xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision 82e6fdd6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <asm/cacheflush.h>
27 #include <asm/dis.h>
28 #include <asm/set_memory.h>
29 #include "bpf_jit.h"
30 
31 struct bpf_jit {
32 	u32 seen;		/* Flags to remember seen eBPF instructions */
33 	u32 seen_reg[16];	/* Array to remember which registers are used */
34 	u32 *addrs;		/* Array with relative instruction addresses */
35 	u8 *prg_buf;		/* Start of program */
36 	int size;		/* Size of program and literal pool */
37 	int size_prg;		/* Size of program */
38 	int prg;		/* Current position in program */
39 	int lit_start;		/* Start of literal pool */
40 	int lit;		/* Current position in literal pool */
41 	int base_ip;		/* Base address for literal pool */
42 	int ret0_ip;		/* Address of return 0 */
43 	int exit_ip;		/* Address of exit */
44 	int tail_call_start;	/* Tail call start offset */
45 	int labels[1];		/* Labels for local jumps */
46 };
47 
48 #define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
49 
50 #define SEEN_SKB	1	/* skb access */
51 #define SEEN_MEM	2	/* use mem[] for temporary storage */
52 #define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
53 #define SEEN_LITERAL	8	/* code uses literals */
54 #define SEEN_FUNC	16	/* calls C functions */
55 #define SEEN_TAIL_CALL	32	/* code uses tail calls */
56 #define SEEN_REG_AX	64	/* code uses constant blinding */
57 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
58 
59 /*
60  * s390 registers
61  */
62 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
63 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
64 #define REG_SKB_DATA	(MAX_BPF_JIT_REG + 2)	/* SKB data register */
65 #define REG_L		(MAX_BPF_JIT_REG + 3)	/* Literal pool register */
66 #define REG_15		(MAX_BPF_JIT_REG + 4)	/* Register 15 */
67 #define REG_0		REG_W0			/* Register 0 */
68 #define REG_1		REG_W1			/* Register 1 */
69 #define REG_2		BPF_REG_1		/* Register 2 */
70 #define REG_14		BPF_REG_0		/* Register 14 */
71 
72 /*
73  * Mapping of BPF registers to s390 registers
74  */
75 static const int reg2hex[] = {
76 	/* Return code */
77 	[BPF_REG_0]	= 14,
78 	/* Function parameters */
79 	[BPF_REG_1]	= 2,
80 	[BPF_REG_2]	= 3,
81 	[BPF_REG_3]	= 4,
82 	[BPF_REG_4]	= 5,
83 	[BPF_REG_5]	= 6,
84 	/* Call saved registers */
85 	[BPF_REG_6]	= 7,
86 	[BPF_REG_7]	= 8,
87 	[BPF_REG_8]	= 9,
88 	[BPF_REG_9]	= 10,
89 	/* BPF stack pointer */
90 	[BPF_REG_FP]	= 13,
91 	/* Register for blinding (shared with REG_SKB_DATA) */
92 	[BPF_REG_AX]	= 12,
93 	/* SKB data pointer */
94 	[REG_SKB_DATA]	= 12,
95 	/* Work registers for s390x backend */
96 	[REG_W0]	= 0,
97 	[REG_W1]	= 1,
98 	[REG_L]		= 11,
99 	[REG_15]	= 15,
100 };
101 
102 static inline u32 reg(u32 dst_reg, u32 src_reg)
103 {
104 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
105 }
106 
107 static inline u32 reg_high(u32 reg)
108 {
109 	return reg2hex[reg] << 4;
110 }
111 
112 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
113 {
114 	u32 r1 = reg2hex[b1];
115 
116 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 		jit->seen_reg[r1] = 1;
118 }
119 
120 #define REG_SET_SEEN(b1)					\
121 ({								\
122 	reg_set_seen(jit, b1);					\
123 })
124 
125 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
126 
127 /*
128  * EMIT macros for code generation
129  */
130 
131 #define _EMIT2(op)						\
132 ({								\
133 	if (jit->prg_buf)					\
134 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
135 	jit->prg += 2;						\
136 })
137 
138 #define EMIT2(op, b1, b2)					\
139 ({								\
140 	_EMIT2(op | reg(b1, b2));				\
141 	REG_SET_SEEN(b1);					\
142 	REG_SET_SEEN(b2);					\
143 })
144 
145 #define _EMIT4(op)						\
146 ({								\
147 	if (jit->prg_buf)					\
148 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
149 	jit->prg += 4;						\
150 })
151 
152 #define EMIT4(op, b1, b2)					\
153 ({								\
154 	_EMIT4(op | reg(b1, b2));				\
155 	REG_SET_SEEN(b1);					\
156 	REG_SET_SEEN(b2);					\
157 })
158 
159 #define EMIT4_RRF(op, b1, b2, b3)				\
160 ({								\
161 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
162 	REG_SET_SEEN(b1);					\
163 	REG_SET_SEEN(b2);					\
164 	REG_SET_SEEN(b3);					\
165 })
166 
167 #define _EMIT4_DISP(op, disp)					\
168 ({								\
169 	unsigned int __disp = (disp) & 0xfff;			\
170 	_EMIT4(op | __disp);					\
171 })
172 
173 #define EMIT4_DISP(op, b1, b2, disp)				\
174 ({								\
175 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
176 		    reg_high(b2) << 8, disp);			\
177 	REG_SET_SEEN(b1);					\
178 	REG_SET_SEEN(b2);					\
179 })
180 
181 #define EMIT4_IMM(op, b1, imm)					\
182 ({								\
183 	unsigned int __imm = (imm) & 0xffff;			\
184 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
185 	REG_SET_SEEN(b1);					\
186 })
187 
188 #define EMIT4_PCREL(op, pcrel)					\
189 ({								\
190 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
