers are used */
34 	u32 *addrs;		/* Array with relative instruction addresses */
35 	u8 *prg_buf;		/* Start of program */
36 	int size;		/* Size of program and literal pool */
37 	int size_prg;		/* Size of program */
38 	int prg;		/* Current position in program */
39 	int lit_start;		/* Start of literal pool */
40 	int lit;		/* Current position in literal pool */
41 	int base_ip;		/* Base address for literal pool */
42 	int ret0_ip;		/* Address of return 0 */
43 	int exit_ip;		/* Address of exit */
44 	int tail_call_start;	/* Tail call start offset */
45 	int labels[1];		/* Labels for local jumps */
46 };
47 
48 #define BPF_SIZE_MAX	4096	/* Max size for program */
49 
50 #define SEEN_SKB	1	/* skb access */
51 #define SEEN_MEM	2	/* use mem[] for temporary storage */
52 #define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
53 #define SEEN_LITERAL	8	/* code uses literals */
54 #define SEEN_FUNC	16	/* calls C functions */
55 #define SEEN_TAIL_CALL	32	/* code uses tail calls */
56 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
57 
58 /*
59  * s390 registers
60  */
61 #define REG_W0		(__MAX_BPF_REG+0)	/* Work register 1 (even) */
62 #define REG_W1		(__MAX_BPF_REG+1)	/* Work register 2 (odd) */
63 #define REG_SKB_DATA	(__MAX_BPF_REG+2)	/* SKB data register */
64 #define REG_L		(__MAX_BPF_REG+3)	/* Literal pool register */
65 #define REG_15		(__MAX_BPF_REG+4)	/* Register 15 */
66 #define REG_0		REG_W0			/* Register 0 */
67 #define REG_1		REG_W1			/* Register 1 */
68 #define REG_2		BPF_REG_1		/* Register 2 */
69 #define REG_14		BPF_REG_0		/* Register 14 */
70 
71 /*
72  * Mapping of BPF registers to s390 registers
73  */
74 static const int reg2hex[] = {
75 	/* Return code */
76 	[BPF_REG_0]	= 14,
77 	/* Function parameters */
78 	[BPF_REG_1]	= 2,
79 	[BPF_REG_2]	= 3,
80 	[BPF_REG_3]	= 4,
81 	[BPF_REG_4]	= 5,
82 	[BPF_REG_5]	= 6,
83 	/* Call saved registers */
84 	[BPF_REG_6]	= 7,
85 	[BPF_REG_7]	= 8,
86 	[BPF_REG_8]	= 9,
87 	[BPF_REG_9]	= 10,
88 	/* BPF stack pointer */
89 	[BPF_REG_FP]	= 13,
90 	/* SKB data pointer */
91 	[REG_SKB_DATA]	= 12,
92 	/* Work registers for s390x backend */
93 	[REG_W0]	= 0,
94 	[REG_W1]	= 1,
95 	[REG_L]		= 11,
96 	[REG_15]	= 15,
97 };
98 
99 static inline u32 reg(u32 dst_reg, u32 src_reg)
100 {
101 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
102 }
103 
104 static inline u32 reg_high(u32 reg)
105 {
106 	return reg2hex[reg] << 4;
107 }
108 
109 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
110 {
111 	u32 r1 = reg2hex[b1];
112 
113 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
114 		jit->seen_reg[r1] = 1;
115 }
116 
117 #define REG_SET_SEEN(b1)					\
118 ({								\
119 	reg_set_seen(jit, b1);					\
120 })
121 
122 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
123 
124 /*
125  * EMIT macros for code generation
126  */
127 
128 #define _EMIT2(op)						\
129 ({								\
130 	if (jit->prg_buf)					\
131 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
132 	jit->prg += 2;						\
133 })
134 
135 #define EMIT2(op, b1, b2)					\
136 ({								\
137 	_EMIT2(op | reg(b1, b2));				\
138 	REG_SET_SEEN(b1);					\
139 	REG_SET_SEEN(b2);					\
140 })
141 
142 #define _EMIT4(op)						\
143 ({								\
144 	if (jit->prg_buf)					\
145 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
146 	jit->prg += 4;						\
147 })
148 
149 #define EMIT4(op, b1, b2)					\
150 ({								\
151 	_EMIT4(op | reg(b1, b2));				\
152 	REG_SET_SEEN(b1);					\
153 	REG_SET_SEEN(b2);					\
154 })
155 
156 #define EMIT4_RRF(op, b1, b2, b3)				\
157 ({								\
158 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
159 	REG_SET_SEEN(b1);					\
160 	REG_SET_SEEN(b2);					\
161 	REG_SET_SEEN(b3);					\
162 })
163 
164 #define _EMIT4_DISP(op, disp)					\
165 ({								\
166 	unsigned int __disp = (disp) & 0xfff;			\
167 	_EMIT4(op | __disp);					\
168 })
169 
170 #define EMIT4_DISP(op, b1, b2, disp)				\
171 ({								\
172 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
173 		    reg_high(b2) << 8, disp);			\
174 	REG_SET_SEEN(b1);					\
175 	REG_SET_SEEN(b2);					\
176 })
177 
178 #define EMIT4_IMM(op, b1, imm)					\
179 ({								\
180 	unsigned int __imm = (imm) & 0xffff;			\
181 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
182 	REG_SET_SEEN(b1);					\
183 })
184 
185 #define EMIT4_PCREL(op, pcrel)					\
186 ({								\
187 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
188 	_EMIT4(op | __pcrel);					\
189 })
190 
191 #define _EMIT6(op1, op2)					\
192 ({								\
193 	if (jit->prg_buf) {					\
194 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
195 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
196 	}							\
197 	jit->prg += 6;						\
198 })
199 
200 #define _EMIT6_DISP(op1, op2, disp)				\
201 ({								\
