xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision bbaa836b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <linux/mm.h>
27 #include <linux/kernel.h>
28 #include <asm/cacheflush.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include "bpf_jit.h"
34 
35 struct bpf_jit {
36 	u32 seen;		/* Flags to remember seen eBPF instructions */
37 	u32 seen_reg[16];	/* Array to remember which registers are used */
38 	u32 *addrs;		/* Array with relative instruction addresses */
39 	u8 *prg_buf;		/* Start of program */
40 	int size;		/* Size of program and literal pool */
41 	int size_prg;		/* Size of program */
42 	int prg;		/* Current position in program */
43 	int lit32_start;	/* Start of 32-bit literal pool */
44 	int lit32;		/* Current position in 32-bit literal pool */
45 	int lit64_start;	/* Start of 64-bit literal pool */
46 	int lit64;		/* Current position in 64-bit literal pool */
47 	int base_ip;		/* Base address for literal pool */
48 	int exit_ip;		/* Address of exit */
49 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
50 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
51 	int tail_call_start;	/* Tail call start offset */
52 	int excnt;		/* Number of exception table entries */
53 };
54 
55 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
56 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
57 #define SEEN_FUNC	BIT(2)		/* calls C functions */
58 #define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
59 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
60 
61 /*
62  * s390 registers
63  */
64 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
65 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
66 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
67 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
68 #define REG_0		REG_W0			/* Register 0 */
69 #define REG_1		REG_W1			/* Register 1 */
70 #define REG_2		BPF_REG_1		/* Register 2 */
71 #define REG_14		BPF_REG_0		/* Register 14 */
72 
73 /*
74  * Mapping of BPF registers to s390 registers
75  */
76 static const int reg2hex[] = {
77 	/* Return code */
78 	[BPF_REG_0]	= 14,
79 	/* Function parameters */
80 	[BPF_REG_1]	= 2,
81 	[BPF_REG_2]	= 3,
82 	[BPF_REG_3]	= 4,
83 	[BPF_REG_4]	= 5,
84 	[BPF_REG_5]	= 6,
85 	/* Call saved registers */
86 	[BPF_REG_6]	= 7,
87 	[BPF_REG_7]	= 8,
88 	[BPF_REG_8]	= 9,
89 	[BPF_REG_9]	= 10,
90 	/* BPF stack pointer */
91 	[BPF_REG_FP]	= 13,
92 	/* Register for blinding */
93 	[BPF_REG_AX]	= 12,
94 	/* Work registers for s390x backend */
95 	[REG_W0]	= 0,
96 	[REG_W1]	= 1,
97 	[REG_L]		= 11,
98 	[REG_15]	= 15,
99 };
100 
101 static inline u32 reg(u32 dst_reg, u32 src_reg)
102 {
103 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104 }
105 
106 static inline u32 reg_high(u32 reg)
107 {
108 	return reg2hex[reg] << 4;
109 }
110 
111 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112 {
113 	u32 r1 = reg2hex[b1];
114 
115 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
116 		jit->seen_reg[r1] = 1;
117 }
118 
119 #define REG_SET_SEEN(b1)					\
120 ({								\
121 	reg_set_seen(jit, b1);					\
122 })
123 
124 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125 
126 /*
127  * EMIT macros for code generation
128  */
129 
130 #define _EMIT2(op)						\
131 ({								\
132 	if (jit->prg_buf)					\
133 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
134 	jit->prg += 2;						\
135 })
136 
137 #define EMIT2(op, b1, b2)					\
138 ({								\
139 	_EMIT2((op) | reg(b1, b2));				\
140 	REG_SET_SEEN(b1);					\
141 	REG_SET_SEEN(b2);					\
142 })
143 
144 #define _EMIT4(op)						\
145 ({								\
146 	if (jit->prg_buf)					\
147 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
148 	jit->prg += 4;						\
149 })
150 
151 #define EMIT4(op, b1, b2)					\
152 ({								\
153 	_EMIT4((op) | reg(b1, b2));				\
154 	REG_SET_SEEN(b1);					\
155 	REG_SET_SEEN(b2);					\
156 })
157 
158 #define EMIT4_RRF(op, b1, b2, b3)				\
159 ({								\
160 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
161 	REG_SET_SEEN(b1);					\
162 	REG_SET_SEEN(b2);					\
163 	REG_SET_SEEN(b3);					\
164 })
165 
166 #define _EMIT4_DISP(op, disp)					\
167 ({								\
168 	unsigned int __disp = (disp) & 0xfff;			\
169 	_EMIT4((op) | __disp);					\
170 })
171 
172 #define EMIT4_DISP(op, b1, b2, disp)				\
173 ({								\
174 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
175 		    reg_high(b2) << 8, (disp));			\
176 	REG_SET_SEEN(b1);					\
177 	REG_SET_SEEN(b2);					\
178 })
179 
180 #define EMIT4_IMM(op, b1, imm)					\
181 ({								\
182 	unsigned int __imm = (imm) & 0xffff;			\
183 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
184 	REG_SET_SEEN(b1);					\
185 })
186 
187 #define EMIT4_PCREL(op, pcrel)					\
188 ({								\
189 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
190 	_EMIT4((op) | __pcrel);					\
191 })
192 
193 #define EMIT4_PCREL_RIC(op, mask, target)			\
194 ({								\
195 	int __rel = ((target) - jit->prg) / 2;			\
196 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
197 })
198 
199 #define _EMIT6(op1, op2)					\
200 ({								\
201 	if (jit->prg_buf) {					\
202 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
203 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
204 	}							\
205 	jit->prg += 6;						\
206 })
207 
208 #define _EMIT6_DISP(op1, op2, disp)				\
209 ({								\
210 	unsigned int __disp = (disp) & 0xfff;			\
211 	_EMIT6((op1) | __disp, op2);				\
212 })
213 
214 #define _EMIT6_DISP_LH(op1, op2, disp)				\
215 ({								\
216 	u32 _disp = (u32) (disp);				\
217 	unsigned int __disp_h = _disp & 0xff000;		\
218 	unsigned int __disp_l = _disp & 0x00fff;		\
219 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
220 })
221 
222 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
223 ({								\
224 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
225 		       reg_high(b3) << 8, op2, disp);		\
226 	REG_SET_SEEN(b1);					\
227 	REG_SET_SEEN(b2);					\
228 	REG_SET_SEEN(b3);					\
229 })
230 
231 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
232 ({								\
233 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
234 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
235 	       (op2) | (mask) << 12);				\
236 	REG_SET_SEEN(b1);					\
237 	REG_SET_SEEN(b2);					\
238 })
239 
240 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
241 ({								\
242 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
243 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
244 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
245 	REG_SET_SEEN(b1);					\
246 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
247 })
248 
249 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
250 ({								\
251 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
252 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
253 	REG_SET_SEEN(b1);					\
254 	REG_SET_SEEN(b2);					\
255 })
256 
257 #define EMIT6_PCREL_RILB(op, b, target)				\
258 ({								\
259 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
260 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
261 	REG_SET_SEEN(b);					\
262 })
263 
264 #define EMIT6_PCREL_RIL(op, target)				\
265 ({								\
266 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
267 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
268 })
269 
270 #define EMIT6_PCREL_RILC(op, mask, target)			\
271 ({								\
272 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
273 })
274 
275 #define _EMIT6_IMM(op, imm)					\
276 ({								\
277 	unsigned int __imm = (imm);				\
278 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
279 })
280 
281 #define EMIT6_IMM(op, b1, imm)					\
282 ({								\
283 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
284 	REG_SET_SEEN(b1);					\
285 })
286 
287 #define _EMIT_CONST_U32(val)					\
288 ({								\
289 	unsigned int ret;					\
290 	ret = jit->lit32;					\
291 	if (jit->prg_buf)					\
292 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
293 	jit->lit32 += 4;					\
294 	ret;							\
295 })
296 
297 #define EMIT_CONST_U32(val)					\
298 ({								\
299 	jit->seen |= SEEN_LITERAL;				\
300 	_EMIT_CONST_U32(val) - jit->base_ip;			\
301 })
302 
303 #define _EMIT_CONST_U64(val)					\
304 ({								\
305 	unsigned int ret;					\
306 	ret = jit->lit64;					\
307 	if (jit->prg_buf)					\
308 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
309 	jit->lit64 += 8;					\
310 	ret;							\
311 })
312 
313 #define EMIT_CONST_U64(val)					\
314 ({								\
315 	jit->seen |= SEEN_LITERAL;				\
316 	_EMIT_CONST_U64(val) - jit->base_ip;			\
317 })
318 
319 #define EMIT_ZERO(b1)						\
320 ({								\
321 	if (!fp->aux->verifier_zext) {				\
322 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
323 		EMIT4(0xb9160000, b1, b1);			\
324 		REG_SET_SEEN(b1);				\
325 	}							\
326 })
327 
328 /*
329  * Return whether this is the first pass. The first pass is special, since we
330  * don't know any sizes yet, and thus must be conservative.