191 	_EMIT4(op | __pcrel);					\
192 })
193 
194 #define _EMIT6(op1, op2)					\
195 ({								\
196 	if (jit->prg_buf) {					\
197 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
198 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
199 	}							\
200 	jit->prg += 6;						\
201 })
202 
203 #define _EMIT6_DISP(op1, op2, disp)				\
204 ({								\
205 	unsigned int __disp = (disp) & 0xfff;			\
206 	_EMIT6(op1 | __disp, op2);				\
207 })
208 
209 #define _EMIT6_DISP_LH(op1, op2, disp)				\
210 ({								\
211 	u32 _disp = (u32) disp;					\
212 	unsigned int __disp_h = _disp & 0xff000;		\
213 	unsigned int __disp_l = _disp & 0x00fff;		\
214 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
215 })
216 
217 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
218 ({								\
219 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
220 		       reg_high(b3) << 8, op2, disp);		\
221 	REG_SET_SEEN(b1);					\
222 	REG_SET_SEEN(b2);					\
223 	REG_SET_SEEN(b3);					\
224 })
225 
226 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
227 ({								\
228 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
229 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
230 	       op2 | mask << 12);				\
231 	REG_SET_SEEN(b1);					\
232 	REG_SET_SEEN(b2);					\
233 })
234 
235 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
236 ({								\
237 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
238 	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
239 		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
240 	REG_SET_SEEN(b1);					\
241 	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
242 })
243 
244 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
245 ({								\
246 	/* Branch instruction needs 6 bytes */			\
247 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
248 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
249 	REG_SET_SEEN(b1);					\
250 	REG_SET_SEEN(b2);					\
251 })
252 
253 #define _EMIT6_IMM(op, imm)					\
254 ({								\
255 	unsigned int __imm = (imm);				\
256 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
257 })
258 
259 #define EMIT6_IMM(op, b1, imm)					\
260 ({								\
261 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
262 	REG_SET_SEEN(b1);					\
263 })
264 
265 #define EMIT_CONST_U32(val)					\
266 ({								\
267 	unsigned int ret;					\
268 	ret = jit->lit - jit->base_ip;				\
269 	jit->seen |= SEEN_LITERAL;				\
270 	if (jit->prg_buf)					\
271 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
272 	jit->lit += 4;						\
273 	ret;							\
274 })
275 
276 #define EMIT_CONST_U64(val)					\
277 ({								\
278 	unsigned int ret;					\
279 	ret = jit->lit - jit->base_ip;				\
280 	jit->seen |= SEEN_LITERAL;				\
281 	if (jit->prg_buf)					\
282 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
283 	jit->lit += 8;						\
284 	ret;							\
285 })
286 
287 #define EMIT_ZERO(b1)						\
288 ({								\
289 	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
290 	EMIT4(0xb9160000, b1, b1);				\
291 	REG_SET_SEEN(b1);					\
292 })
293 
294 /*
295  * Fill whole space with illegal instructions
296  */
297 static void jit_fill_hole(void *area, unsigned int size)
298 {
299 	memset(area, 0, size);
300 }
301 
302 /*
303  * Save registers from "rs" (register start) to "re" (register end) on stack
304  */
305 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
306 {
307 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
308 
309 	if (rs == re)
310 		/* stg %rs,off(%r15) */
311 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
312 	else
313 		/* stmg %rs,%re,off(%r15) */
314 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
315 }
316 
317 /*
318  * Restore registers from "rs" (register start) to "re" (register end) on stack
319  */
320 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
321 {
322 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
323 
324 	if (jit->seen & SEEN_STACK)
325 		off += STK_OFF + stack_depth;
326 
327 	if (rs == re)
328 		/* lg %rs,off(%r15) */
329 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
330 	else
331 		/* lmg %rs,%re,off(%r15) */
332 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
333 }
334 
335 /*
336  * Return first seen register (from start)
337  */
338 static int get_start(struct bpf_jit *jit, int start)
339 {
340 	int i;
341 
342 	for (i = start; i <= 15; i++) {
343 		if (jit->seen_reg[i])
344 			return i;
345 	}
346 	return 0;
347 }
348 
349 /*
350  * Return last seen register (from start) (gap >= 2)
351  */
352 static int get_end(struct bpf_jit *jit, int start)
353 {
354 	int i;
355 
356 	for (i = start; i < 15; i++) {
357 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
358 			return i - 1;
359 	}
360 	return jit->seen_reg[15] ? 15 : 14;
361 }
362 
363 #define REGS_SAVE	1
364 #define REGS_RESTORE	0
365 /*
366  * Save and restore clobbered registers (6-15) on stack.