202 	unsigned int __disp = (disp) & 0xfff;			\
203 	_EMIT6(op1 | __disp, op2);				\
204 })
205 
206 #define EMIT6_DISP(op1, op2, b1, b2, b3, disp)			\
207 ({								\
208 	_EMIT6_DISP(op1 | reg(b1, b2) << 16 |			\
209 		    reg_high(b3) << 8, op2, disp);		\
210 	REG_SET_SEEN(b1);					\
211 	REG_SET_SEEN(b2);					\
212 	REG_SET_SEEN(b3);					\
213 })
214 
215 #define _EMIT6_DISP_LH(op1, op2, disp)				\
216 ({								\
217 	unsigned int __disp_h = ((u32)disp) & 0xff000;		\
218 	unsigned int __disp_l = ((u32)disp) & 0x00fff;		\
219 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
220 })
221 
222 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
223 ({								\
224 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
225 		       reg_high(b3) << 8, op2, disp);		\
226 	REG_SET_SEEN(b1);					\
227 	REG_SET_SEEN(b2);					\
228 	REG_SET_SEEN(b3);					\
229 })
230 
231 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
232 ({								\
233 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
234 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
235 	       op2 | mask << 12);				\
236 	REG_SET_SEEN(b1);					\
237 	REG_SET_SEEN(b2);					\
238 })
239 
240 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
241 ({								\
242 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
243 	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
244 		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
245 	REG_SET_SEEN(b1);					\
246 	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
247 })
248 
249 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
250 ({								\
251 	/* Branch instruction needs 6 bytes */			\
252 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
253 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
254 	REG_SET_SEEN(b1);					\
255 	REG_SET_SEEN(b2);					\
256 })
257 
258 #define _EMIT6_IMM(op, imm)					\
259 ({								\
260 	unsigned int __imm = (imm);				\
261 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
262 })
263 
264 #define EMIT6_IMM(op, b1, imm)					\
265 ({								\
266 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
267 	REG_SET_SEEN(b1);					\
268 })
269 
270 #define EMIT_CONST_U32(val)					\
271 ({								\
272 	unsigned int ret;					\
273 	ret = jit->lit - jit->base_ip;				\
274 	jit->seen |= SEEN_LITERAL;				\
275 	if (jit->prg_buf)					\
276 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
277 	jit->lit += 4;						\
278 	ret;							\
279 })
280 
281 #define EMIT_CONST_U64(val)					\
282 ({								\
283 	unsigned int ret;					\
284 	ret = jit->lit - jit->base_ip;				\
285 	jit->seen |= SEEN_LITERAL;				\
286 	if (jit->prg_buf)					\
287 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
288 	jit->lit += 8;						\
289 	ret;							\
290 })
291 
292 #define EMIT_ZERO(b1)						\
293 ({								\
294 	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
295 	EMIT4(0xb9160000, b1, b1);				\
296 	REG_SET_SEEN(b1);					\
297 })
298 
299 /*
300  * Fill whole space with illegal instructions
301  */
302 static void jit_fill_hole(void *area, unsigned int size)
303 {
304 	memset(area, 0, size);
305 }
306 
307 /*
308  * Save registers from "rs" (register start) to "re" (register end) on stack
309  */
310 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
311 {
312 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
313 
314 	if (rs == re)
315 		/* stg %rs,off(%r15) */
316 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
317 	else
318 		/* stmg %rs,%re,off(%r15) */
319 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
320 }
321 
322 /*
323  * Restore registers from "rs" (register start) to "re" (register end) on stack
324  */
325 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
326 {
327 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
328 
329 	if (jit->seen & SEEN_STACK)
330 		off += STK_OFF;
331 
332 	if (rs == re)
333 		/* lg %rs,off(%r15) */
334 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
335 	else
336 		/* lmg %rs,%re,off(%r15) */
337 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
338 }
339 
340 /*
341  * Return first seen register (from start)
342  */
343 static int get_start(struct bpf_jit *jit, int start)
344 {
345 	int i;
346 
347 	for (i = start; i <= 15; i++) {
348 		if (jit->seen_reg[i])
349 			return i;
350 	}
351 	return 0;
352 }
353 
354 /*
355  * Return last seen register (from start) (gap >= 2)
356  */
357 static int get_end(struct bpf_jit *jit, int start)
358 {
359 	int i;
360 
361 	for (i = start; i < 15; i++) {
362 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
363 			return i - 1;
364 	}
365 	return jit->seen_reg[15] ? 15 : 14;
366 }
367 
368 #define REGS_SAVE	1
369 #define REGS_RESTORE	0
370 /*
371  * Save and restore clobbered registers (6-15) on stack.
