xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision 52fb57e7)
1 /*
2  * BPF Jit compiler for s390.
3  *
4  * Minimum build requirements:
5  *
6  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
7  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
9  *  - PACK_STACK
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <asm/cacheflush.h>
25 #include <asm/dis.h>
26 #include "bpf_jit.h"
27 
28 int bpf_jit_enable __read_mostly;
29 
30 struct bpf_jit {
31 	u32 seen;		/* Flags to remember seen eBPF instructions */
32 	u32 seen_reg[16];	/* Array to remember which registers are used */
33 	u32 *addrs;		/* Array with relative instruction addresses */
34 	u8 *prg_buf;		/* Start of program */
35 	int size;		/* Size of program and literal pool */
36 	int size_prg;		/* Size of program */
37 	int prg;		/* Current position in program */
38 	int lit_start;		/* Start of literal pool */
39 	int lit;		/* Current position in literal pool */
40 	int base_ip;		/* Base address for literal pool */
41 	int ret0_ip;		/* Address of return 0 */
42 	int exit_ip;		/* Address of exit */
43 };
44 
45 #define BPF_SIZE_MAX	4096	/* Max size for program */
46 
47 #define SEEN_SKB	1	/* skb access */
48 #define SEEN_MEM	2	/* use mem[] for temporary storage */
49 #define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
50 #define SEEN_LITERAL	8	/* code uses literals */
51 #define SEEN_FUNC	16	/* calls C functions */
52 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
53 
54 /*
55  * s390 registers
56  */
57 #define REG_W0		(__MAX_BPF_REG+0)	/* Work register 1 (even) */
58 #define REG_W1		(__MAX_BPF_REG+1)	/* Work register 2 (odd) */
59 #define REG_SKB_DATA	(__MAX_BPF_REG+2)	/* SKB data register */
60 #define REG_L		(__MAX_BPF_REG+3)	/* Literal pool register */
61 #define REG_15		(__MAX_BPF_REG+4)	/* Register 15 */
62 #define REG_0		REG_W0			/* Register 0 */
63 #define REG_2		BPF_REG_1		/* Register 2 */
64 #define REG_14		BPF_REG_0		/* Register 14 */
65 
66 /*
67  * Mapping of BPF registers to s390 registers
68  */
69 static const int reg2hex[] = {
70 	/* Return code */
71 	[BPF_REG_0]	= 14,
72 	/* Function parameters */
73 	[BPF_REG_1]	= 2,
74 	[BPF_REG_2]	= 3,
75 	[BPF_REG_3]	= 4,
76 	[BPF_REG_4]	= 5,
77 	[BPF_REG_5]	= 6,
78 	/* Call saved registers */
79 	[BPF_REG_6]	= 7,
80 	[BPF_REG_7]	= 8,
81 	[BPF_REG_8]	= 9,
82 	[BPF_REG_9]	= 10,
83 	/* BPF stack pointer */
84 	[BPF_REG_FP]	= 13,
85 	/* SKB data pointer */
86 	[REG_SKB_DATA]	= 12,
87 	/* Work registers for s390x backend */
88 	[REG_W0]	= 0,
89 	[REG_W1]	= 1,
90 	[REG_L]		= 11,
91 	[REG_15]	= 15,
92 };
93 
94 static inline u32 reg(u32 dst_reg, u32 src_reg)
95 {
96 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
97 }
98 
99 static inline u32 reg_high(u32 reg)
100 {
101 	return reg2hex[reg] << 4;
102 }
103 
104 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
105 {
106 	u32 r1 = reg2hex[b1];
107 
108 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
109 		jit->seen_reg[r1] = 1;
110 }
111 
112 #define REG_SET_SEEN(b1)					\
113 ({								\
114 	reg_set_seen(jit, b1);					\
115 })
116 
117 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
118 
119 /*
120  * EMIT macros for code generation
121  */
122 
123 #define _EMIT2(op)						\
124 ({								\
125 	if (jit->prg_buf)					\
126 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
127 	jit->prg += 2;						\
128 })
129 
130 #define EMIT2(op, b1, b2)					\
131 ({								\
132 	_EMIT2(op | reg(b1, b2));				\
133 	REG_SET_SEEN(b1);					\
134 	REG_SET_SEEN(b2);					\
135 })
136 
137 #define _EMIT4(op)						\
138 ({								\
139 	if (jit->prg_buf)					\
140 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
141 	jit->prg += 4;						\
142 })
143 
144 #define EMIT4(op, b1, b2)					\
145 ({								\
146 	_EMIT4(op | reg(b1, b2));				\
147 	REG_SET_SEEN(b1);					\
148 	REG_SET_SEEN(b2);					\
149 })
150 
151 #define EMIT4_RRF(op, b1, b2, b3)				\
152 ({								\
153 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
154 	REG_SET_SEEN(b1);					\
155 	REG_SET_SEEN(b2);					\
156 	REG_SET_SEEN(b3);					\
157 })
158 
159 #define _EMIT4_DISP(op, disp)					\
160 ({								\
161 	unsigned int __disp = (disp) & 0xfff;			\
162 	_EMIT4(op | __disp);					\
163 })
164 
165 #define EMIT4_DISP(op, b1, b2, disp)				\
166 ({								\
167 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
168 		    reg_high(b2) << 8, disp);			\
169 	REG_SET_SEEN(b1);					\
170 	REG_SET_SEEN(b2);					\
171 })
172 
173 #define EMIT4_IMM(op, b1, imm)					\
174 ({								\
175 	unsigned int __imm = (imm) & 0xffff;			\
176 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