367  * We save/restore registers in chunks with gap >= 2 registers.
368  */
369 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
370 {
371 
372 	int re = 6, rs;
373 
374 	do {
375 		rs = get_start(jit, re);
376 		if (!rs)
377 			break;
378 		re = get_end(jit, rs + 1);
379 		if (op == REGS_SAVE)
380 			save_regs(jit, rs, re);
381 		else
382 			restore_regs(jit, rs, re, stack_depth);
383 		re++;
384 	} while (re <= 15);
385 }
386 
387 /*
388  * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
389  * we store the SKB header length on the stack and the SKB data
390  * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
391  */
392 static void emit_load_skb_data_hlen(struct bpf_jit *jit)
393 {
394 	/* Header length: llgf %w1,<len>(%b1) */
395 	EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
396 		      offsetof(struct sk_buff, len));
397 	/* s %w1,<data_len>(%b1) */
398 	EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
399 		   offsetof(struct sk_buff, data_len));
400 	/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
401 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
402 	if (!(jit->seen & SEEN_REG_AX))
403 		/* lg %skb_data,data_off(%b1) */
404 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
405 			      BPF_REG_1, offsetof(struct sk_buff, data));
406 }
407 
408 /*
409  * Emit function prologue
410  *
411  * Save registers and create stack frame if necessary.
412  * See stack frame layout desription in "bpf_jit.h"!
413  */
414 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
415 {
416 	if (jit->seen & SEEN_TAIL_CALL) {
417 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
418 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
419 	} else {
420 		/* j tail_call_start: NOP if no tail calls are used */
421 		EMIT4_PCREL(0xa7f40000, 6);
422 		_EMIT2(0);
423 	}
424 	/* Tail calls have to skip above initialization */
425 	jit->tail_call_start = jit->prg;
426 	/* Save registers */
427 	save_restore_regs(jit, REGS_SAVE, stack_depth);
428 	/* Setup literal pool */
429 	if (jit->seen & SEEN_LITERAL) {
430 		/* basr %r13,0 */
431 		EMIT2(0x0d00, REG_L, REG_0);
432 		jit->base_ip = jit->prg;
433 	}
434 	/* Setup stack and backchain */
435 	if (jit->seen & SEEN_STACK) {
436 		if (jit->seen & SEEN_FUNC)
437 			/* lgr %w1,%r15 (backchain) */
438 			EMIT4(0xb9040000, REG_W1, REG_15);
439 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
440 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
441 		/* aghi %r15,-STK_OFF */
442 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
443 		if (jit->seen & SEEN_FUNC)
444 			/* stg %w1,152(%r15) (backchain) */
445 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
446 				      REG_15, 152);
447 	}
448 	if (jit->seen & SEEN_SKB) {
449 		emit_load_skb_data_hlen(jit);
450 		/* stg %b1,ST_OFF_SKBP(%r0,%r15) */
451 		EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
452 			      STK_OFF_SKBP);
453 	}
454 }
455 
456 /*
457  * Function epilogue
458  */
459 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
460 {
461 	/* Return 0 */
462 	if (jit->seen & SEEN_RET0) {
463 		jit->ret0_ip = jit->prg;
464 		/* lghi %b0,0 */
465 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
466 	}
467 	jit->exit_ip = jit->prg;
468 	/* Load exit code: lgr %r2,%b0 */
469 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
470 	/* Restore registers */
471 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
472 	/* br %r14 */
473 	_EMIT2(0x07fe);
474 }
475 
476 /*
477  * Compile one eBPF instruction into s390x code
478  *
479  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
480  * stack space for the large switch statement.
481  */
482 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
483 {
484 	struct bpf_insn *insn = &fp->insnsi[i];
485 	int jmp_off, last, insn_count = 1;
486 	unsigned int func_addr, mask;
487 	u32 dst_reg = insn->dst_reg;
488 	u32 src_reg = insn->src_reg;
489 	u32 *addrs = jit->addrs;
490 	s32 imm = insn->imm;
491 	s16 off = insn->off;
492 
493 	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
494 		jit->seen |= SEEN_REG_AX;
495 	switch (insn->code) {
496 	/*
497 	 * BPF_MOV
498 	 */
499 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
500 		/* llgfr %dst,%src */
501 		EMIT4(0xb9160000, dst_reg, src_reg);
502 		break;
503 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
504 		/* lgr %dst,%src */
505 		EMIT4(0xb9040000, dst_reg, src_reg);
506 		break;
507 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
508 		/* llilf %dst,imm */
509 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
510 		break;
511 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
512 		/* lgfi %dst,imm */
513 		EMIT6_IMM(0xc0010000, dst_reg, imm);
514 		break;
515 	/*
516 	 * BPF_LD 64
517 	 */
518 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
519 	{
520 		/* 16 byte instruction that uses two 'struct bpf_insn' */
521 		u64 imm64;
522 
523 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
524 		/* lg %dst,<d(imm)>(%l) */
525 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
526 			      EMIT_CONST_U64(imm64));
527 		insn_count = 2;
528 		break;
529 	}
530 	/*
531 	 * BPF_ADD
532 	 */
533 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
534 		/* ar %dst,%src */
535 		EMIT2(0x1a00, dst_reg, src_reg);
536 		EMIT_ZERO(dst_reg);
537 		break;
538 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
539 		/* agr %dst,%src */
540 		EMIT4(0xb9080000, dst_reg, src_reg);
541 		break;