372  * We save/restore registers in chunks with gap >= 2 registers.
373  */
374 static void save_restore_regs(struct bpf_jit *jit, int op)
375 {
376 
377 	int re = 6, rs;
378 
379 	do {
380 		rs = get_start(jit, re);
381 		if (!rs)
382 			break;
383 		re = get_end(jit, rs + 1);
384 		if (op == REGS_SAVE)
385 			save_regs(jit, rs, re);
386 		else
387 			restore_regs(jit, rs, re);
388 		re++;
389 	} while (re <= 15);
390 }
391 
392 /*
393  * Emit function prologue
394  *
395  * Save registers and create stack frame if necessary.
396  * See stack frame layout desription in "bpf_jit.h"!
397  */
398 static void bpf_jit_prologue(struct bpf_jit *jit)
399 {
400 	if (jit->seen & SEEN_TAIL_CALL) {
401 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
402 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
403 	} else {
404 		/* j tail_call_start: NOP if no tail calls are used */
405 		EMIT4_PCREL(0xa7f40000, 6);
406 		_EMIT2(0);
407 	}
408 	/* Tail calls have to skip above initialization */
409 	jit->tail_call_start = jit->prg;
410 	/* Save registers */
411 	save_restore_regs(jit, REGS_SAVE);
412 	/* Setup literal pool */
413 	if (jit->seen & SEEN_LITERAL) {
414 		/* basr %r13,0 */
415 		EMIT2(0x0d00, REG_L, REG_0);
416 		jit->base_ip = jit->prg;
417 	}
418 	/* Setup stack and backchain */
419 	if (jit->seen & SEEN_STACK) {
420 		if (jit->seen & SEEN_FUNC)
421 			/* lgr %w1,%r15 (backchain) */
422 			EMIT4(0xb9040000, REG_W1, REG_15);
423 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
424 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
425 		/* aghi %r15,-STK_OFF */
426 		EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
427 		if (jit->seen & SEEN_FUNC)
428 			/* stg %w1,152(%r15) (backchain) */
429 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
430 				      REG_15, 152);
431 	}
432 	/*
433 	 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
434 	 * we store the SKB header length on the stack and the SKB data
435 	 * pointer in REG_SKB_DATA.
436 	 */
437 	if (jit->seen & SEEN_SKB) {
438 		/* Header length: llgf %w1,<len>(%b1) */
439 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
440 			      offsetof(struct sk_buff, len));
441 		/* s %w1,<data_len>(%b1) */
442 		EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
443 			   offsetof(struct sk_buff, data_len));
444 		/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
445 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
446 			      STK_OFF_HLEN);
447 		/* lg %skb_data,data_off(%b1) */
448 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
449 			      BPF_REG_1, offsetof(struct sk_buff, data));
450 	}
451 	/* BPF compatibility: clear A (%b0) and X (%b7) registers */
452 	if (REG_SEEN(BPF_REG_A))
453 		/* lghi %ba,0 */
454 		EMIT4_IMM(0xa7090000, BPF_REG_A, 0);
455 	if (REG_SEEN(BPF_REG_X))
456 		/* lghi %bx,0 */
457 		EMIT4_IMM(0xa7090000, BPF_REG_X, 0);
458 }
459 
460 /*
461  * Function epilogue
462  */
463 static void bpf_jit_epilogue(struct bpf_jit *jit)
464 {
465 	/* Return 0 */
466 	if (jit->seen & SEEN_RET0) {
467 		jit->ret0_ip = jit->prg;
468 		/* lghi %b0,0 */
469 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
470 	}
471 	jit->exit_ip = jit->prg;
472 	/* Load exit code: lgr %r2,%b0 */
473 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
474 	/* Restore registers */
475 	save_restore_regs(jit, REGS_RESTORE);
476 	/* br %r14 */
477 	_EMIT2(0x07fe);
478 }
479 
480 /*
481  * Compile one eBPF instruction into s390x code
482  *
483  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
484  * stack space for the large switch statement.