177 	REG_SET_SEEN(b1);					\
178 })
179 
180 #define EMIT4_PCREL(op, pcrel)					\
181 ({								\
182 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
183 	_EMIT4(op | __pcrel);					\
184 })
185 
186 #define _EMIT6(op1, op2)					\
187 ({								\
188 	if (jit->prg_buf) {					\
189 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
190 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
191 	}							\
192 	jit->prg += 6;						\
193 })
194 
195 #define _EMIT6_DISP(op1, op2, disp)				\
196 ({								\
197 	unsigned int __disp = (disp) & 0xfff;			\
198 	_EMIT6(op1 | __disp, op2);				\
199 })
200 
201 #define EMIT6_DISP(op1, op2, b1, b2, b3, disp)			\
202 ({								\
203 	_EMIT6_DISP(op1 | reg(b1, b2) << 16 |			\
204 		    reg_high(b3) << 8, op2, disp);		\
205 	REG_SET_SEEN(b1);					\
206 	REG_SET_SEEN(b2);					\
207 	REG_SET_SEEN(b3);					\
208 })
209 
210 #define _EMIT6_DISP_LH(op1, op2, disp)				\
211 ({								\
212 	unsigned int __disp_h = ((u32)disp) & 0xff000;		\
213 	unsigned int __disp_l = ((u32)disp) & 0x00fff;		\
214 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
215 })
216 
217 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
218 ({								\
219 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
220 		       reg_high(b3) << 8, op2, disp);		\
221 	REG_SET_SEEN(b1);					\
222 	REG_SET_SEEN(b2);					\
223 	REG_SET_SEEN(b3);					\
224 })
225 
226 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
227 ({								\
228 	/* Branch instruction needs 6 bytes */			\
229 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
230 	_EMIT6(op1 | reg(b1, b2) << 16 | rel, op2 | mask);	\
231 	REG_SET_SEEN(b1);					\
232 	REG_SET_SEEN(b2);					\
233 })
234 
235 #define _EMIT6_IMM(op, imm)					\
236 ({								\
237 	unsigned int __imm = (imm);				\
238 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
239 })
240 
241 #define EMIT6_IMM(op, b1, imm)					\
242 ({								\
243 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
244 	REG_SET_SEEN(b1);					\
245 })
246 
247 #define EMIT_CONST_U32(val)					\
248 ({								\
249 	unsigned int ret;					\
250 	ret = jit->lit - jit->base_ip;				\
251 	jit->seen |= SEEN_LITERAL;				\
252 	if (jit->prg_buf)					\
253 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
254 	jit->lit += 4;						\
255 	ret;							\
256 })
257 
258 #define EMIT_CONST_U64(val)					\
259 ({								\
260 	unsigned int ret;					\
261 	ret = jit->lit - jit->base_ip;				\
262 	jit->seen |= SEEN_LITERAL;				\
263 	if (jit->prg_buf)					\
264 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
265 	jit->lit += 8;						\
266 	ret;							\
267 })
268 
269 #define EMIT_ZERO(b1)						\
270 ({								\
271 	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
272 	EMIT4(0xb9160000, b1, b1);				\
273 	REG_SET_SEEN(b1);					\
274 })
275 
276 /*
277  * Fill whole space with illegal instructions
278  */
279 static void jit_fill_hole(void *area, unsigned int size)
280 {
281 	memset(area, 0, size);
282 }
283 
284 /*
285  * Save registers from "rs" (register start) to "re" (register end) on stack
286  */
287 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
288 {
289 	u32 off = 72 + (rs - 6) * 8;
290 
291 	if (rs == re)
292 		/* stg %rs,off(%r15) */
293 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
294 	else
295 		/* stmg %rs,%re,off(%r15) */
296 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
297 }
298 
299 /*
300  * Restore registers from "rs" (register start) to "re" (register end) on stack
301  */
302 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
303 {
304 	u32 off = 72 + (rs - 6) * 8;
305 
306 	if (jit->seen & SEEN_STACK)
307 		off += STK_OFF;
308 
309 	if (rs == re)
310 		/* lg %rs,off(%r15) */
311 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
312 	else
313 		/* lmg %rs,%re,off(%r15) */
314 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
315 }
316 
317 /*
318  * Return first seen register (from start)
319  */
320 static int get_start(struct bpf_jit *jit, int start)
321 {
322 	int i;
323 
324 	for (i = start; i <= 15; i++) {
325 		if (jit->seen_reg[i])
326 			return i;
327 	}
328 	return 0;
329 }
330 
331 /*
332  * Return last seen register (from start) (gap >= 2)
333  */
334 static int get_end(struct bpf_jit *jit, int start)
335 {
336 	int i;
337 
338 	for (i = start; i < 15; i++) {
339 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
340 			return i - 1;
341 	}
342 	return jit->seen_reg[15] ? 15 : 14;
343 }
344 
345 #define REGS_SAVE	1
346 #define REGS_RESTORE	0
347 /*
348  * Save and restore clobbered registers (6-15) on stack.