542 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
543 		if (!imm)
544 			break;
545 		/* alfi %dst,imm */
546 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
547 		EMIT_ZERO(dst_reg);
548 		break;
549 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
550 		if (!imm)
551 			break;
552 		/* agfi %dst,imm */
553 		EMIT6_IMM(0xc2080000, dst_reg, imm);
554 		break;
555 	/*
556 	 * BPF_SUB
557 	 */
558 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
559 		/* sr %dst,%src */
560 		EMIT2(0x1b00, dst_reg, src_reg);
561 		EMIT_ZERO(dst_reg);
562 		break;
563 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
564 		/* sgr %dst,%src */
565 		EMIT4(0xb9090000, dst_reg, src_reg);
566 		break;
567 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
568 		if (!imm)
569 			break;
570 		/* alfi %dst,-imm */
571 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
572 		EMIT_ZERO(dst_reg);
573 		break;
574 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
575 		if (!imm)
576 			break;
577 		/* agfi %dst,-imm */
578 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
579 		break;
580 	/*
581 	 * BPF_MUL
582 	 */
583 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
584 		/* msr %dst,%src */
585 		EMIT4(0xb2520000, dst_reg, src_reg);
586 		EMIT_ZERO(dst_reg);
587 		break;
588 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
589 		/* msgr %dst,%src */
590 		EMIT4(0xb90c0000, dst_reg, src_reg);
591 		break;
592 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
593 		if (imm == 1)
594 			break;
595 		/* msfi %r5,imm */
596 		EMIT6_IMM(0xc2010000, dst_reg, imm);
597 		EMIT_ZERO(dst_reg);
598 		break;
599 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
600 		if (imm == 1)
601 			break;
602 		/* msgfi %dst,imm */
603 		EMIT6_IMM(0xc2000000, dst_reg, imm);
604 		break;
605 	/*
606 	 * BPF_DIV / BPF_MOD
607 	 */
608 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
609 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
610 	{
611 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
612 
613 		/* lhi %w0,0 */
614 		EMIT4_IMM(0xa7080000, REG_W0, 0);
615 		/* lr %w1,%dst */
616 		EMIT2(0x1800, REG_W1, dst_reg);
617 		/* dlr %w0,%src */
618 		EMIT4(0xb9970000, REG_W0, src_reg);
619 		/* llgfr %dst,%rc */
620 		EMIT4(0xb9160000, dst_reg, rc_reg);
621 		break;
622 	}
623 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
624 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
625 	{
626 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
627 
628 		/* lghi %w0,0 */
629 		EMIT4_IMM(0xa7090000, REG_W0, 0);
630 		/* lgr %w1,%dst */
631 		EMIT4(0xb9040000, REG_W1, dst_reg);
632 		/* dlgr %w0,%dst */
633 		EMIT4(0xb9870000, REG_W0, src_reg);
634 		/* lgr %dst,%rc */
635 		EMIT4(0xb9040000, dst_reg, rc_reg);
636 		break;
637 	}
638 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
639 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
640 	{
641 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
642 
643 		if (imm == 1) {
644 			if (BPF_OP(insn->code) == BPF_MOD)
645 				/* lhgi %dst,0 */
646 				EMIT4_IMM(0xa7090000, dst_reg, 0);
647 			break;
648 		}
649 		/* lhi %w0,0 */
650 		EMIT4_IMM(0xa7080000, REG_W0, 0);
651 		/* lr %w1,%dst */
652 		EMIT2(0x1800, REG_W1, dst_reg);
653 		/* dl %w0,<d(imm)>(%l) */
654 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
655 			      EMIT_CONST_U32(imm));
656 		/* llgfr %dst,%rc */
657 		EMIT4(0xb9160000, dst_reg, rc_reg);
658 		break;
659 	}
660 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
661 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
662 	{
663 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
664 
665 		if (imm == 1) {
666 			if (BPF_OP(insn->code) == BPF_MOD)
667 				/* lhgi %dst,0 */
668 				EMIT4_IMM(0xa7090000, dst_reg, 0);
669 			break;
670 		}
671 		/* lghi %w0,0 */
672 		EMIT4_IMM(0xa7090000, REG_W0, 0);
673 		/* lgr %w1,%dst */
674 		EMIT4(0xb9040000, REG_W1, dst_reg);
675 		/* dlg %w0,<d(imm)>(%l) */
676 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
677 			      EMIT_CONST_U64(imm));
678 		/* lgr %dst,%rc */
679 		EMIT4(0xb9040000, dst_reg, rc_reg);
680 		break;
681 	}
682 	/*
683 	 * BPF_AND
684 	 */
685 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
686 		/* nr %dst,%src */
687 		EMIT2(0x1400, dst_reg, src_reg);
688 		EMIT_ZERO(dst_reg);
689 		break;
690 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
691 		/* ngr %dst,%src */
692 		EMIT4(0xb9800000, dst_reg, src_reg);
693 		break;
694 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
695 		/* nilf %dst,imm */
696 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
697 		EMIT_ZERO(dst_reg);
698 		break;
699 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
700 		/* ng %dst,<d(imm)>(%l) */
701 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
702 			      EMIT_CONST_U64(imm));
703 		break;
704 	/*
705 	 * BPF_OR
706 	 */
707 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
708 		/* or %dst,%src */
709 		EMIT2(0x1600, dst_reg, src_reg);
710 		EMIT_ZERO(dst_reg);
711 		break;
712 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
713 		/* ogr %dst,%src */
714 		EMIT4(0xb9810000, dst_reg, src_reg);
715 		break;
716 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
717 		/* oilf %dst,imm */
718 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
719 		EMIT_ZERO(dst_reg);
720 		break;
721 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
722 		/* og %dst,<d(imm)>(%l) */