485  */
486 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
487 {
488 	struct bpf_insn *insn = &fp->insnsi[i];
489 	int jmp_off, last, insn_count = 1;
490 	unsigned int func_addr, mask;
491 	u32 dst_reg = insn->dst_reg;
492 	u32 src_reg = insn->src_reg;
493 	u32 *addrs = jit->addrs;
494 	s32 imm = insn->imm;
495 	s16 off = insn->off;
496 
497 	switch (insn->code) {
498 	/*
499 	 * BPF_MOV
500 	 */
501 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
502 		/* llgfr %dst,%src */
503 		EMIT4(0xb9160000, dst_reg, src_reg);
504 		break;
505 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
506 		/* lgr %dst,%src */
507 		EMIT4(0xb9040000, dst_reg, src_reg);
508 		break;
509 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
510 		/* llilf %dst,imm */
511 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
512 		break;
513 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
514 		/* lgfi %dst,imm */
515 		EMIT6_IMM(0xc0010000, dst_reg, imm);
516 		break;
517 	/*
518 	 * BPF_LD 64
519 	 */
520 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
521 	{
522 		/* 16 byte instruction that uses two 'struct bpf_insn' */
523 		u64 imm64;
524 
525 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
526 		/* lg %dst,<d(imm)>(%l) */
527 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
528 			      EMIT_CONST_U64(imm64));
529 		insn_count = 2;
530 		break;
531 	}
532 	/*
533 	 * BPF_ADD
534 	 */
535 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
536 		/* ar %dst,%src */
537 		EMIT2(0x1a00, dst_reg, src_reg);
538 		EMIT_ZERO(dst_reg);
539 		break;
540 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
541 		/* agr %dst,%src */
542 		EMIT4(0xb9080000, dst_reg, src_reg);
543 		break;
544 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
545 		if (!imm)
546 			break;
547 		/* alfi %dst,imm */
548 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
549 		EMIT_ZERO(dst_reg);
550 		break;
551 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
552 		if (!imm)
553 			break;
554 		/* agfi %dst,imm */
555 		EMIT6_IMM(0xc2080000, dst_reg, imm);
556 		break;
557 	/*
558 	 * BPF_SUB
559 	 */
560 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
561 		/* sr %dst,%src */
562 		EMIT2(0x1b00, dst_reg, src_reg);
563 		EMIT_ZERO(dst_reg);
564 		break;
565 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
566 		/* sgr %dst,%src */
567 		EMIT4(0xb9090000, dst_reg, src_reg);
568 		break;
569 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
570 		if (!imm)
571 			break;
572 		/* alfi %dst,-imm */
573 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
574 		EMIT_ZERO(dst_reg);
575 		break;
576 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
577 		if (!imm)
578 			break;
579 		/* agfi %dst,-imm */
580 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
581 		break;
582 	/*
583 	 * BPF_MUL
584 	 */
585 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
586 		/* msr %dst,%src */
587 		EMIT4(0xb2520000, dst_reg, src_reg);
588 		EMIT_ZERO(dst_reg);
589 		break;
590 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
591 		/* msgr %dst,%src */
592 		EMIT4(0xb90c0000, dst_reg, src_reg);
593 		break;
594 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
595 		if (imm == 1)
596 			break;
597 		/* msfi %r5,imm */
598 		EMIT6_IMM(0xc2010000, dst_reg, imm);
599 		EMIT_ZERO(dst_reg);
600 		break;
601 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
602 		if (imm == 1)
603 			break;
604 		/* msgfi %dst,imm */
605 		EMIT6_IMM(0xc2000000, dst_reg, imm);
606 		break;
607 	/*
608 	 * BPF_DIV / BPF_MOD
609 	 */
610 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
611 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
612 	{
613 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
614 
615 		jit->seen |= SEEN_RET0;
616 		/* ltr %src,%src (if src == 0 goto fail) */
617 		EMIT2(0x1200, src_reg, src_reg);
618 		/* jz <ret0> */
619 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
620 		/* lhi %w0,0 */
621 		EMIT4_IMM(0xa7080000, REG_W0, 0);
622 		/* lr %w1,%dst */
623 		EMIT2(0x1800, REG_W1, dst_reg);
624 		/* dlr %w0,%src */
625 		EMIT4(0xb9970000, REG_W0, src_reg);
626 		/* llgfr %dst,%rc */
627 		EMIT4(0xb9160000, dst_reg, rc_reg);
628 		break;
629 	}
630 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
631 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
632 	{
633 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
634 
635 		jit->seen |= SEEN_RET0;
636 		/* ltgr %src,%src (if src == 0 goto fail) */
637 		EMIT4(0xb9020000, src_reg, src_reg);
638 		/* jz <ret0> */
639 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
640 		/* lghi %w0,0 */
641 		EMIT4_IMM(0xa7090000, REG_W0, 0);
642 		/* lgr %w1,%dst */
643 		EMIT4(0xb9040000, REG_W1, dst_reg);
644 		/* dlgr %w0,%dst */
645 		EMIT4(0xb9870000, REG_W0, src_reg);
646 		/* lgr %dst,%rc */
647 		EMIT4(0xb9040000, dst_reg, rc_reg);
648 		break;
649 	}
650 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
651 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
652 	{
653 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
654 
655 		if (imm == 1) {
656 			if (BPF_OP(insn->code) == BPF_MOD)
657 				/* lhgi %dst,0 */
658 				EMIT4_IMM(0xa7090000, dst_reg, 0);
659 			break;
660 		}
661 		/* lhi %w0,0 */
662 		EMIT4_IMM(0xa7080000, REG_W0, 0);