331  */
332 static bool is_first_pass(struct bpf_jit *jit)
333 {
334 	return jit->size == 0;
335 }
336 
337 /*
338  * Return whether this is the code generation pass. The code generation pass is
339  * special, since we should change as little as possible.
340  */
341 static bool is_codegen_pass(struct bpf_jit *jit)
342 {
343 	return jit->prg_buf;
344 }
345 
346 /*
347  * Return whether "rel" can be encoded as a short PC-relative offset
348  */
349 static bool is_valid_rel(int rel)
350 {
351 	return rel >= -65536 && rel <= 65534;
352 }
353 
354 /*
355  * Return whether "off" can be reached using a short PC-relative offset
356  */
357 static bool can_use_rel(struct bpf_jit *jit, int off)
358 {
359 	return is_valid_rel(off - jit->prg);
360 }
361 
362 /*
363  * Return whether given displacement can be encoded using
364  * Long-Displacement Facility
365  */
366 static bool is_valid_ldisp(int disp)
367 {
368 	return disp >= -524288 && disp <= 524287;
369 }
370 
371 /*
372  * Return whether the next 32-bit literal pool entry can be referenced using
373  * Long-Displacement Facility
374  */
375 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
376 {
377 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
378 }
379 
380 /*
381  * Return whether the next 64-bit literal pool entry can be referenced using
382  * Long-Displacement Facility
383  */
384 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
385 {
386 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
387 }
388 
389 /*
390  * Fill whole space with illegal instructions
391  */
392 static void jit_fill_hole(void *area, unsigned int size)
393 {
394 	memset(area, 0, size);
395 }
396 
397 /*
398  * Save registers from "rs" (register start) to "re" (register end) on stack
399  */
400 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
401 {
402 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
403 
404 	if (rs == re)
405 		/* stg %rs,off(%r15) */
406 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
407 	else
408 		/* stmg %rs,%re,off(%r15) */
409 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
410 }
411 
412 /*
413  * Restore registers from "rs" (register start) to "re" (register end) on stack
414  */
415 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
416 {
417 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
418 
419 	if (jit->seen & SEEN_STACK)
420 		off += STK_OFF + stack_depth;
421 
422 	if (rs == re)
423 		/* lg %rs,off(%r15) */
424 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
425 	else
426 		/* lmg %rs,%re,off(%r15) */
427 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
428 }
429 
430 /*
431  * Return first seen register (from start)
432  */
433 static int get_start(struct bpf_jit *jit, int start)
434 {
435 	int i;
436 
437 	for (i = start; i <= 15; i++) {
438 		if (jit->seen_reg[i])
439 			return i;
440 	}
441 	return 0;
442 }
443 
444 /*
445  * Return last seen register (from start) (gap >= 2)
446  */
447 static int get_end(struct bpf_jit *jit, int start)
448 {
449 	int i;
450 
451 	for (i = start; i < 15; i++) {
452 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
453 			return i - 1;
454 	}
455 	return jit->seen_reg[15] ? 15 : 14;
456 }
457 
458 #define REGS_SAVE	1
459 #define REGS_RESTORE	0
460 /*
461  * Save and restore clobbered registers (6-15) on stack.
462  * We save/restore registers in chunks with gap >= 2 registers.
463  */
464 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
465 {
466 	const int last = 15, save_restore_size = 6;
467 	int re = 6, rs;
468 
469 	if (is_first_pass(jit)) {
470 		/*
471 		 * We don't know yet which registers are used. Reserve space
472 		 * conservatively.
473 		 */
474 		jit->prg += (last - re + 1) * save_restore_size;
475 		return;
476 	}
477 
478 	do {
479 		rs = get_start(jit, re);
480 		if (!rs)
481 			break;
482 		re = get_end(jit, rs + 1);
483 		if (op == REGS_SAVE)
484 			save_regs(jit, rs, re);
485 		else
486 			restore_regs(jit, rs, re, stack_depth);
487 		re++;
488 	} while (re <= last);
489 }
490 
491 static void bpf_skip(struct bpf_jit *jit, int size)
492 {
493 	if (size >= 6 && !is_valid_rel(size)) {
494 		/* brcl 0xf,size */
495 		EMIT6_PCREL_RIL(0xc0f4000000, size);
496 		size -= 6;
497 	} else if (size >= 4 && is_valid_rel(size)) {
498 		/* brc 0xf,size */
499 		EMIT4_PCREL(0xa7f40000, size);
500 		size -= 4;
501 	}
502 	while (size >= 2) {
503 		/* bcr 0,%0 */
504 		_EMIT2(0x0700);
505 		size -= 2;
506 	}
507 }
508 
509 /*
510  * Emit function prologue
511  *
512  * Save registers and create stack frame if necessary.
513  * See stack frame layout desription in "bpf_jit.h"!
514  */
515 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
516 {
517 	if (jit->seen & SEEN_TAIL_CALL) {
518 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
519 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
520 	} else {
521 		/*
522 		 * There are no tail calls. Insert nops in order to have
523 		 * tail_call_start at a predictable offset.