349  * We save/restore registers in chunks with gap >= 2 registers.
350  */
351 static void save_restore_regs(struct bpf_jit *jit, int op)
352 {
353 
354 	int re = 6, rs;
355 
356 	do {
357 		rs = get_start(jit, re);
358 		if (!rs)
359 			break;
360 		re = get_end(jit, rs + 1);
361 		if (op == REGS_SAVE)
362 			save_regs(jit, rs, re);
363 		else
364 			restore_regs(jit, rs, re);
365 		re++;
366 	} while (re <= 15);
367 }
368 
369 /*
370  * Emit function prologue
371  *
372  * Save registers and create stack frame if necessary.
373  * See stack frame layout desription in "bpf_jit.h"!
374  */
375 static void bpf_jit_prologue(struct bpf_jit *jit)
376 {
377 	/* Save registers */
378 	save_restore_regs(jit, REGS_SAVE);
379 	/* Setup literal pool */
380 	if (jit->seen & SEEN_LITERAL) {
381 		/* basr %r13,0 */
382 		EMIT2(0x0d00, REG_L, REG_0);
383 		jit->base_ip = jit->prg;
384 	}
385 	/* Setup stack and backchain */
386 	if (jit->seen & SEEN_STACK) {
387 		/* lgr %bfp,%r15 (BPF frame pointer) */
388 		EMIT4(0xb9040000, BPF_REG_FP, REG_15);
389 		/* aghi %r15,-STK_OFF */
390 		EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
391 		if (jit->seen & SEEN_FUNC)
392 			/* stg %bfp,152(%r15) (backchain) */
393 			EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_FP, REG_0,
394 				      REG_15, 152);
395 	}
396 	/*
397 	 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
398 	 * we store the SKB header length on the stack and the SKB data
399 	 * pointer in REG_SKB_DATA.
400 	 */
401 	if (jit->seen & SEEN_SKB) {
402 		/* Header length: llgf %w1,<len>(%b1) */
403 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
404 			      offsetof(struct sk_buff, len));
405 		/* s %w1,<data_len>(%b1) */
406 		EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
407 			   offsetof(struct sk_buff, data_len));
408 		/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
409 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
410 			      STK_OFF_HLEN);
411 		/* lg %skb_data,data_off(%b1) */
412 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
413 			      BPF_REG_1, offsetof(struct sk_buff, data));
414 	}
415 	/* BPF compatibility: clear A (%b7) and X (%b8) registers */
416 	if (REG_SEEN(BPF_REG_7))
417 		/* lghi %b7,0 */
418 		EMIT4_IMM(0xa7090000, BPF_REG_7, 0);
419 	if (REG_SEEN(BPF_REG_8))
420 		/* lghi %b8,0 */
421 		EMIT4_IMM(0xa7090000, BPF_REG_8, 0);
422 }
423 
424 /*
425  * Function epilogue
426  */
427 static void bpf_jit_epilogue(struct bpf_jit *jit)
428 {
429 	/* Return 0 */
430 	if (jit->seen & SEEN_RET0) {
431 		jit->ret0_ip = jit->prg;
432 		/* lghi %b0,0 */
433 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
434 	}
435 	jit->exit_ip = jit->prg;
436 	/* Load exit code: lgr %r2,%b0 */
437 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
438 	/* Restore registers */
439 	save_restore_regs(jit, REGS_RESTORE);
440 	/* br %r14 */
441 	_EMIT2(0x07fe);
442 }
443 
444 /*
445  * Compile one eBPF instruction into s390x code
446  *
447  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
448  * stack space for the large switch statement.