663 		/* lr %w1,%dst */
664 		EMIT2(0x1800, REG_W1, dst_reg);
665 		/* dl %w0,<d(imm)>(%l) */
666 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
667 			      EMIT_CONST_U32(imm));
668 		/* llgfr %dst,%rc */
669 		EMIT4(0xb9160000, dst_reg, rc_reg);
670 		break;
671 	}
672 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
673 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
674 	{
675 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
676 
677 		if (imm == 1) {
678 			if (BPF_OP(insn->code) == BPF_MOD)
679 				/* lhgi %dst,0 */
680 				EMIT4_IMM(0xa7090000, dst_reg, 0);
681 			break;
682 		}
683 		/* lghi %w0,0 */
684 		EMIT4_IMM(0xa7090000, REG_W0, 0);
685 		/* lgr %w1,%dst */
686 		EMIT4(0xb9040000, REG_W1, dst_reg);
687 		/* dlg %w0,<d(imm)>(%l) */
688 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
689 			      EMIT_CONST_U64(imm));
690 		/* lgr %dst,%rc */
691 		EMIT4(0xb9040000, dst_reg, rc_reg);
692 		break;
693 	}
694 	/*
695 	 * BPF_AND
696 	 */
697 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
698 		/* nr %dst,%src */
699 		EMIT2(0x1400, dst_reg, src_reg);
700 		EMIT_ZERO(dst_reg);
701 		break;
702 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
703 		/* ngr %dst,%src */
704 		EMIT4(0xb9800000, dst_reg, src_reg);
705 		break;
706 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
707 		/* nilf %dst,imm */
708 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
709 		EMIT_ZERO(dst_reg);
710 		break;
711 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
712 		/* ng %dst,<d(imm)>(%l) */
713 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
714 			      EMIT_CONST_U64(imm));
715 		break;
716 	/*
717 	 * BPF_OR
718 	 */
719 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
720 		/* or %dst,%src */
721 		EMIT2(0x1600, dst_reg, src_reg);
722 		EMIT_ZERO(dst_reg);
723 		break;
724 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
725 		/* ogr %dst,%src */
726 		EMIT4(0xb9810000, dst_reg, src_reg);
727 		break;
728 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
729 		/* oilf %dst,imm */
730 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
731 		EMIT_ZERO(dst_reg);
732 		break;
733 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
734 		/* og %dst,<d(imm)>(%l) */
735 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
736 			      EMIT_CONST_U64(imm));
737 		break;
738 	/*
739 	 * BPF_XOR
740 	 */
741 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
742 		/* xr %dst,%src */
743 		EMIT2(0x1700, dst_reg, src_reg);
744 		EMIT_ZERO(dst_reg);
745 		break;
746 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
747 		/* xgr %dst,%src */
748 		EMIT4(0xb9820000, dst_reg, src_reg);
749 		break;
750 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
751 		if (!imm)
752 			break;
753 		/* xilf %dst,imm */
754 		EMIT6_IMM(0xc0070000, dst_reg, imm);
755 		EMIT_ZERO(dst_reg);
756 		break;
757 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
758 		/* xg %dst,<d(imm)>(%l) */
759 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
760 			      EMIT_CONST_U64(imm));
761 		break;
762 	/*
763 	 * BPF_LSH
764 	 */
765 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
766 		/* sll %dst,0(%src) */
767 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
768 		EMIT_ZERO(dst_reg);
769 		break;
770 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
771 		/* sllg %dst,%dst,0(%src) */
772 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
773 		break;
774 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
775 		if (imm == 0)
776 			break;
777 		/* sll %dst,imm(%r0) */
778 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
779 		EMIT_ZERO(dst_reg);
780 		break;
781 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
782 		if (imm == 0)
783 			break;
784 		/* sllg %dst,%dst,imm(%r0) */
785 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
786 		break;
787 	/*
788 	 * BPF_RSH
789 	 */
790 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
791 		/* srl %dst,0(%src) */
792 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
793 		EMIT_ZERO(dst_reg);
794 		break;
795 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
796 		/* srlg %dst,%dst,0(%src) */
797 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
798 		break;
799 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
800 		if (imm == 0)
801 			break;
802 		/* srl %dst,imm(%r0) */
803 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
804 		EMIT_ZERO(dst_reg);
805 		break;
806 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
807 		if (imm == 0)
808 			break;
809 		/* srlg %dst,%dst,imm(%r0) */
810 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
811 		break;
812 	/*
813 	 * BPF_ARSH
814 	 */
815 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
816 		/* srag %dst,%dst,0(%src) */
817 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
818 		break;
819 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
820 		if (imm == 0)
821 			break;
822 		/* srag %dst,%dst,imm(%r0) */
823 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
824 		break;
825 	/*
826 	 * BPF_NEG
827 	 */
828 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
829 		/* lcr %dst,%dst */
830 		EMIT2(0x1300, dst_reg, dst_reg);
831 		EMIT_ZERO(dst_reg);
832 		break;