524 		 */
525 		bpf_skip(jit, 6);
526 	}
527 	/* Tail calls have to skip above initialization */
528 	jit->tail_call_start = jit->prg;
529 	/* Save registers */
530 	save_restore_regs(jit, REGS_SAVE, stack_depth);
531 	/* Setup literal pool */
532 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
533 		if (!is_first_pass(jit) &&
534 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
535 			/* basr %l,0 */
536 			EMIT2(0x0d00, REG_L, REG_0);
537 			jit->base_ip = jit->prg;
538 		} else {
539 			/* larl %l,lit32_start */
540 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
541 			jit->base_ip = jit->lit32_start;
542 		}
543 	}
544 	/* Setup stack and backchain */
545 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
546 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
547 			/* lgr %w1,%r15 (backchain) */
548 			EMIT4(0xb9040000, REG_W1, REG_15);
549 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
550 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
551 		/* aghi %r15,-STK_OFF */
552 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
553 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
554 			/* stg %w1,152(%r15) (backchain) */
555 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
556 				      REG_15, 152);
557 	}
558 }
559 
560 /*
561  * Function epilogue
562  */
563 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
564 {
565 	jit->exit_ip = jit->prg;
566 	/* Load exit code: lgr %r2,%b0 */
567 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
568 	/* Restore registers */
569 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
570 	if (nospec_uses_trampoline()) {
571 		jit->r14_thunk_ip = jit->prg;
572 		/* Generate __s390_indirect_jump_r14 thunk */
573 		if (test_facility(35)) {
574 			/* exrl %r0,.+10 */
575 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
576 		} else {
577 			/* larl %r1,.+14 */
578 			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
579 			/* ex 0,0(%r1) */
580 			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
581 		}
582 		/* j . */
583 		EMIT4_PCREL(0xa7f40000, 0);
584 	}
585 	/* br %r14 */
586 	_EMIT2(0x07fe);
587 
588 	if ((nospec_uses_trampoline()) &&
589 	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
590 		jit->r1_thunk_ip = jit->prg;
591 		/* Generate __s390_indirect_jump_r1 thunk */
592 		if (test_facility(35)) {
593 			/* exrl %r0,.+10 */
594 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
595 			/* j . */
596 			EMIT4_PCREL(0xa7f40000, 0);
597 			/* br %r1 */
598 			_EMIT2(0x07f1);
599 		} else {
600 			/* ex 0,S390_lowcore.br_r1_tampoline */
601 			EMIT4_DISP(0x44000000, REG_0, REG_0,
602 				   offsetof(struct lowcore, br_r1_trampoline));
603 			/* j . */
604 			EMIT4_PCREL(0xa7f40000, 0);
605 		}
606 	}
607 }
608 
609 static int get_probe_mem_regno(const u8 *insn)
610 {
611 	/*
612 	 * insn must point to llgc, llgh, llgf or lg, which have destination
613 	 * register at the same position.
614 	 */
615 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
616 		return -1;
617 	if (insn[5] != 0x90 && /* llgc */
618 	    insn[5] != 0x91 && /* llgh */
619 	    insn[5] != 0x16 && /* llgf */
620 	    insn[5] != 0x04) /* lg */
621 		return -1;
622 	return insn[1] >> 4;
623 }
624 
625 static bool ex_handler_bpf(const struct exception_table_entry *x,
626 			   struct pt_regs *regs)
627 {
628 	int regno;
629 	u8 *insn;
630 
631 	regs->psw.addr = extable_fixup(x);
632 	insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
633 	regno = get_probe_mem_regno(insn);
634 	if (WARN_ON_ONCE(regno < 0))
635 		/* JIT bug - unexpected instruction. */
636 		return false;
637 	regs->gprs[regno] = 0;
638 	return true;
639 }
640 
641 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
642 			     int probe_prg, int nop_prg)
643 {
644 	struct exception_table_entry *ex;
645 	s64 delta;
646 	u8 *insn;
647 	int prg;
648 	int i;
649 
650 	if (!fp->aux->extable)
651 		/* Do nothing during early JIT passes. */
652 		return 0;
653 	insn = jit->prg_buf + probe_prg;
654 	if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
655 		/* JIT bug - unexpected probe instruction. */
656 		return -1;
657 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
658 		/* JIT bug - gap between probe and nop instructions. */
659 		return -1;
660 	for (i = 0; i < 2; i++) {
661 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
662 			/* Verifier bug - not enough entries. */
663 			return -1;
664 		ex = &fp->aux->extable[jit->excnt];
665 		/* Add extable entries for probe and nop instructions. */
666 		prg = i == 0 ? probe_prg : nop_prg;
667 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
668 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
669 			/* JIT bug - code and extable must be close. */
670 			return -1;
671 		ex->insn = delta;
672 		/*
673 		 * Always land on the nop. Note that extable infrastructure
674 		 * ignores fixup field, it is handled by ex_handler_bpf().
675 		 */
676 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
677 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
678 			/* JIT bug - landing pad and extable must be close. */
679 			return -1;
680 		ex->fixup = delta;
681 		ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
682 		jit->excnt++;
683 	}
684 	return 0;
685 }
686 
687 /*
688  * Compile one eBPF instruction into s390x code
689  *
690  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
691  * stack space for the large switch statement.
692  */
693 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
694 				 int i, bool extra_pass, u32 stack_depth)
695 {
696 	struct bpf_insn *insn = &fp->insnsi[i];
697 	u32 dst_reg = insn->dst_reg;
698 	u32 src_reg = insn->src_reg;
699 	int last, insn_count = 1;
700 	u32 *addrs = jit->addrs;
701 	s32 imm = insn->imm;
702 	s16 off = insn->off;
703 	int probe_prg = -1;
704 	unsigned int mask;
705 	int nop_prg;
706 	int err;
707 
708 	if (BPF_CLASS(insn->code) == BPF_LDX &&
709 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
710 		probe_prg = jit->prg;
711 
712 	switch (insn->code) {
713 	/*
714 	 * BPF_MOV
715 	 */
716 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
717 		/* llgfr %dst,%src */
718 		EMIT4(0xb9160000, dst_reg, src_reg);
719 		if (insn_is_zext(&insn[1]))
720 			insn_count = 2;
721 		break;
722 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
723 		/* lgr %dst,%src */
724 		EMIT4(0xb9040000, dst_reg, src_reg);
725 		break;
726 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
727 		/* llilf %dst,imm */
728 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
729 		if (insn_is_zext(&insn[1]))
730 			insn_count = 2;
731 		break;
732 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
733 		/* lgfi %dst,imm */
734 		EMIT6_IMM(0xc0010000, dst_reg, imm);
735 		break;
736 	/*
737 	 * BPF_LD 64
738 	 */
739 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
740 	{
741 		/* 16 byte instruction that uses two 'struct bpf_insn' */
742 		u64 imm64;
743 
744 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
745 		/* lgrl %dst,imm */
746 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
747 		insn_count = 2;
748 		break;
749 	}
750 	/*
751 	 * BPF_ADD
752 	 */
753 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
754 		/* ar %dst,%src */
755 		EMIT2(0x1a00, dst_reg, src_reg);
756 		EMIT_ZERO(dst_reg);
757 		break;
758 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