723 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
724 			      EMIT_CONST_U64(imm));
725 		break;
726 	/*
727 	 * BPF_XOR
728 	 */
729 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
730 		/* xr %dst,%src */
731 		EMIT2(0x1700, dst_reg, src_reg);
732 		EMIT_ZERO(dst_reg);
733 		break;
734 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
735 		/* xgr %dst,%src */
736 		EMIT4(0xb9820000, dst_reg, src_reg);
737 		break;
738 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
739 		if (!imm)
740 			break;
741 		/* xilf %dst,imm */
742 		EMIT6_IMM(0xc0070000, dst_reg, imm);
743 		EMIT_ZERO(dst_reg);
744 		break;
745 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
746 		/* xg %dst,<d(imm)>(%l) */
747 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
748 			      EMIT_CONST_U64(imm));
749 		break;
750 	/*
751 	 * BPF_LSH
752 	 */
753 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
754 		/* sll %dst,0(%src) */
755 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
756 		EMIT_ZERO(dst_reg);
757 		break;
758 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
759 		/* sllg %dst,%dst,0(%src) */
760 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
761 		break;
762 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
763 		if (imm == 0)
764 			break;
765 		/* sll %dst,imm(%r0) */
766 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
767 		EMIT_ZERO(dst_reg);
768 		break;
769 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
770 		if (imm == 0)
771 			break;
772 		/* sllg %dst,%dst,imm(%r0) */
773 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
774 		break;
775 	/*
776 	 * BPF_RSH
777 	 */
778 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
779 		/* srl %dst,0(%src) */
780 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
781 		EMIT_ZERO(dst_reg);
782 		break;
783 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
784 		/* srlg %dst,%dst,0(%src) */
785 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
786 		break;
787 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
788 		if (imm == 0)
789 			break;
790 		/* srl %dst,imm(%r0) */
791 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
792 		EMIT_ZERO(dst_reg);
793 		break;
794 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
795 		if (imm == 0)
796 			break;
797 		/* srlg %dst,%dst,imm(%r0) */
798 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
799 		break;
800 	/*
801 	 * BPF_ARSH
802 	 */
803 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
804 		/* srag %dst,%dst,0(%src) */
805 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
806 		break;
807 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
808 		if (imm == 0)
809 			break;
810 		/* srag %dst,%dst,imm(%r0) */
811 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
812 		break;
813 	/*
814 	 * BPF_NEG
815 	 */
816 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
817 		/* lcr %dst,%dst */
818 		EMIT2(0x1300, dst_reg, dst_reg);
819 		EMIT_ZERO(dst_reg);
820 		break;
821 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
822 		/* lcgr %dst,%dst */
823 		EMIT4(0xb9130000, dst_reg, dst_reg);
824 		break;
825 	/*
826 	 * BPF_FROM_BE/LE
827 	 */
828 	case BPF_ALU | BPF_END | BPF_FROM_BE:
829 		/* s390 is big endian, therefore only clear high order bytes */
830 		switch (imm) {
831 		case 16: /* dst = (u16) cpu_to_be16(dst) */
832 			/* llghr %dst,%dst */
833 			EMIT4(0xb9850000, dst_reg, dst_reg);
834 			break;
835 		case 32: /* dst = (u32) cpu_to_be32(dst) */
836 			/* llgfr %dst,%dst */
837 			EMIT4(0xb9160000, dst_reg, dst_reg);
838 			break;
839 		case 64: /* dst = (u64) cpu_to_be64(dst) */
840 			break;
841 		}
842 		break;
843 	case BPF_ALU | BPF_END | BPF_FROM_LE:
844 		switch (imm) {
845 		case 16: /* dst = (u16) cpu_to_le16(dst) */
846 			/* lrvr %dst,%dst */
847 			EMIT4(0xb91f0000, dst_reg, dst_reg);
848 			/* srl %dst,16(%r0) */
849 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
850 			/* llghr %dst,%dst */
851 			EMIT4(0xb9850000, dst_reg, dst_reg);
852 			break;
853 		case 32: /* dst = (u32) cpu_to_le32(dst) */
854 			/* lrvr %dst,%dst */
855 			EMIT4(0xb91f0000, dst_reg, dst_reg);
856 			/* llgfr %dst,%dst */
857 			EMIT4(0xb9160000, dst_reg, dst_reg);
858 			break;
859 		case 64: /* dst = (u64) cpu_to_le64(dst) */
860 			/* lrvgr %dst,%dst */
861 			EMIT4(0xb90f0000, dst_reg, dst_reg);
862 			break;
863 		}
864 		break;
865 	/*
866 	 * BPF_ST(X)
867 	 */
868 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
869 		/* stcy %src,off(%dst) */
870 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
871 		jit->seen |= SEEN_MEM;
872 		break;
873 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
874 		/* sthy %src,off(%dst) */
875 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
876 		jit->seen |= SEEN_MEM;
877 		break;
878 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
879 		/* sty %src,off(%dst) */
880 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
881 		jit->seen |= SEEN_MEM;
882 		break;
883 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
884 		/* stg %src,off(%dst) */
885 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
886 		jit->seen |= SEEN_MEM;
887 		break;
888 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
889 		/* lhi %w0,imm */
890 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
891 		/* stcy %w0,off(dst) */
892 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
893 		jit->seen |= SEEN_MEM;
894 		break;