833 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
834 		/* lcgr %dst,%dst */
835 		EMIT4(0xb9130000, dst_reg, dst_reg);
836 		break;
837 	/*
838 	 * BPF_FROM_BE/LE
839 	 */
840 	case BPF_ALU | BPF_END | BPF_FROM_BE:
841 		/* s390 is big endian, therefore only clear high order bytes */
842 		switch (imm) {
843 		case 16: /* dst = (u16) cpu_to_be16(dst) */
844 			/* llghr %dst,%dst */
845 			EMIT4(0xb9850000, dst_reg, dst_reg);
846 			break;
847 		case 32: /* dst = (u32) cpu_to_be32(dst) */
848 			/* llgfr %dst,%dst */
849 			EMIT4(0xb9160000, dst_reg, dst_reg);
850 			break;
851 		case 64: /* dst = (u64) cpu_to_be64(dst) */
852 			break;
853 		}
854 		break;
855 	case BPF_ALU | BPF_END | BPF_FROM_LE:
856 		switch (imm) {
857 		case 16: /* dst = (u16) cpu_to_le16(dst) */
858 			/* lrvr %dst,%dst */
859 			EMIT4(0xb91f0000, dst_reg, dst_reg);
860 			/* srl %dst,16(%r0) */
861 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
862 			/* llghr %dst,%dst */
863 			EMIT4(0xb9850000, dst_reg, dst_reg);
864 			break;
865 		case 32: /* dst = (u32) cpu_to_le32(dst) */
866 			/* lrvr %dst,%dst */
867 			EMIT4(0xb91f0000, dst_reg, dst_reg);
868 			/* llgfr %dst,%dst */
869 			EMIT4(0xb9160000, dst_reg, dst_reg);
870 			break;
871 		case 64: /* dst = (u64) cpu_to_le64(dst) */
872 			/* lrvgr %dst,%dst */
873 			EMIT4(0xb90f0000, dst_reg, dst_reg);
874 			break;
875 		}
876 		break;
877 	/*
878 	 * BPF_ST(X)
879 	 */
880 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
881 		/* stcy %src,off(%dst) */
882 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
883 		jit->seen |= SEEN_MEM;
884 		break;
885 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
886 		/* sthy %src,off(%dst) */
887 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
888 		jit->seen |= SEEN_MEM;
889 		break;
890 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
891 		/* sty %src,off(%dst) */
892 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
893 		jit->seen |= SEEN_MEM;
894 		break;
895 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
896 		/* stg %src,off(%dst) */
897 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
898 		jit->seen |= SEEN_MEM;
899 		break;
900 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
901 		/* lhi %w0,imm */
902 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
903 		/* stcy %w0,off(dst) */
904 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
905 		jit->seen |= SEEN_MEM;
906 		break;
907 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
908 		/* lhi %w0,imm */
909 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
910 		/* sthy %w0,off(dst) */
911 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
912 		jit->seen |= SEEN_MEM;
913 		break;
914 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
915 		/* llilf %w0,imm  */
916 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
917 		/* sty %w0,off(%dst) */
918 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
919 		jit->seen |= SEEN_MEM;
920 		break;
921 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
922 		/* lgfi %w0,imm */
923 		EMIT6_IMM(0xc0010000, REG_W0, imm);
924 		/* stg %w0,off(%dst) */
925 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
926 		jit->seen |= SEEN_MEM;
927 		break;
928 	/*
929 	 * BPF_STX XADD (atomic_add)
930 	 */
931 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
932 		/* laal %w0,%src,off(%dst) */
933 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
934 			      dst_reg, off);
935 		jit->seen |= SEEN_MEM;
936 		break;
937 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
938 		/* laalg %w0,%src,off(%dst) */
939 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
940 			      dst_reg, off);
941 		jit->seen |= SEEN_MEM;
942 		break;
943 	/*
944 	 * BPF_LDX
945 	 */
946 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
947 		/* llgc %dst,0(off,%src) */
948 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
949 		jit->seen |= SEEN_MEM;
950 		break;
951 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
952 		/* llgh %dst,0(off,%src) */
953 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
954 		jit->seen |= SEEN_MEM;
955 		break;
956 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
957 		/* llgf %dst,off(%src) */
958 		jit->seen |= SEEN_MEM;
959 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
960 		break;
961 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
962 		/* lg %dst,0(off,%src) */
963 		jit->seen |= SEEN_MEM;
964 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
965 		break;
966 	/*
967 	 * BPF_JMP / CALL
968 	 */
969 	case BPF_JMP | BPF_CALL:
970 	{
971 		/*
972 		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
973 		 */
974 		const u64 func = (u64)__bpf_call_base + imm;
975 
976 		REG_SET_SEEN(BPF_REG_5);
977 		jit->seen |= SEEN_FUNC;
978 		/* lg %w1,<d(imm)>(%l) */
979 		EMIT6_DISP(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
980 			   EMIT_CONST_U64(func));
981 		/* basr %r14,%w1 */
982 		EMIT2(0x0d00, REG_14, REG_W1);
983 		/* lgr %b0,%r2: load return value into %b0 */
984 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
985 		break;
986 	}
987 	case BPF_JMP | BPF_CALL | BPF_X:
988 		/*
989 		 * Implicit input:
990 		 *  B1: pointer to ctx
991 		 *  B2: pointer to bpf_array
992 		 *  B3: index in bpf_array
993 		 */
994 		jit->seen |= SEEN_TAIL_CALL;