759 		/* agr %dst,%src */
760 		EMIT4(0xb9080000, dst_reg, src_reg);
761 		break;
762 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
763 		if (imm != 0) {
764 			/* alfi %dst,imm */
765 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
766 		}
767 		EMIT_ZERO(dst_reg);
768 		break;
769 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
770 		if (!imm)
771 			break;
772 		/* agfi %dst,imm */
773 		EMIT6_IMM(0xc2080000, dst_reg, imm);
774 		break;
775 	/*
776 	 * BPF_SUB
777 	 */
778 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
779 		/* sr %dst,%src */
780 		EMIT2(0x1b00, dst_reg, src_reg);
781 		EMIT_ZERO(dst_reg);
782 		break;
783 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
784 		/* sgr %dst,%src */
785 		EMIT4(0xb9090000, dst_reg, src_reg);
786 		break;
787 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
788 		if (imm != 0) {
789 			/* alfi %dst,-imm */
790 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
791 		}
792 		EMIT_ZERO(dst_reg);
793 		break;
794 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
795 		if (!imm)
796 			break;
797 		if (imm == -0x80000000) {
798 			/* algfi %dst,0x80000000 */
799 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
800 		} else {
801 			/* agfi %dst,-imm */
802 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
803 		}
804 		break;
805 	/*
806 	 * BPF_MUL
807 	 */
808 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
809 		/* msr %dst,%src */
810 		EMIT4(0xb2520000, dst_reg, src_reg);
811 		EMIT_ZERO(dst_reg);
812 		break;
813 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
814 		/* msgr %dst,%src */
815 		EMIT4(0xb90c0000, dst_reg, src_reg);
816 		break;
817 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
818 		if (imm != 1) {
819 			/* msfi %r5,imm */
820 			EMIT6_IMM(0xc2010000, dst_reg, imm);
821 		}
822 		EMIT_ZERO(dst_reg);
823 		break;
824 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
825 		if (imm == 1)
826 			break;
827 		/* msgfi %dst,imm */
828 		EMIT6_IMM(0xc2000000, dst_reg, imm);
829 		break;
830 	/*
831 	 * BPF_DIV / BPF_MOD
832 	 */
833 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
834 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
835 	{
836 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
837 
838 		/* lhi %w0,0 */
839 		EMIT4_IMM(0xa7080000, REG_W0, 0);
840 		/* lr %w1,%dst */
841 		EMIT2(0x1800, REG_W1, dst_reg);
842 		/* dlr %w0,%src */
843 		EMIT4(0xb9970000, REG_W0, src_reg);
844 		/* llgfr %dst,%rc */
845 		EMIT4(0xb9160000, dst_reg, rc_reg);
846 		if (insn_is_zext(&insn[1]))
847 			insn_count = 2;
848 		break;
849 	}
850 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
851 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
852 	{
853 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
854 
855 		/* lghi %w0,0 */
856 		EMIT4_IMM(0xa7090000, REG_W0, 0);
857 		/* lgr %w1,%dst */
858 		EMIT4(0xb9040000, REG_W1, dst_reg);
859 		/* dlgr %w0,%dst */
860 		EMIT4(0xb9870000, REG_W0, src_reg);
861 		/* lgr %dst,%rc */
862 		EMIT4(0xb9040000, dst_reg, rc_reg);
863 		break;
864 	}
865 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
866 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
867 	{
868 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
869 
870 		if (imm == 1) {
871 			if (BPF_OP(insn->code) == BPF_MOD)
872 				/* lhgi %dst,0 */
873 				EMIT4_IMM(0xa7090000, dst_reg, 0);
874 			else
875 				EMIT_ZERO(dst_reg);
876 			break;
877 		}
878 		/* lhi %w0,0 */
879 		EMIT4_IMM(0xa7080000, REG_W0, 0);
880 		/* lr %w1,%dst */
881 		EMIT2(0x1800, REG_W1, dst_reg);
882 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
883 			/* dl %w0,<d(imm)>(%l) */
884 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
885 				      EMIT_CONST_U32(imm));
886 		} else {
887 			/* lgfrl %dst,imm */
888 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
889 					 _EMIT_CONST_U32(imm));
890 			jit->seen |= SEEN_LITERAL;
891 			/* dlr %w0,%dst */
892 			EMIT4(0xb9970000, REG_W0, dst_reg);
893 		}
894 		/* llgfr %dst,%rc */
895 		EMIT4(0xb9160000, dst_reg, rc_reg);
896 		if (insn_is_zext(&insn[1]))
897 			insn_count = 2;
898 		break;
899 	}
900 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
901 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
902 	{
903 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
904 
905 		if (imm == 1) {
906 			if (BPF_OP(insn->code) == BPF_MOD)
907 				/* lhgi %dst,0 */
908 				EMIT4_IMM(0xa7090000, dst_reg, 0);
909 			break;
910 		}
911 		/* lghi %w0,0 */
912 		EMIT4_IMM(0xa7090000, REG_W0, 0);
913 		/* lgr %w1,%dst */
914 		EMIT4(0xb9040000, REG_W1, dst_reg);
915 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
916 			/* dlg %w0,<d(imm)>(%l) */
917 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
918 				      EMIT_CONST_U64(imm));
919 		} else {
920 			/* lgrl %dst,imm */
921 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
922 					 _EMIT_CONST_U64(imm));
923 			jit->seen |= SEEN_LITERAL;
924 			/* dlgr %w0,%dst */
925 			EMIT4(0xb9870000, REG_W0, dst_reg);
926 		}
927 		/* lgr %dst,%rc */
928 		EMIT4(0xb9040000, dst_reg, rc_reg);
929 		break;
930 	}
931 	/*
932 	 * BPF_AND
933 	 */
934 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
935 		/* nr %dst,%src */
936 		EMIT2(0x1400, dst_reg, src_reg);
937 		EMIT_ZERO(dst_reg);
938 		break;
939 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
940 		/* ngr %dst,%src */
941 		EMIT4(0xb9800000, dst_reg, src_reg);
942 		break;
943 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
944 		/* nilf %dst,imm */
945 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
946 		EMIT_ZERO(dst_reg);
947 		break;
948 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
949 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
950 			/* ng %dst,<d(imm)>(%l) */
951 			EMIT6_DISP_LH(0xe3000000, 0x0080,
952 				      dst_reg, REG_0, REG_L,
953 				      EMIT_CONST_U64(imm));
954 		} else {
955 			/* lgrl %w0,imm */
956 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
957 					 _EMIT_CONST_U64(imm));
958 			jit->seen |= SEEN_LITERAL;
959 			/* ngr %dst,%w0 */
960 			EMIT4(0xb9800000, dst_reg, REG_W0);
961 		}
962 		break;
963 	/*
964 	 * BPF_OR
965 	 */
966 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
967 		/* or %dst,%src */
968 		EMIT2(0x1600, dst_reg, src_reg);
969 		EMIT_ZERO(dst_reg);
970 		break;
971 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
972 		/* ogr %dst,%src */
973 		EMIT4(0xb9810000, dst_reg, src_reg);
974 		break;
975 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
976 		/* oilf %dst,imm */
977 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
978 		EMIT_ZERO(dst_reg);
979 		break;
980 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
981 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
982 			/* og %dst,<d(imm)>(%l) */
983 			EMIT6_DISP_LH(0xe3000000, 0x0081,
984 				      dst_reg, REG_0, REG_L,
985 				      EMIT_CONST_U64(imm));
986 		} else {
987 			/* lgrl %w0,imm */
988 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
989 					 _EMIT_CONST_U64(imm));
990 			jit->seen |= SEEN_LITERAL;
991 			/* ogr %dst,%w0 */
992 			EMIT4(0xb9810000, dst_reg, REG_W0);
993 		}
994 		break;
995 	/*
996 	 * BPF_XOR
997 	 */
998 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
999 		/* xr %dst,%src */