895 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
896 		/* lhi %w0,imm */
897 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
898 		/* sthy %w0,off(dst) */
899 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
900 		jit->seen |= SEEN_MEM;
901 		break;
902 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
903 		/* llilf %w0,imm  */
904 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
905 		/* sty %w0,off(%dst) */
906 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
907 		jit->seen |= SEEN_MEM;
908 		break;
909 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
910 		/* lgfi %w0,imm */
911 		EMIT6_IMM(0xc0010000, REG_W0, imm);
912 		/* stg %w0,off(%dst) */
913 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
914 		jit->seen |= SEEN_MEM;
915 		break;
916 	/*
917 	 * BPF_STX XADD (atomic_add)
918 	 */
919 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
920 		/* laal %w0,%src,off(%dst) */
921 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
922 			      dst_reg, off);
923 		jit->seen |= SEEN_MEM;
924 		break;
925 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
926 		/* laalg %w0,%src,off(%dst) */
927 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
928 			      dst_reg, off);
929 		jit->seen |= SEEN_MEM;
930 		break;
931 	/*
932 	 * BPF_LDX
933 	 */
934 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
935 		/* llgc %dst,0(off,%src) */
936 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
937 		jit->seen |= SEEN_MEM;
938 		break;
939 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
940 		/* llgh %dst,0(off,%src) */
941 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
942 		jit->seen |= SEEN_MEM;
943 		break;
944 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
945 		/* llgf %dst,off(%src) */
946 		jit->seen |= SEEN_MEM;
947 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
948 		break;
949 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
950 		/* lg %dst,0(off,%src) */
951 		jit->seen |= SEEN_MEM;
952 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
953 		break;
954 	/*
955 	 * BPF_JMP / CALL
956 	 */
957 	case BPF_JMP | BPF_CALL:
958 	{
959 		/*
960 		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
961 		 */
962 		const u64 func = (u64)__bpf_call_base + imm;
963 
964 		REG_SET_SEEN(BPF_REG_5);
965 		jit->seen |= SEEN_FUNC;
966 		/* lg %w1,<d(imm)>(%l) */
967 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
968 			      EMIT_CONST_U64(func));
969 		/* basr %r14,%w1 */
970 		EMIT2(0x0d00, REG_14, REG_W1);
971 		/* lgr %b0,%r2: load return value into %b0 */
972 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
973 		if ((jit->seen & SEEN_SKB) &&
974 		    bpf_helper_changes_pkt_data((void *)func)) {
975 			/* lg %b1,ST_OFF_SKBP(%r15) */
976 			EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
977 				      REG_15, STK_OFF_SKBP);
978 			emit_load_skb_data_hlen(jit);
979 		}
980 		break;
981 	}
982 	case BPF_JMP | BPF_TAIL_CALL:
983 		/*
984 		 * Implicit input:
985 		 *  B1: pointer to ctx
986 		 *  B2: pointer to bpf_array
987 		 *  B3: index in bpf_array
988 		 */
989 		jit->seen |= SEEN_TAIL_CALL;
990 
991 		/*
992 		 * if (index >= array->map.max_entries)
993 		 *         goto out;
994 		 */
995 
996 		/* llgf %w1,map.max_entries(%b2) */
997 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
998 			      offsetof(struct bpf_array, map.max_entries));
999 		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1000 		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1001 				  REG_W1, 0, 0xa);
1002 
1003 		/*
1004 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1005 		 *         goto out;
1006 		 */
1007 
1008 		if (jit->seen & SEEN_STACK)
1009 			off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1010 		else
1011 			off = STK_OFF_TCCNT;
1012 		/* lhi %w0,1 */
1013 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1014 		/* laal %w1,%w0,off(%r15) */
1015 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1016 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1017 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1018 				      MAX_TAIL_CALL_CNT, 0, 0x2);
1019 
1020 		/*
1021 		 * prog = array->ptrs[index];
1022 		 * if (prog == NULL)
1023 		 *         goto out;
1024 		 */
1025 
1026 		/* sllg %r1,%b3,3: %r1 = index * 8 */
1027 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1028 		/* lg %r1,prog(%b2,%r1) */
1029 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1030 			      REG_1, offsetof(struct bpf_array, ptrs));
1031 		/* clgij %r1,0,0x8,label0 */
1032 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1033 
1034 		/*
1035 		 * Restore registers before calling function
1036 		 */
1037 		save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1038 
1039 		/*
1040 		 * goto *(prog->bpf_func + tail_call_start);
1041 		 */
1042 
1043 		/* lg %r1,bpf_func(%r1) */
1044 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1045 			      offsetof(struct bpf_prog, bpf_func));
1046 		/* bc 0xf,tail_call_start(%r1) */
1047 		_EMIT4(0x47f01000 + jit->tail_call_start);
1048 		/* out: */
1049 		jit->labels[0] = jit->prg;
1050 		break;
1051 	case BPF_JMP | BPF_EXIT: /* return b0 */
1052 		last = (i == fp->len - 1) ? 1 : 0;
1053 		if (last && !(jit->seen & SEEN_RET0))
1054 			break;
1055 		/* j <exit> */
1056 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1057 		break;
1058 	/*
1059 	 * Branch relative (number of skipped instructions) to offset on
1060 	 * condition.