449  */
450 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
451 {
452 	struct bpf_insn *insn = &fp->insnsi[i];
453 	int jmp_off, last, insn_count = 1;
454 	unsigned int func_addr, mask;
455 	u32 dst_reg = insn->dst_reg;
456 	u32 src_reg = insn->src_reg;
457 	u32 *addrs = jit->addrs;
458 	s32 imm = insn->imm;
459 	s16 off = insn->off;
460 
461 	switch (insn->code) {
462 	/*
463 	 * BPF_MOV
464 	 */
465 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
466 		/* llgfr %dst,%src */
467 		EMIT4(0xb9160000, dst_reg, src_reg);
468 		break;
469 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
470 		/* lgr %dst,%src */
471 		EMIT4(0xb9040000, dst_reg, src_reg);
472 		break;
473 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
474 		/* llilf %dst,imm */
475 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
476 		break;
477 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
478 		/* lgfi %dst,imm */
479 		EMIT6_IMM(0xc0010000, dst_reg, imm);
480 		break;
481 	/*
482 	 * BPF_LD 64
483 	 */
484 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
485 	{
486 		/* 16 byte instruction that uses two 'struct bpf_insn' */
487 		u64 imm64;
488 
489 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
490 		/* lg %dst,<d(imm)>(%l) */
491 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
492 			      EMIT_CONST_U64(imm64));
493 		insn_count = 2;
494 		break;
495 	}
496 	/*
497 	 * BPF_ADD
498 	 */
499 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
500 		/* ar %dst,%src */
501 		EMIT2(0x1a00, dst_reg, src_reg);
502 		EMIT_ZERO(dst_reg);
503 		break;
504 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
505 		/* agr %dst,%src */
506 		EMIT4(0xb9080000, dst_reg, src_reg);
507 		break;
508 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
509 		if (!imm)
510 			break;
511 		/* alfi %dst,imm */
512 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
513 		EMIT_ZERO(dst_reg);
514 		break;
515 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
516 		if (!imm)
517 			break;
518 		/* agfi %dst,imm */
519 		EMIT6_IMM(0xc2080000, dst_reg, imm);
520 		break;
521 	/*
522 	 * BPF_SUB
523 	 */
524 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
525 		/* sr %dst,%src */
526 		EMIT2(0x1b00, dst_reg, src_reg);
527 		EMIT_ZERO(dst_reg);
528 		break;
529 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
530 		/* sgr %dst,%src */
531 		EMIT4(0xb9090000, dst_reg, src_reg);
532 		break;
533 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
534 		if (!imm)
535 			break;
536 		/* alfi %dst,-imm */
537 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
538 		EMIT_ZERO(dst_reg);
539 		break;
540 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
541 		if (!imm)
542 			break;
543 		/* agfi %dst,-imm */
544 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
545 		break;
546 	/*
547 	 * BPF_MUL
548 	 */
549 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
550 		/* msr %dst,%src */
551 		EMIT4(0xb2520000, dst_reg, src_reg);
552 		EMIT_ZERO(dst_reg);
553 		break;
554 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
555 		/* msgr %dst,%src */
556 		EMIT4(0xb90c0000, dst_reg, src_reg);
557 		break;
558 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
559 		if (imm == 1)
560 			break;
561 		/* msfi %r5,imm */
562 		EMIT6_IMM(0xc2010000, dst_reg, imm);
563 		EMIT_ZERO(dst_reg);
564 		break;
565 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
566 		if (imm == 1)
567 			break;
568 		/* msgfi %dst,imm */
569 		EMIT6_IMM(0xc2000000, dst_reg, imm);
570 		break;
571 	/*
572 	 * BPF_DIV / BPF_MOD
573 	 */
574 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
575 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
576 	{
577 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
578 
579 		jit->seen |= SEEN_RET0;
580 		/* ltr %src,%src (if src == 0 goto fail) */
581 		EMIT2(0x1200, src_reg, src_reg);
582 		/* jz <ret0> */
583 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
584 		/* lhi %w0,0 */
585 		EMIT4_IMM(0xa7080000, REG_W0, 0);
586 		/* lr %w1,%dst */
587 		EMIT2(0x1800, REG_W1, dst_reg);
588 		/* dlr %w0,%src */
589 		EMIT4(0xb9970000, REG_W0, src_reg);
590 		/* llgfr %dst,%rc */
591 		EMIT4(0xb9160000, dst_reg, rc_reg);
592 		break;
593 	}
594 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
595 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
596 	{
597 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
598 
599 		jit->seen |= SEEN_RET0;
600 		/* ltgr %src,%src (if src == 0 goto fail) */
601 		EMIT4(0xb9020000, src_reg, src_reg);
602 		/* jz <ret0> */
603 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
604 		/* lghi %w0,0 */
605 		EMIT4_IMM(0xa7090000, REG_W0, 0);
606 		/* lgr %w1,%dst */
607 		EMIT4(0xb9040000, REG_W1, dst_reg);
608 		/* dlgr %w0,%dst */
609 		EMIT4(0xb9870000, REG_W0, src_reg);
610 		/* lgr %dst,%rc */
611 		EMIT4(0xb9040000, dst_reg, rc_reg);
612 		break;
613 	}
614 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
615 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
616 	{
617 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
618 
619 		if (imm == 1) {
620 			if (BPF_OP(insn->code) == BPF_MOD)
621 				/* lhgi %dst,0 */
622 				EMIT4_IMM(0xa7090000, dst_reg, 0);
623 			break;
624 		}
625 		/* lhi %w0,0 */
626 		EMIT4_IMM(0xa7080000, REG_W0, 0);
627 		/* lr %w1,%dst */