1000 		EMIT2(0x1700, dst_reg, src_reg);
1001 		EMIT_ZERO(dst_reg);
1002 		break;
1003 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1004 		/* xgr %dst,%src */
1005 		EMIT4(0xb9820000, dst_reg, src_reg);
1006 		break;
1007 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1008 		if (imm != 0) {
1009 			/* xilf %dst,imm */
1010 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1011 		}
1012 		EMIT_ZERO(dst_reg);
1013 		break;
1014 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1015 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1016 			/* xg %dst,<d(imm)>(%l) */
1017 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1018 				      dst_reg, REG_0, REG_L,
1019 				      EMIT_CONST_U64(imm));
1020 		} else {
1021 			/* lgrl %w0,imm */
1022 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1023 					 _EMIT_CONST_U64(imm));
1024 			jit->seen |= SEEN_LITERAL;
1025 			/* xgr %dst,%w0 */
1026 			EMIT4(0xb9820000, dst_reg, REG_W0);
1027 		}
1028 		break;
1029 	/*
1030 	 * BPF_LSH
1031 	 */
1032 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1033 		/* sll %dst,0(%src) */
1034 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1035 		EMIT_ZERO(dst_reg);
1036 		break;
1037 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1038 		/* sllg %dst,%dst,0(%src) */
1039 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1040 		break;
1041 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1042 		if (imm != 0) {
1043 			/* sll %dst,imm(%r0) */
1044 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1045 		}
1046 		EMIT_ZERO(dst_reg);
1047 		break;
1048 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1049 		if (imm == 0)
1050 			break;
1051 		/* sllg %dst,%dst,imm(%r0) */
1052 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1053 		break;
1054 	/*
1055 	 * BPF_RSH
1056 	 */
1057 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1058 		/* srl %dst,0(%src) */
1059 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1060 		EMIT_ZERO(dst_reg);
1061 		break;
1062 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1063 		/* srlg %dst,%dst,0(%src) */
1064 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1065 		break;
1066 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1067 		if (imm != 0) {
1068 			/* srl %dst,imm(%r0) */
1069 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1070 		}
1071 		EMIT_ZERO(dst_reg);
1072 		break;
1073 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1074 		if (imm == 0)
1075 			break;
1076 		/* srlg %dst,%dst,imm(%r0) */
1077 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1078 		break;
1079 	/*
1080 	 * BPF_ARSH
1081 	 */
1082 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1083 		/* sra %dst,%dst,0(%src) */
1084 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1085 		EMIT_ZERO(dst_reg);
1086 		break;
1087 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1088 		/* srag %dst,%dst,0(%src) */
1089 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1090 		break;
1091 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1092 		if (imm != 0) {
1093 			/* sra %dst,imm(%r0) */
1094 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1095 		}
1096 		EMIT_ZERO(dst_reg);
1097 		break;
1098 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1099 		if (imm == 0)
1100 			break;
1101 		/* srag %dst,%dst,imm(%r0) */
1102 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1103 		break;
1104 	/*
1105 	 * BPF_NEG
1106 	 */
1107 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1108 		/* lcr %dst,%dst */
1109 		EMIT2(0x1300, dst_reg, dst_reg);
1110 		EMIT_ZERO(dst_reg);
1111 		break;
1112 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1113 		/* lcgr %dst,%dst */
1114 		EMIT4(0xb9030000, dst_reg, dst_reg);
1115 		break;
1116 	/*
1117 	 * BPF_FROM_BE/LE
1118 	 */
1119 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1120 		/* s390 is big endian, therefore only clear high order bytes */
1121 		switch (imm) {
1122 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1123 			/* llghr %dst,%dst */
1124 			EMIT4(0xb9850000, dst_reg, dst_reg);
1125 			if (insn_is_zext(&insn[1]))
1126 				insn_count = 2;
1127 			break;
1128 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1129 			if (!fp->aux->verifier_zext)
1130 				/* llgfr %dst,%dst */
1131 				EMIT4(0xb9160000, dst_reg, dst_reg);
1132 			break;
1133 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1134 			break;
1135 		}
1136 		break;
1137 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1138 		switch (imm) {
1139 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1140 			/* lrvr %dst,%dst */
1141 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1142 			/* srl %dst,16(%r0) */
1143 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1144 			/* llghr %dst,%dst */
1145 			EMIT4(0xb9850000, dst_reg, dst_reg);
1146 			if (insn_is_zext(&insn[1]))
1147 				insn_count = 2;
1148 			break;
1149 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1150 			/* lrvr %dst,%dst */
1151 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1152 			if (!fp->aux->verifier_zext)
1153 				/* llgfr %dst,%dst */
1154 				EMIT4(0xb9160000, dst_reg, dst_reg);
1155 			break;
1156 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1157 			/* lrvgr %dst,%dst */
1158 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1159 			break;
1160 		}
1161 		break;
1162 	/*
1163 	 * BPF_NOSPEC (speculation barrier)
1164 	 */
1165 	case BPF_ST | BPF_NOSPEC:
1166 		break;
1167 	/*
1168 	 * BPF_ST(X)
1169 	 */
1170 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1171 		/* stcy %src,off(%dst) */
1172 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1173 		jit->seen |= SEEN_MEM;
1174 		break;
1175 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1176 		/* sthy %src,off(%dst) */
1177 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1178 		jit->seen |= SEEN_MEM;
1179 		break;
1180 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1181 		/* sty %src,off(%dst) */
1182 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1183 		jit->seen |= SEEN_MEM;
1184 		break;
1185 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1186 		/* stg %src,off(%dst) */
1187 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1188 		jit->seen |= SEEN_MEM;
1189 		break;
1190 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1191 		/* lhi %w0,imm */
1192 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1193 		/* stcy %w0,off(dst) */
1194 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1195 		jit->seen |= SEEN_MEM;
1196 		break;
1197 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1198 		/* lhi %w0,imm */
1199 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1200 		/* sthy %w0,off(dst) */
1201 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1202 		jit->seen |= SEEN_MEM;
1203 		break;
1204 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1205 		/* llilf %w0,imm  */
1206 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1207 		/* sty %w0,off(%dst) */
1208 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1209 		jit->seen |= SEEN_MEM;
1210 		break;
1211 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1212 		/* lgfi %w0,imm */
1213 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1214 		/* stg %w0,off(%dst) */
1215 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1216 		jit->seen |= SEEN_MEM;
1217 		break;