995 
996 		/*
997 		 * if (index >= array->map.max_entries)
998 		 *         goto out;
999 		 */
1000 
1001 		/* llgf %w1,map.max_entries(%b2) */
1002 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1003 			      offsetof(struct bpf_array, map.max_entries));
1004 		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1005 		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1006 				  REG_W1, 0, 0xa);
1007 
1008 		/*
1009 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1010 		 *         goto out;
1011 		 */
1012 
1013 		if (jit->seen & SEEN_STACK)
1014 			off = STK_OFF_TCCNT + STK_OFF;
1015 		else
1016 			off = STK_OFF_TCCNT;
1017 		/* lhi %w0,1 */
1018 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1019 		/* laal %w1,%w0,off(%r15) */
1020 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1021 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1022 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1023 				      MAX_TAIL_CALL_CNT, 0, 0x2);
1024 
1025 		/*
1026 		 * prog = array->prog[index];
1027 		 * if (prog == NULL)
1028 		 *         goto out;
1029 		 */
1030 
1031 		/* sllg %r1,%b3,3: %r1 = index * 8 */
1032 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1033 		/* lg %r1,prog(%b2,%r1) */
1034 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1035 			      REG_1, offsetof(struct bpf_array, prog));
1036 		/* clgij %r1,0,0x8,label0 */
1037 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1038 
1039 		/*
1040 		 * Restore registers before calling function
1041 		 */
1042 		save_restore_regs(jit, REGS_RESTORE);
1043 
1044 		/*
1045 		 * goto *(prog->bpf_func + tail_call_start);
1046 		 */
1047 
1048 		/* lg %r1,bpf_func(%r1) */
1049 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1050 			      offsetof(struct bpf_prog, bpf_func));
1051 		/* bc 0xf,tail_call_start(%r1) */
1052 		_EMIT4(0x47f01000 + jit->tail_call_start);
1053 		/* out: */
1054 		jit->labels[0] = jit->prg;
1055 		break;
1056 	case BPF_JMP | BPF_EXIT: /* return b0 */
1057 		last = (i == fp->len - 1) ? 1 : 0;
1058 		if (last && !(jit->seen & SEEN_RET0))
1059 			break;
1060 		/* j <exit> */
1061 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1062 		break;
1063 	/*
1064 	 * Branch relative (number of skipped instructions) to offset on
1065 	 * condition.
1066 	 *
1067 	 * Condition code to mask mapping:
1068 	 *
1069 	 * CC | Description	   | Mask
1070 	 * ------------------------------
1071 	 * 0  | Operands equal	   |	8
1072 	 * 1  | First operand low  |	4
1073 	 * 2  | First operand high |	2
1074 	 * 3  | Unused		   |	1
1075 	 *
1076 	 * For s390x relative branches: ip = ip + off_bytes
1077 	 * For BPF relative branches:	insn = insn + off_insns + 1
1078 	 *
1079 	 * For example for s390x with offset 0 we jump to the branch
1080 	 * instruction itself (loop) and for BPF with offset 0 we
1081 	 * branch to the instruction behind the branch.
1082 	 */
1083 	case BPF_JMP | BPF_JA: /* if (true) */
1084 		mask = 0xf000; /* j */
1085 		goto branch_oc;
1086 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1087 		mask = 0x2000; /* jh */
1088 		goto branch_ks;
1089 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1090 		mask = 0xa000; /* jhe */
1091 		goto branch_ks;
1092 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1093 		mask = 0x2000; /* jh */
1094 		goto branch_ku;
1095 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1096 		mask = 0xa000; /* jhe */
1097 		goto branch_ku;
1098 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1099 		mask = 0x7000; /* jne */
1100 		goto branch_ku;
1101 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1102 		mask = 0x8000; /* je */
1103 		goto branch_ku;
1104 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1105 		mask = 0x7000; /* jnz */
1106 		/* lgfi %w1,imm (load sign extend imm) */
1107 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1108 		/* ngr %w1,%dst */
1109 		EMIT4(0xb9800000, REG_W1, dst_reg);
1110 		goto branch_oc;
1111 
1112 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1113 		mask = 0x2000; /* jh */
1114 		goto branch_xs;
1115 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1116 		mask = 0xa000; /* jhe */
1117 		goto branch_xs;
1118 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1119 		mask = 0x2000; /* jh */
1120 		goto branch_xu;
1121 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1122 		mask = 0xa000; /* jhe */
1123 		goto branch_xu;
1124 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1125 		mask = 0x7000; /* jne */
1126 		goto branch_xu;
1127 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1128 		mask = 0x8000; /* je */
1129 		goto branch_xu;
1130 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1131 		mask = 0x7000; /* jnz */
1132 		/* ngrk %w1,%dst,%src */
1133 		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1134 		goto branch_oc;
1135 branch_ks:
1136 		/* lgfi %w1,imm (load sign extend imm) */
1137 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1138 		/* cgrj %dst,%w1,mask,off */
1139 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1140 		break;
1141 branch_ku:
1142 		/* lgfi %w1,imm (load sign extend imm) */
1143 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1144 		/* clgrj %dst,%w1,mask,off */
1145 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1146 		break;