628 		EMIT2(0x1800, REG_W1, dst_reg);
629 		/* dl %w0,<d(imm)>(%l) */
630 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
631 			      EMIT_CONST_U32(imm));
632 		/* llgfr %dst,%rc */
633 		EMIT4(0xb9160000, dst_reg, rc_reg);
634 		break;
635 	}
636 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
637 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
638 	{
639 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
640 
641 		if (imm == 1) {
642 			if (BPF_OP(insn->code) == BPF_MOD)
643 				/* lhgi %dst,0 */
644 				EMIT4_IMM(0xa7090000, dst_reg, 0);
645 			break;
646 		}
647 		/* lghi %w0,0 */
648 		EMIT4_IMM(0xa7090000, REG_W0, 0);
649 		/* lgr %w1,%dst */
650 		EMIT4(0xb9040000, REG_W1, dst_reg);
651 		/* dlg %w0,<d(imm)>(%l) */
652 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
653 			      EMIT_CONST_U64(imm));
654 		/* lgr %dst,%rc */
655 		EMIT4(0xb9040000, dst_reg, rc_reg);
656 		break;
657 	}
658 	/*
659 	 * BPF_AND
660 	 */
661 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
662 		/* nr %dst,%src */
663 		EMIT2(0x1400, dst_reg, src_reg);
664 		EMIT_ZERO(dst_reg);
665 		break;
666 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
667 		/* ngr %dst,%src */
668 		EMIT4(0xb9800000, dst_reg, src_reg);
669 		break;
670 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
671 		/* nilf %dst,imm */
672 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
673 		EMIT_ZERO(dst_reg);
674 		break;
675 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
676 		/* ng %dst,<d(imm)>(%l) */
677 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
678 			      EMIT_CONST_U64(imm));
679 		break;
680 	/*
681 	 * BPF_OR
682 	 */
683 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
684 		/* or %dst,%src */
685 		EMIT2(0x1600, dst_reg, src_reg);
686 		EMIT_ZERO(dst_reg);
687 		break;
688 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
689 		/* ogr %dst,%src */
690 		EMIT4(0xb9810000, dst_reg, src_reg);
691 		break;
692 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
693 		/* oilf %dst,imm */
694 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
695 		EMIT_ZERO(dst_reg);
696 		break;
697 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
698 		/* og %dst,<d(imm)>(%l) */
699 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
700 			      EMIT_CONST_U64(imm));
701 		break;
702 	/*
703 	 * BPF_XOR
704 	 */
705 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
706 		/* xr %dst,%src */
707 		EMIT2(0x1700, dst_reg, src_reg);
708 		EMIT_ZERO(dst_reg);
709 		break;
710 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
711 		/* xgr %dst,%src */
712 		EMIT4(0xb9820000, dst_reg, src_reg);
713 		break;
714 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
715 		if (!imm)
716 			break;
717 		/* xilf %dst,imm */
718 		EMIT6_IMM(0xc0070000, dst_reg, imm);
719 		EMIT_ZERO(dst_reg);
720 		break;
721 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
722 		/* xg %dst,<d(imm)>(%l) */
723 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
724 			      EMIT_CONST_U64(imm));
725 		break;
726 	/*
727 	 * BPF_LSH
728 	 */
729 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
730 		/* sll %dst,0(%src) */
731 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
732 		EMIT_ZERO(dst_reg);
733 		break;
734 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
735 		/* sllg %dst,%dst,0(%src) */
736 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
737 		break;
738 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
739 		if (imm == 0)
740 			break;
741 		/* sll %dst,imm(%r0) */
742 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
743 		EMIT_ZERO(dst_reg);
744 		break;
745 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
746 		if (imm == 0)
747 			break;
748 		/* sllg %dst,%dst,imm(%r0) */
749 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
750 		break;
751 	/*
752 	 * BPF_RSH
753 	 */
754 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
755 		/* srl %dst,0(%src) */
756 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
757 		EMIT_ZERO(dst_reg);
758 		break;
759 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
760 		/* srlg %dst,%dst,0(%src) */
761 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
762 		break;
763 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
764 		if (imm == 0)
765 			break;
766 		/* srl %dst,imm(%r0) */
767 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
768 		EMIT_ZERO(dst_reg);
769 		break;
770 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
771 		if (imm == 0)
772 			break;
773 		/* srlg %dst,%dst,imm(%r0) */
774 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
775 		break;
776 	/*
777 	 * BPF_ARSH
778 	 */
779 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
780 		/* srag %dst,%dst,0(%src) */
781 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
782 		break;
783 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
784 		if (imm == 0)
785 			break;
786 		/* srag %dst,%dst,imm(%r0) */
787 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
788 		break;
789 	/*
790 	 * BPF_NEG
791 	 */
792 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
793 		/* lcr %dst,%dst */
794 		EMIT2(0x1300, dst_reg, dst_reg);
795 		EMIT_ZERO(dst_reg);
796 		break;
797 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
798 		/* lcgr %dst,%dst */
799 		EMIT4(0xb9130000, dst_reg, dst_reg);