1218 	/*
1219 	 * BPF_ATOMIC
1220 	 */
1221 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1222 	case BPF_STX | BPF_ATOMIC | BPF_W:
1223 	{
1224 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1225 
1226 		switch (insn->imm) {
1227 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1228 #define EMIT_ATOMIC(op32, op64) do {					\
1229 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1230 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1231 		      src_reg, dst_reg, off);				\
1232 	if (is32 && (insn->imm & BPF_FETCH))				\
1233 		EMIT_ZERO(src_reg);					\
1234 } while (0)
1235 		case BPF_ADD:
1236 		case BPF_ADD | BPF_FETCH:
1237 			/* {laal|laalg} */
1238 			EMIT_ATOMIC(0x00fa, 0x00ea);
1239 			break;
1240 		case BPF_AND:
1241 		case BPF_AND | BPF_FETCH:
1242 			/* {lan|lang} */
1243 			EMIT_ATOMIC(0x00f4, 0x00e4);
1244 			break;
1245 		case BPF_OR:
1246 		case BPF_OR | BPF_FETCH:
1247 			/* {lao|laog} */
1248 			EMIT_ATOMIC(0x00f6, 0x00e6);
1249 			break;
1250 		case BPF_XOR:
1251 		case BPF_XOR | BPF_FETCH:
1252 			/* {lax|laxg} */
1253 			EMIT_ATOMIC(0x00f7, 0x00e7);
1254 			break;
1255 #undef EMIT_ATOMIC
1256 		case BPF_XCHG:
1257 			/* {ly|lg} %w0,off(%dst) */
1258 			EMIT6_DISP_LH(0xe3000000,
1259 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1260 				      dst_reg, off);
1261 			/* 0: {csy|csg} %w0,%src,off(%dst) */
1262 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1263 				      REG_W0, src_reg, dst_reg, off);
1264 			/* brc 4,0b */
1265 			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1266 			/* {llgfr|lgr} %src,%w0 */
1267 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1268 			if (is32 && insn_is_zext(&insn[1]))
1269 				insn_count = 2;
1270 			break;
1271 		case BPF_CMPXCHG:
1272 			/* 0: {csy|csg} %b0,%src,off(%dst) */
1273 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1274 				      BPF_REG_0, src_reg, dst_reg, off);
1275 			break;
1276 		default:
1277 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1278 			return -1;
1279 		}
1280 
1281 		jit->seen |= SEEN_MEM;
1282 		break;
1283 	}
1284 	/*
1285 	 * BPF_LDX
1286 	 */
1287 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1288 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1289 		/* llgc %dst,0(off,%src) */
1290 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1291 		jit->seen |= SEEN_MEM;
1292 		if (insn_is_zext(&insn[1]))
1293 			insn_count = 2;
1294 		break;
1295 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1296 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1297 		/* llgh %dst,0(off,%src) */
1298 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1299 		jit->seen |= SEEN_MEM;
1300 		if (insn_is_zext(&insn[1]))
1301 			insn_count = 2;
1302 		break;
1303 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1304 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1305 		/* llgf %dst,off(%src) */
1306 		jit->seen |= SEEN_MEM;
1307 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1308 		if (insn_is_zext(&insn[1]))
1309 			insn_count = 2;
1310 		break;
1311 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1312 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1313 		/* lg %dst,0(off,%src) */
1314 		jit->seen |= SEEN_MEM;
1315 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1316 		break;
1317 	/*
1318 	 * BPF_JMP / CALL
1319 	 */
1320 	case BPF_JMP | BPF_CALL:
1321 	{
1322 		u64 func;
1323 		bool func_addr_fixed;
1324 		int ret;
1325 
1326 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1327 					    &func, &func_addr_fixed);
1328 		if (ret < 0)
1329 			return -1;
1330 
1331 		REG_SET_SEEN(BPF_REG_5);
1332 		jit->seen |= SEEN_FUNC;
1333 		/* lgrl %w1,func */
1334 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1335 		if (nospec_uses_trampoline()) {
1336 			/* brasl %r14,__s390_indirect_jump_r1 */
1337 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1338 		} else {
1339 			/* basr %r14,%w1 */
1340 			EMIT2(0x0d00, REG_14, REG_W1);
1341 		}
1342 		/* lgr %b0,%r2: load return value into %b0 */
1343 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1344 		break;
1345 	}
1346 	case BPF_JMP | BPF_TAIL_CALL: {
1347 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1348 
1349 		/*
1350 		 * Implicit input:
1351 		 *  B1: pointer to ctx
1352 		 *  B2: pointer to bpf_array
1353 		 *  B3: index in bpf_array
1354 		 */
1355 		jit->seen |= SEEN_TAIL_CALL;
1356 
1357 		/*
1358 		 * if (index >= array->map.max_entries)
1359 		 *         goto out;
1360 		 */
1361 
1362 		/* llgf %w1,map.max_entries(%b2) */
1363 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1364 			      offsetof(struct bpf_array, map.max_entries));
1365 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1366 		/* clrj %b3,%w1,0xa,out */
1367 		patch_1_clrj = jit->prg;
1368 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1369 				 jit->prg);
1370 
1371 		/*
1372 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1373 		 *         goto out;
1374 		 */
1375 
1376 		if (jit->seen & SEEN_STACK)
1377 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1378 		else
1379 			off = STK_OFF_TCCNT;
1380 		/* lhi %w0,1 */
1381 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1382 		/* laal %w1,%w0,off(%r15) */
1383 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1384 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */
1385 		patch_2_clij = jit->prg;
1386 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT,
1387 				 2, jit->prg);
1388 
1389 		/*
1390 		 * prog = array->ptrs[index];
1391 		 * if (prog == NULL)
1392 		 *         goto out;
1393 		 */
1394 
1395 		/* llgfr %r1,%b3: %r1 = (u32) index */
1396 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1397 		/* sllg %r1,%r1,3: %r1 *= 8 */
1398 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1399 		/* ltg %r1,prog(%b2,%r1) */
1400 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1401 			      REG_1, offsetof(struct bpf_array, ptrs));
1402 		/* brc 0x8,out */
1403 		patch_3_brc = jit->prg;
1404 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1405 
1406 		/*
1407 		 * Restore registers before calling function
1408 		 */
1409 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1410 
1411 		/*
1412 		 * goto *(prog->bpf_func + tail_call_start);
1413 		 */
1414 
1415 		/* lg %r1,bpf_func(%r1) */
1416 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1417 			      offsetof(struct bpf_prog, bpf_func));
1418 		/* bc 0xf,tail_call_start(%r1) */
1419 		_EMIT4(0x47f01000 + jit->tail_call_start);
1420 		/* out: */
1421 		if (jit->prg_buf) {
1422 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1423 				(jit->prg - patch_1_clrj) >> 1;
1424 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1425 				(jit->prg - patch_2_clij) >> 1;
1426 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1427 				(jit->prg - patch_3_brc) >> 1;
1428 		}
1429 		break;
1430 	}
1431 	case BPF_JMP | BPF_EXIT: /* return b0 */
1432 		last = (i == fp->len - 1) ? 1 : 0;
1433 		if (last)
1434 			break;
1435 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1436 			/* brc 0xf, <exit> */
1437 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1438 		else
1439 			/* brcl 0xf, <exit> */
1440 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1441 		break;
1442 	/*
1443 	 * Branch relative (number of skipped instructions) to offset on
1444 	 * condition.