1061 	 *
1062 	 * Condition code to mask mapping:
1063 	 *
1064 	 * CC | Description	   | Mask
1065 	 * ------------------------------
1066 	 * 0  | Operands equal	   |	8
1067 	 * 1  | First operand low  |	4
1068 	 * 2  | First operand high |	2
1069 	 * 3  | Unused		   |	1
1070 	 *
1071 	 * For s390x relative branches: ip = ip + off_bytes
1072 	 * For BPF relative branches:	insn = insn + off_insns + 1
1073 	 *
1074 	 * For example for s390x with offset 0 we jump to the branch
1075 	 * instruction itself (loop) and for BPF with offset 0 we
1076 	 * branch to the instruction behind the branch.
1077 	 */
1078 	case BPF_JMP | BPF_JA: /* if (true) */
1079 		mask = 0xf000; /* j */
1080 		goto branch_oc;
1081 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1082 		mask = 0x2000; /* jh */
1083 		goto branch_ks;
1084 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1085 		mask = 0x4000; /* jl */
1086 		goto branch_ks;
1087 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1088 		mask = 0xa000; /* jhe */
1089 		goto branch_ks;
1090 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1091 		mask = 0xc000; /* jle */
1092 		goto branch_ks;
1093 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1094 		mask = 0x2000; /* jh */
1095 		goto branch_ku;
1096 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1097 		mask = 0x4000; /* jl */
1098 		goto branch_ku;
1099 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1100 		mask = 0xa000; /* jhe */
1101 		goto branch_ku;
1102 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1103 		mask = 0xc000; /* jle */
1104 		goto branch_ku;
1105 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1106 		mask = 0x7000; /* jne */
1107 		goto branch_ku;
1108 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1109 		mask = 0x8000; /* je */
1110 		goto branch_ku;
1111 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1112 		mask = 0x7000; /* jnz */
1113 		/* lgfi %w1,imm (load sign extend imm) */
1114 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1115 		/* ngr %w1,%dst */
1116 		EMIT4(0xb9800000, REG_W1, dst_reg);
1117 		goto branch_oc;
1118 
1119 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1120 		mask = 0x2000; /* jh */
1121 		goto branch_xs;
1122 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1123 		mask = 0x4000; /* jl */
1124 		goto branch_xs;
1125 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1126 		mask = 0xa000; /* jhe */
1127 		goto branch_xs;
1128 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1129 		mask = 0xc000; /* jle */
1130 		goto branch_xs;
1131 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1132 		mask = 0x2000; /* jh */
1133 		goto branch_xu;
1134 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1135 		mask = 0x4000; /* jl */
1136 		goto branch_xu;
1137 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1138 		mask = 0xa000; /* jhe */
1139 		goto branch_xu;
1140 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1141 		mask = 0xc000; /* jle */
1142 		goto branch_xu;
1143 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1144 		mask = 0x7000; /* jne */
1145 		goto branch_xu;
1146 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1147 		mask = 0x8000; /* je */
1148 		goto branch_xu;
1149 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1150 		mask = 0x7000; /* jnz */
1151 		/* ngrk %w1,%dst,%src */
1152 		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1153 		goto branch_oc;
1154 branch_ks:
1155 		/* lgfi %w1,imm (load sign extend imm) */
1156 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1157 		/* cgrj %dst,%w1,mask,off */
1158 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1159 		break;
1160 branch_ku:
1161 		/* lgfi %w1,imm (load sign extend imm) */
1162 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1163 		/* clgrj %dst,%w1,mask,off */
1164 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1165 		break;
1166 branch_xs:
1167 		/* cgrj %dst,%src,mask,off */
1168 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1169 		break;
1170 branch_xu:
1171 		/* clgrj %dst,%src,mask,off */
1172 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1173 		break;
1174 branch_oc:
1175 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1176 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1177 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1178 		break;
1179 	/*
1180 	 * BPF_LD
1181 	 */
1182 	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1183 	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1184 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1185 			func_addr = __pa(sk_load_byte_pos);
1186 		else
1187 			func_addr = __pa(sk_load_byte);
1188 		goto call_fn;