800 		break;
801 	/*
802 	 * BPF_FROM_BE/LE
803 	 */
804 	case BPF_ALU | BPF_END | BPF_FROM_BE:
805 		/* s390 is big endian, therefore only clear high order bytes */
806 		switch (imm) {
807 		case 16: /* dst = (u16) cpu_to_be16(dst) */
808 			/* llghr %dst,%dst */
809 			EMIT4(0xb9850000, dst_reg, dst_reg);
810 			break;
811 		case 32: /* dst = (u32) cpu_to_be32(dst) */
812 			/* llgfr %dst,%dst */
813 			EMIT4(0xb9160000, dst_reg, dst_reg);
814 			break;
815 		case 64: /* dst = (u64) cpu_to_be64(dst) */
816 			break;
817 		}
818 		break;
819 	case BPF_ALU | BPF_END | BPF_FROM_LE:
820 		switch (imm) {
821 		case 16: /* dst = (u16) cpu_to_le16(dst) */
822 			/* lrvr %dst,%dst */
823 			EMIT4(0xb91f0000, dst_reg, dst_reg);
824 			/* srl %dst,16(%r0) */
825 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
826 			/* llghr %dst,%dst */
827 			EMIT4(0xb9850000, dst_reg, dst_reg);
828 			break;
829 		case 32: /* dst = (u32) cpu_to_le32(dst) */
830 			/* lrvr %dst,%dst */
831 			EMIT4(0xb91f0000, dst_reg, dst_reg);
832 			/* llgfr %dst,%dst */
833 			EMIT4(0xb9160000, dst_reg, dst_reg);
834 			break;
835 		case 64: /* dst = (u64) cpu_to_le64(dst) */
836 			/* lrvgr %dst,%dst */
837 			EMIT4(0xb90f0000, dst_reg, dst_reg);
838 			break;
839 		}
840 		break;
841 	/*
842 	 * BPF_ST(X)
843 	 */
844 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
845 		/* stcy %src,off(%dst) */
846 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
847 		jit->seen |= SEEN_MEM;
848 		break;
849 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
850 		/* sthy %src,off(%dst) */
851 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
852 		jit->seen |= SEEN_MEM;
853 		break;
854 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
855 		/* sty %src,off(%dst) */
856 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
857 		jit->seen |= SEEN_MEM;
858 		break;
859 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
860 		/* stg %src,off(%dst) */
861 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
862 		jit->seen |= SEEN_MEM;
863 		break;
864 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
865 		/* lhi %w0,imm */
866 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
867 		/* stcy %w0,off(dst) */
868 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
869 		jit->seen |= SEEN_MEM;
870 		break;
871 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
872 		/* lhi %w0,imm */
873 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
874 		/* sthy %w0,off(dst) */
875 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
876 		jit->seen |= SEEN_MEM;
877 		break;
878 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
879 		/* llilf %w0,imm  */
880 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
881 		/* sty %w0,off(%dst) */
882 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
883 		jit->seen |= SEEN_MEM;
884 		break;
885 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
886 		/* lgfi %w0,imm */
887 		EMIT6_IMM(0xc0010000, REG_W0, imm);
888 		/* stg %w0,off(%dst) */
889 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
890 		jit->seen |= SEEN_MEM;
891 		break;
892 	/*
893 	 * BPF_STX XADD (atomic_add)
894 	 */
895 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
896 		/* laal %w0,%src,off(%dst) */
897 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
898 			      dst_reg, off);
899 		jit->seen |= SEEN_MEM;
900 		break;
901 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
902 		/* laalg %w0,%src,off(%dst) */
903 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
904 			      dst_reg, off);
905 		jit->seen |= SEEN_MEM;
906 		break;
907 	/*
908 	 * BPF_LDX
909 	 */
910 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
911 		/* llgc %dst,0(off,%src) */
912 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
913 		jit->seen |= SEEN_MEM;
914 		break;
915 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
916 		/* llgh %dst,0(off,%src) */
917 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
918 		jit->seen |= SEEN_MEM;
919 		break;
920 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
921 		/* llgf %dst,off(%src) */
922 		jit->seen |= SEEN_MEM;
923 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
924 		break;
925 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
926 		/* lg %dst,0(off,%src) */
927 		jit->seen |= SEEN_MEM;
928 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
929 		break;
930 	/*
931 	 * BPF_JMP / CALL
932 	 */
933 	case BPF_JMP | BPF_CALL:
934 	{
935 		/*
936 		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
937 		 */
938 		const u64 func = (u64)__bpf_call_base + imm;
939 
940 		REG_SET_SEEN(BPF_REG_5);
941 		jit->seen |= SEEN_FUNC;
942 		/* lg %w1,<d(imm)>(%l) */
943 		EMIT6_DISP(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
944 			   EMIT_CONST_U64(func));
945 		/* basr %r14,%w1 */
946 		EMIT2(0x0d00, REG_14, REG_W1);
947 		/* lgr %b0,%r2: load return value into %b0 */
948 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
949 		break;
950 	}
951 	case BPF_JMP | BPF_EXIT: /* return b0 */
952 		last = (i == fp->len - 1) ? 1 : 0;
953 		if (last && !(jit->seen & SEEN_RET0))
954 			break;
955 		/* j <exit> */
956 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
957 		break;
958 	/*
959 	 * Branch relative (number of skipped instructions) to offset on
960 	 * condition.