1445 	 *
1446 	 * Condition code to mask mapping:
1447 	 *
1448 	 * CC | Description	   | Mask
1449 	 * ------------------------------
1450 	 * 0  | Operands equal	   |	8
1451 	 * 1  | First operand low  |	4
1452 	 * 2  | First operand high |	2
1453 	 * 3  | Unused		   |	1
1454 	 *
1455 	 * For s390x relative branches: ip = ip + off_bytes
1456 	 * For BPF relative branches:	insn = insn + off_insns + 1
1457 	 *
1458 	 * For example for s390x with offset 0 we jump to the branch
1459 	 * instruction itself (loop) and for BPF with offset 0 we
1460 	 * branch to the instruction behind the branch.
1461 	 */
1462 	case BPF_JMP | BPF_JA: /* if (true) */
1463 		mask = 0xf000; /* j */
1464 		goto branch_oc;
1465 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1466 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1467 		mask = 0x2000; /* jh */
1468 		goto branch_ks;
1469 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1470 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1471 		mask = 0x4000; /* jl */
1472 		goto branch_ks;
1473 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1474 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1475 		mask = 0xa000; /* jhe */
1476 		goto branch_ks;
1477 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1478 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1479 		mask = 0xc000; /* jle */
1480 		goto branch_ks;
1481 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1482 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1483 		mask = 0x2000; /* jh */
1484 		goto branch_ku;
1485 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1486 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1487 		mask = 0x4000; /* jl */
1488 		goto branch_ku;
1489 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1490 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1491 		mask = 0xa000; /* jhe */
1492 		goto branch_ku;
1493 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1494 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1495 		mask = 0xc000; /* jle */
1496 		goto branch_ku;
1497 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1498 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1499 		mask = 0x7000; /* jne */
1500 		goto branch_ku;
1501 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1502 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1503 		mask = 0x8000; /* je */
1504 		goto branch_ku;
1505 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1506 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1507 		mask = 0x7000; /* jnz */
1508 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1509 			/* llilf %w1,imm (load zero extend imm) */
1510 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1511 			/* nr %w1,%dst */
1512 			EMIT2(0x1400, REG_W1, dst_reg);
1513 		} else {
1514 			/* lgfi %w1,imm (load sign extend imm) */
1515 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1516 			/* ngr %w1,%dst */
1517 			EMIT4(0xb9800000, REG_W1, dst_reg);
1518 		}
1519 		goto branch_oc;
1520 
1521 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1522 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1523 		mask = 0x2000; /* jh */
1524 		goto branch_xs;
1525 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1526 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1527 		mask = 0x4000; /* jl */
1528 		goto branch_xs;
1529 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1530 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1531 		mask = 0xa000; /* jhe */
1532 		goto branch_xs;
1533 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1534 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1535 		mask = 0xc000; /* jle */
1536 		goto branch_xs;
1537 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1538 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1539 		mask = 0x2000; /* jh */
1540 		goto branch_xu;
1541 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1542 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1543 		mask = 0x4000; /* jl */
1544 		goto branch_xu;
1545 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1546 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1547 		mask = 0xa000; /* jhe */
1548 		goto branch_xu;
1549 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1550 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1551 		mask = 0xc000; /* jle */
1552 		goto branch_xu;
1553 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1554 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1555 		mask = 0x7000; /* jne */
1556 		goto branch_xu;
1557 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1558 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1559 		mask = 0x8000; /* je */
1560 		goto branch_xu;
1561 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1562 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1563 	{
1564 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1565 
1566 		mask = 0x7000; /* jnz */
1567 		/* nrk or ngrk %w1,%dst,%src */
1568 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1569 			  REG_W1, dst_reg, src_reg);
1570 		goto branch_oc;
1571 branch_ks:
1572 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1573 		/* cfi or cgfi %dst,imm */
1574 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1575 			  dst_reg, imm);
1576 		if (!is_first_pass(jit) &&
1577 		    can_use_rel(jit, addrs[i + off + 1])) {
1578 			/* brc mask,off */
1579 			EMIT4_PCREL_RIC(0xa7040000,
1580 					mask >> 12, addrs[i + off + 1]);
1581 		} else {
1582 			/* brcl mask,off */
1583 			EMIT6_PCREL_RILC(0xc0040000,
1584 					 mask >> 12, addrs[i + off + 1]);
1585 		}
1586 		break;
1587 branch_ku:
1588 		/* lgfi %w1,imm (load sign extend imm) */
1589 		src_reg = REG_1;
1590 		EMIT6_IMM(0xc0010000, src_reg, imm);
1591 		goto branch_xu;
1592 branch_xs:
1593 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1594 		if (!is_first_pass(jit) &&
1595 		    can_use_rel(jit, addrs[i + off + 1])) {
1596 			/* crj or cgrj %dst,%src,mask,off */
1597 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1598 				    dst_reg, src_reg, i, off, mask);
1599 		} else {
1600 			/* cr or cgr %dst,%src */
1601 			if (is_jmp32)
1602 				EMIT2(0x1900, dst_reg, src_reg);
1603 			else
1604 				EMIT4(0xb9200000, dst_reg, src_reg);
1605 			/* brcl mask,off */
1606 			EMIT6_PCREL_RILC(0xc0040000,
1607 					 mask >> 12, addrs[i + off + 1]);
1608 		}
1609 		break;
1610 branch_xu:
1611 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1612 		if (!is_first_pass(jit) &&
1613 		    can_use_rel(jit, addrs[i + off + 1])) {
1614 			/* clrj or clgrj %dst,%src,mask,off */
1615 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1616 				    dst_reg, src_reg, i, off, mask);
1617 		} else {
1618 			/* clr or clgr %dst,%src */
1619 			if (is_jmp32)
1620 				EMIT2(0x1500, dst_reg, src_reg);
1621 			else
1622 				EMIT4(0xb9210000, dst_reg, src_reg);
1623 			/* brcl mask,off */
1624 			EMIT6_PCREL_RILC(0xc0040000,
1625 					 mask >> 12, addrs[i + off + 1]);
1626 		}
1627 		break;
1628 branch_oc:
1629 		if (!is_first_pass(jit) &&
1630 		    can_use_rel(jit, addrs[i + off + 1])) {
1631 			/* brc mask,off */
1632 			EMIT4_PCREL_RIC(0xa7040000,
1633 					mask >> 12, addrs[i + off + 1]);
1634 		} else {
1635 			/* brcl mask,off */
1636 			EMIT6_PCREL_RILC(0xc0040000,
1637 					 mask >> 12, addrs[i + off + 1]);
1638 		}
1639 		break;
1640 	}
1641 	default: /* too complex, give up */
1642 		pr_err("Unknown opcode %02x\n", insn->code);
1643 		return -1;
1644 	}
1645 
1646 	if (probe_prg != -1) {
1647 		/*
1648 		 * Handlers of certain exceptions leave psw.addr pointing to
1649 		 * the instruction directly after the failing one. Therefore,
1650 		 * create two exception table entries and also add a nop in
1651 		 * case two probing instructions come directly after each
1652 		 * other.