1189 	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1190 	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1191 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1192 			func_addr = __pa(sk_load_half_pos);
1193 		else
1194 			func_addr = __pa(sk_load_half);
1195 		goto call_fn;
1196 	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1197 	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1198 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1199 			func_addr = __pa(sk_load_word_pos);
1200 		else
1201 			func_addr = __pa(sk_load_word);
1202 		goto call_fn;
1203 call_fn:
1204 		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1205 		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1206 
1207 		/*
1208 		 * Implicit input:
1209 		 *  BPF_REG_6	 (R7) : skb pointer
1210 		 *  REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
1211 		 *
1212 		 * Calculated input:
1213 		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1214 		 *  BPF_REG_5	 (R6) : return address
1215 		 *
1216 		 * Output:
1217 		 *  BPF_REG_0	 (R14): data read from skb
1218 		 *
1219 		 * Scratch registers (BPF_REG_1-5)
1220 		 */
1221 
1222 		/* Call function: llilf %w1,func_addr  */
1223 		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1224 
1225 		/* Offset: lgfi %b2,imm */
1226 		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1227 		if (BPF_MODE(insn->code) == BPF_IND)
1228 			/* agfr %b2,%src (%src is s32 here) */
1229 			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1230 
1231 		/* Reload REG_SKB_DATA if BPF_REG_AX is used */
1232 		if (jit->seen & SEEN_REG_AX)
1233 			/* lg %skb_data,data_off(%b6) */
1234 			EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
1235 				      BPF_REG_6, offsetof(struct sk_buff, data));
1236 		/* basr %b5,%w1 (%b5 is call saved) */
1237 		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1238 
1239 		/*
1240 		 * Note: For fast access we jump directly after the
1241 		 * jnz instruction from bpf_jit.S
1242 		 */
1243 		/* jnz <ret0> */
1244 		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1245 		break;
1246 	default: /* too complex, give up */
1247 		pr_err("Unknown opcode %02x\n", insn->code);
1248 		return -1;
1249 	}
1250 	return insn_count;
1251 }
1252 
1253 /*
1254  * Compile eBPF program into s390x code
1255  */
1256 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1257 {
1258 	int i, insn_count;
1259 
1260 	jit->lit = jit->lit_start;
1261 	jit->prg = 0;
1262 
1263 	bpf_jit_prologue(jit, fp->aux->stack_depth);
1264 	for (i = 0; i < fp->len; i += insn_count) {
1265 		insn_count = bpf_jit_insn(jit, fp, i);
1266 		if (insn_count < 0)
1267 			return -1;
1268 		/* Next instruction address */
1269 		jit->addrs[i + insn_count] = jit->prg;
1270 	}
1271 	bpf_jit_epilogue(jit, fp->aux->stack_depth);
1272 
1273 	jit->lit_start = jit->prg;
1274 	jit->size = jit->lit;
1275 	jit->size_prg = jit->prg;
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Compile eBPF program "fp"
1281  */
1282 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1283 {
1284 	struct bpf_prog *tmp, *orig_fp = fp;
1285 	struct bpf_binary_header *header;
1286 	bool tmp_blinded = false;
1287 	struct bpf_jit jit;
1288 	int pass;
1289 
1290 	if (!fp->jit_requested)
1291 		return orig_fp;
1292 
1293 	tmp = bpf_jit_blind_constants(fp);
1294 	/*
1295 	 * If blinding was requested and we failed during blinding,
1296 	 * we must fall back to the interpreter.
1297 	 */
1298 	if (IS_ERR(tmp))
1299 		return orig_fp;
1300 	if (tmp != fp) {
1301 		tmp_blinded = true;
1302 		fp = tmp;
1303 	}
1304 
1305 	memset(&jit, 0, sizeof(jit));
1306 	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1307 	if (jit.addrs == NULL) {
1308 		fp = orig_fp;
1309 		goto out;
1310 	}
1311 	/*
1312 	 * Three initial passes:
1313 	 *   - 1/2: Determine clobbered registers
1314 	 *   - 3:   Calculate program size and addrs arrray
1315 	 */
1316 	for (pass = 1; pass <= 3; pass++) {
1317 		if (bpf_jit_prog(&jit, fp)) {
1318 			fp = orig_fp;
1319 			goto free_addrs;
1320 		}
1321 	}
1322 	/*
1323 	 * Final pass: Allocate and generate program
1324 	 */
1325 	if (jit.size >= BPF_SIZE_MAX) {
1326 		fp = orig_fp;
1327 		goto free_addrs;
1328 	}
1329 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1330 	if (!header) {
1331 		fp = orig_fp;
1332 		goto free_addrs;
1333 	}
1334 	if (bpf_jit_prog(&jit, fp)) {
1335 		fp = orig_fp;
1336 		goto free_addrs;
1337 	}
1338 	if (bpf_jit_enable > 1) {
1339 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1340 		print_fn_code(jit.prg_buf, jit.size_prg);
1341 	}
1342 	bpf_jit_binary_lock_ro(header);
1343 	fp->bpf_func = (void *) jit.prg_buf;
1344 	fp->jited = 1;
1345 	fp->jited_len = jit.size;
1346 free_addrs:
1347 	kfree(jit.addrs);
1348 out:
1349 	if (tmp_blinded)
1350 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1351 					   tmp : orig_fp);
1352 	return fp;
1353 }
1354