961 	 *
962 	 * Condition code to mask mapping:
963 	 *
964 	 * CC | Description	   | Mask
965 	 * ------------------------------
966 	 * 0  | Operands equal	   |	8
967 	 * 1  | First operand low  |	4
968 	 * 2  | First operand high |	2
969 	 * 3  | Unused		   |	1
970 	 *
971 	 * For s390x relative branches: ip = ip + off_bytes
972 	 * For BPF relative branches:	insn = insn + off_insns + 1
973 	 *
974 	 * For example for s390x with offset 0 we jump to the branch
975 	 * instruction itself (loop) and for BPF with offset 0 we
976 	 * branch to the instruction behind the branch.
977 	 */
978 	case BPF_JMP | BPF_JA: /* if (true) */
979 		mask = 0xf000; /* j */
980 		goto branch_oc;
981 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
982 		mask = 0x2000; /* jh */
983 		goto branch_ks;
984 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
985 		mask = 0xa000; /* jhe */
986 		goto branch_ks;
987 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
988 		mask = 0x2000; /* jh */
989 		goto branch_ku;
990 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
991 		mask = 0xa000; /* jhe */
992 		goto branch_ku;
993 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
994 		mask = 0x7000; /* jne */
995 		goto branch_ku;
996 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
997 		mask = 0x8000; /* je */
998 		goto branch_ku;
999 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1000 		mask = 0x7000; /* jnz */
1001 		/* lgfi %w1,imm (load sign extend imm) */
1002 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1003 		/* ngr %w1,%dst */
1004 		EMIT4(0xb9800000, REG_W1, dst_reg);
1005 		goto branch_oc;
1006 
1007 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1008 		mask = 0x2000; /* jh */
1009 		goto branch_xs;
1010 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1011 		mask = 0xa000; /* jhe */
1012 		goto branch_xs;
1013 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1014 		mask = 0x2000; /* jh */
1015 		goto branch_xu;
1016 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1017 		mask = 0xa000; /* jhe */
1018 		goto branch_xu;
1019 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1020 		mask = 0x7000; /* jne */
1021 		goto branch_xu;
1022 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1023 		mask = 0x8000; /* je */
1024 		goto branch_xu;
1025 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1026 		mask = 0x7000; /* jnz */
1027 		/* ngrk %w1,%dst,%src */
1028 		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1029 		goto branch_oc;
1030 branch_ks:
1031 		/* lgfi %w1,imm (load sign extend imm) */
1032 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1033 		/* cgrj %dst,%w1,mask,off */
1034 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1035 		break;
1036 branch_ku:
1037 		/* lgfi %w1,imm (load sign extend imm) */
1038 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1039 		/* clgrj %dst,%w1,mask,off */
1040 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1041 		break;
1042 branch_xs:
1043 		/* cgrj %dst,%src,mask,off */
1044 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1045 		break;
1046 branch_xu:
1047 		/* clgrj %dst,%src,mask,off */
1048 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1049 		break;
1050 branch_oc:
1051 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1052 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1053 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1054 		break;
1055 	/*
1056 	 * BPF_LD
1057 	 */
1058 	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1059 	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1060 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1061 			func_addr = __pa(sk_load_byte_pos);
1062 		else
1063 			func_addr = __pa(sk_load_byte);
1064 		goto call_fn;
1065 	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1066 	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1067 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1068 			func_addr = __pa(sk_load_half_pos);
1069 		else
1070 			func_addr = __pa(sk_load_half);
1071 		goto call_fn;