1653 		 */
1654 		nop_prg = jit->prg;
1655 		/* bcr 0,%0 */
1656 		_EMIT2(0x0700);
1657 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1658 		if (err < 0)
1659 			return err;
1660 	}
1661 
1662 	return insn_count;
1663 }
1664 
1665 /*
1666  * Return whether new i-th instruction address does not violate any invariant
1667  */
1668 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1669 {
1670 	/* On the first pass anything goes */
1671 	if (is_first_pass(jit))
1672 		return true;
1673 
1674 	/* The codegen pass must not change anything */
1675 	if (is_codegen_pass(jit))
1676 		return jit->addrs[i] == jit->prg;
1677 
1678 	/* Passes in between must not increase code size */
1679 	return jit->addrs[i] >= jit->prg;
1680 }
1681 
1682 /*
1683  * Update the address of i-th instruction
1684  */
1685 static int bpf_set_addr(struct bpf_jit *jit, int i)
1686 {
1687 	int delta;
1688 
1689 	if (is_codegen_pass(jit)) {
1690 		delta = jit->prg - jit->addrs[i];
1691 		if (delta < 0)
1692 			bpf_skip(jit, -delta);
1693 	}
1694 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1695 		return -1;
1696 	jit->addrs[i] = jit->prg;
1697 	return 0;
1698 }
1699 
1700 /*
1701  * Compile eBPF program into s390x code
1702  */
1703 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1704 			bool extra_pass, u32 stack_depth)
1705 {
1706 	int i, insn_count, lit32_size, lit64_size;
1707 
1708 	jit->lit32 = jit->lit32_start;
1709 	jit->lit64 = jit->lit64_start;
1710 	jit->prg = 0;
1711 	jit->excnt = 0;
1712 
1713 	bpf_jit_prologue(jit, stack_depth);
1714 	if (bpf_set_addr(jit, 0) < 0)
1715 		return -1;
1716 	for (i = 0; i < fp->len; i += insn_count) {
1717 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1718 		if (insn_count < 0)
1719 			return -1;
1720 		/* Next instruction address */
1721 		if (bpf_set_addr(jit, i + insn_count) < 0)
1722 			return -1;
1723 	}
1724 	bpf_jit_epilogue(jit, stack_depth);
1725 
1726 	lit32_size = jit->lit32 - jit->lit32_start;
1727 	lit64_size = jit->lit64 - jit->lit64_start;
1728 	jit->lit32_start = jit->prg;
1729 	if (lit32_size)
1730 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1731 	jit->lit64_start = jit->lit32_start + lit32_size;
1732 	if (lit64_size)
1733 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1734 	jit->size = jit->lit64_start + lit64_size;
1735 	jit->size_prg = jit->prg;
1736 
1737 	if (WARN_ON_ONCE(fp->aux->extable &&
1738 			 jit->excnt != fp->aux->num_exentries))
1739 		/* Verifier bug - too many entries. */
1740 		return -1;
1741 
1742 	return 0;
1743 }
1744 
1745 bool bpf_jit_needs_zext(void)
1746 {
1747 	return true;
1748 }
1749 
1750 struct s390_jit_data {
1751 	struct bpf_binary_header *header;
1752 	struct bpf_jit ctx;
1753 	int pass;
1754 };
1755 
1756 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1757 					       struct bpf_prog *fp)
1758 {
1759 	struct bpf_binary_header *header;
1760 	u32 extable_size;
1761 	u32 code_size;
1762 
1763 	/* We need two entries per insn. */
1764 	fp->aux->num_exentries *= 2;
1765 
1766 	code_size = roundup(jit->size,
1767 			    __alignof__(struct exception_table_entry));
1768 	extable_size = fp->aux->num_exentries *
1769 		sizeof(struct exception_table_entry);
1770 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1771 				      8, jit_fill_hole);
1772 	if (!header)
1773 		return NULL;
1774 	fp->aux->extable = (struct exception_table_entry *)
1775 		(jit->prg_buf + code_size);
1776 	return header;
1777 }
1778 
1779 /*
1780  * Compile eBPF program "fp"
1781  */
1782 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1783 {
1784 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1785 	struct bpf_prog *tmp, *orig_fp = fp;
1786 	struct bpf_binary_header *header;
1787 	struct s390_jit_data *jit_data;
1788 	bool tmp_blinded = false;
1789 	bool extra_pass = false;
1790 	struct bpf_jit jit;
1791 	int pass;
1792 
1793 	if (!fp->jit_requested)
1794 		return orig_fp;
1795 
1796 	tmp = bpf_jit_blind_constants(fp);
1797 	/*
1798 	 * If blinding was requested and we failed during blinding,
1799 	 * we must fall back to the interpreter.
1800 	 */
1801 	if (IS_ERR(tmp))
1802 		return orig_fp;
1803 	if (tmp != fp) {
1804 		tmp_blinded = true;
1805 		fp = tmp;
1806 	}
1807 
1808 	jit_data = fp->aux->jit_data;
1809 	if (!jit_data) {
1810 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1811 		if (!jit_data) {
1812 			fp = orig_fp;
1813 			goto out;
1814 		}
1815 		fp->aux->jit_data = jit_data;
1816 	}
1817 	if (jit_data->ctx.addrs) {
1818 		jit = jit_data->ctx;
1819 		header = jit_data->header;
1820 		extra_pass = true;
1821 		pass = jit_data->pass + 1;
1822 		goto skip_init_ctx;
1823 	}
1824 
1825 	memset(&jit, 0, sizeof(jit));
1826 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1827 	if (jit.addrs == NULL) {
1828 		fp = orig_fp;
1829 		goto free_addrs;
1830 	}
1831 	/*
1832 	 * Three initial passes:
1833 	 *   - 1/2: Determine clobbered registers
1834 	 *   - 3:   Calculate program size and addrs arrray
1835 	 */
1836 	for (pass = 1; pass <= 3; pass++) {
1837 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1838 			fp = orig_fp;
1839 			goto free_addrs;
1840 		}
1841 	}
1842 	/*
1843 	 * Final pass: Allocate and generate program
1844 	 */
1845 	header = bpf_jit_alloc(&jit, fp);
1846 	if (!header) {
1847 		fp = orig_fp;
1848 		goto free_addrs;
1849 	}
1850 skip_init_ctx:
1851 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1852 		bpf_jit_binary_free(header);
1853 		fp = orig_fp;
1854 		goto free_addrs;
1855 	}
1856 	if (bpf_jit_enable > 1) {
1857 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1858 		print_fn_code(jit.prg_buf, jit.size_prg);
1859 	}
1860 	if (!fp->is_func || extra_pass) {
1861 		bpf_jit_binary_lock_ro(header);
1862 	} else {
1863 		jit_data->header = header;
1864 		jit_data->ctx = jit;
1865 		jit_data->pass = pass;
1866 	}
1867 	fp->bpf_func = (void *) jit.prg_buf;
1868 	fp->jited = 1;
1869 	fp->jited_len = jit.size;
1870 
1871 	if (!fp->is_func || extra_pass) {
1872 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1873 free_addrs:
1874 		kvfree(jit.addrs);
1875 		kfree(jit_data);
1876 		fp->aux->jit_data = NULL;
1877 	}
1878 out:
1879 	if (tmp_blinded)
1880 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1881 					   tmp : orig_fp);
1882 	return fp;
1883 }
1884