1147 branch_xs:
1148 		/* cgrj %dst,%src,mask,off */
1149 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1150 		break;
1151 branch_xu:
1152 		/* clgrj %dst,%src,mask,off */
1153 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1154 		break;
1155 branch_oc:
1156 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1157 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1158 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1159 		break;
1160 	/*
1161 	 * BPF_LD
1162 	 */
1163 	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1164 	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1165 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1166 			func_addr = __pa(sk_load_byte_pos);
1167 		else
1168 			func_addr = __pa(sk_load_byte);
1169 		goto call_fn;
1170 	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1171 	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1172 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1173 			func_addr = __pa(sk_load_half_pos);
1174 		else
1175 			func_addr = __pa(sk_load_half);
1176 		goto call_fn;
1177 	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1178 	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1179 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1180 			func_addr = __pa(sk_load_word_pos);
1181 		else
1182 			func_addr = __pa(sk_load_word);
1183 		goto call_fn;
1184 call_fn:
1185 		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1186 		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1187 
1188 		/*
1189 		 * Implicit input:
1190 		 *  BPF_REG_6	 (R7) : skb pointer
1191 		 *  REG_SKB_DATA (R12): skb data pointer
1192 		 *
1193 		 * Calculated input:
1194 		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1195 		 *  BPF_REG_5	 (R6) : return address
1196 		 *
1197 		 * Output:
1198 		 *  BPF_REG_0	 (R14): data read from skb
1199 		 *
1200 		 * Scratch registers (BPF_REG_1-5)
1201 		 */
1202 
1203 		/* Call function: llilf %w1,func_addr  */
1204 		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1205 
1206 		/* Offset: lgfi %b2,imm */
1207 		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1208 		if (BPF_MODE(insn->code) == BPF_IND)
1209 			/* agfr %b2,%src (%src is s32 here) */
1210 			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1211 
1212 		/* basr %b5,%w1 (%b5 is call saved) */
1213 		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1214 
1215 		/*
1216 		 * Note: For fast access we jump directly after the
1217 		 * jnz instruction from bpf_jit.S
1218 		 */
1219 		/* jnz <ret0> */
1220 		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1221 		break;
1222 	default: /* too complex, give up */
1223 		pr_err("Unknown opcode %02x\n", insn->code);
1224 		return -1;
1225 	}
1226 	return insn_count;
1227 }
1228 
1229 /*
1230  * Compile eBPF program into s390x code
1231  */
1232 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1233 {
1234 	int i, insn_count;
1235 
1236 	jit->lit = jit->lit_start;
1237 	jit->prg = 0;
1238 
1239 	bpf_jit_prologue(jit);
1240 	for (i = 0; i < fp->len; i += insn_count) {
1241 		insn_count = bpf_jit_insn(jit, fp, i);
1242 		if (insn_count < 0)
1243 			return -1;
1244 		jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1245 	}
1246 	bpf_jit_epilogue(jit);
1247 
1248 	jit->lit_start = jit->prg;
1249 	jit->size = jit->lit;
1250 	jit->size_prg = jit->prg;
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Classic BPF function stub. BPF programs will be converted into
1256  * eBPF and then bpf_int_jit_compile() will be called.
1257  */
1258 void bpf_jit_compile(struct bpf_prog *fp)
1259 {
1260 }
1261 
1262 /*
1263  * Compile eBPF program "fp"
1264  */
1265 void bpf_int_jit_compile(struct bpf_prog *fp)
1266 {
1267 	struct bpf_binary_header *header;
1268 	struct bpf_jit jit;
1269 	int pass;
1270 
1271 	if (!bpf_jit_enable)
1272 		return;
1273 	memset(&jit, 0, sizeof(jit));
1274 	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1275 	if (jit.addrs == NULL)
1276 		return;
1277 	/*
1278 	 * Three initial passes:
1279 	 *   - 1/2: Determine clobbered registers
1280 	 *   - 3:   Calculate program size and addrs arrray
1281 	 */
1282 	for (pass = 1; pass <= 3; pass++) {
1283 		if (bpf_jit_prog(&jit, fp))
1284 			goto free_addrs;
1285 	}
1286 	/*
1287 	 * Final pass: Allocate and generate program
1288 	 */
1289 	if (jit.size >= BPF_SIZE_MAX)
1290 		goto free_addrs;
1291 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1292 	if (!header)
1293 		goto free_addrs;
1294 	if (bpf_jit_prog(&jit, fp))
1295 		goto free_addrs;
1296 	if (bpf_jit_enable > 1) {
1297 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1298 		if (jit.prg_buf)
1299 			print_fn_code(jit.prg_buf, jit.size_prg);
1300 	}
1301 	if (jit.prg_buf) {
1302 		set_memory_ro((unsigned long)header, header->pages);
1303 		fp->bpf_func = (void *) jit.prg_buf;
1304 		fp->jited = true;
1305 	}
1306 free_addrs:
1307 	kfree(jit.addrs);
1308 }
1309 
1310 /*
1311  * Free eBPF program
1312  */
1313 void bpf_jit_free(struct bpf_prog *fp)
1314 {
1315 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1316 	struct bpf_binary_header *header = (void *)addr;
1317 
1318 	if (!fp->jited)
1319 		goto free_filter;
1320 
1321 	set_memory_rw(addr, header->pages);
1322 	bpf_jit_binary_free(header);
1323 
1324 free_filter:
1325 	bpf_prog_unlock_free(fp);
1326 }
1327