1072 	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1073 	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1074 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1075 			func_addr = __pa(sk_load_word_pos);
1076 		else
1077 			func_addr = __pa(sk_load_word);
1078 		goto call_fn;
1079 call_fn:
1080 		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1081 		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1082 
1083 		/*
1084 		 * Implicit input:
1085 		 *  BPF_REG_6	 (R7) : skb pointer
1086 		 *  REG_SKB_DATA (R12): skb data pointer
1087 		 *
1088 		 * Calculated input:
1089 		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1090 		 *  BPF_REG_5	 (R6) : return address
1091 		 *
1092 		 * Output:
1093 		 *  BPF_REG_0	 (R14): data read from skb
1094 		 *
1095 		 * Scratch registers (BPF_REG_1-5)
1096 		 */
1097 
1098 		/* Call function: llilf %w1,func_addr  */
1099 		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1100 
1101 		/* Offset: lgfi %b2,imm */
1102 		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1103 		if (BPF_MODE(insn->code) == BPF_IND)
1104 			/* agfr %b2,%src (%src is s32 here) */
1105 			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1106 
1107 		/* basr %b5,%w1 (%b5 is call saved) */
1108 		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1109 
1110 		/*
1111 		 * Note: For fast access we jump directly after the
1112 		 * jnz instruction from bpf_jit.S
1113 		 */
1114 		/* jnz <ret0> */
1115 		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1116 		break;
1117 	default: /* too complex, give up */
1118 		pr_err("Unknown opcode %02x\n", insn->code);
1119 		return -1;
1120 	}
1121 	return insn_count;
1122 }
1123 
1124 /*
1125  * Compile eBPF program into s390x code
1126  */
1127 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1128 {
1129 	int i, insn_count;
1130 
1131 	jit->lit = jit->lit_start;
1132 	jit->prg = 0;
1133 
1134 	bpf_jit_prologue(jit);
1135 	for (i = 0; i < fp->len; i += insn_count) {
1136 		insn_count = bpf_jit_insn(jit, fp, i);
1137 		if (insn_count < 0)
1138 			return -1;
1139 		jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1140 	}
1141 	bpf_jit_epilogue(jit);
1142 
1143 	jit->lit_start = jit->prg;
1144 	jit->size = jit->lit;
1145 	jit->size_prg = jit->prg;
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Classic BPF function stub. BPF programs will be converted into
1151  * eBPF and then bpf_int_jit_compile() will be called.
1152  */
1153 void bpf_jit_compile(struct bpf_prog *fp)
1154 {
1155 }
1156 
1157 /*
1158  * Compile eBPF program "fp"
1159  */
1160 void bpf_int_jit_compile(struct bpf_prog *fp)
1161 {
1162 	struct bpf_binary_header *header;
1163 	struct bpf_jit jit;
1164 	int pass;
1165 
1166 	if (!bpf_jit_enable)
1167 		return;
1168 	memset(&jit, 0, sizeof(jit));
1169 	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1170 	if (jit.addrs == NULL)
1171 		return;
1172 	/*
1173 	 * Three initial passes:
1174 	 *   - 1/2: Determine clobbered registers
1175 	 *   - 3:   Calculate program size and addrs arrray
1176 	 */
1177 	for (pass = 1; pass <= 3; pass++) {
1178 		if (bpf_jit_prog(&jit, fp))
1179 			goto free_addrs;
1180 	}
1181 	/*
1182 	 * Final pass: Allocate and generate program
1183 	 */
1184 	if (jit.size >= BPF_SIZE_MAX)
1185 		goto free_addrs;
1186 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1187 	if (!header)
1188 		goto free_addrs;
1189 	if (bpf_jit_prog(&jit, fp))
1190 		goto free_addrs;
1191 	if (bpf_jit_enable > 1) {
1192 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1193 		if (jit.prg_buf)
1194 			print_fn_code(jit.prg_buf, jit.size_prg);
1195 	}
1196 	if (jit.prg_buf) {
1197 		set_memory_ro((unsigned long)header, header->pages);
1198 		fp->bpf_func = (void *) jit.prg_buf;
1199 		fp->jited = true;
1200 	}
1201 free_addrs:
1202 	kfree(jit.addrs);
1203 }
1204 
1205 /*
1206  * Free eBPF program
1207  */
1208 void bpf_jit_free(struct bpf_prog *fp)
1209 {
1210 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1211 	struct bpf_binary_header *header = (void *)addr;
1212 
1213 	if (!fp->jited)
1214 		goto free_filter;
1215 
1216 	set_memory_rw(addr, header->pages);
1217 	bpf_jit_binary_free(header);
1218 
1219 free_filter:
1220 	bpf_prog_unlock_free(fp);
1221 }
1222