xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <linux/mm.h>
27 #include <linux/kernel.h>
28 #include <asm/cacheflush.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include "bpf_jit.h"
34 
35 struct bpf_jit {
36 	u32 seen;		/* Flags to remember seen eBPF instructions */
37 	u32 seen_reg[16];	/* Array to remember which registers are used */
38 	u32 *addrs;		/* Array with relative instruction addresses */
39 	u8 *prg_buf;		/* Start of program */
40 	int size;		/* Size of program and literal pool */
41 	int size_prg;		/* Size of program */
42 	int prg;		/* Current position in program */
43 	int lit32_start;	/* Start of 32-bit literal pool */
44 	int lit32;		/* Current position in 32-bit literal pool */
45 	int lit64_start;	/* Start of 64-bit literal pool */
46 	int lit64;		/* Current position in 64-bit literal pool */
47 	int base_ip;		/* Base address for literal pool */
48 	int exit_ip;		/* Address of exit */
49 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
50 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
51 	int tail_call_start;	/* Tail call start offset */
52 	int excnt;		/* Number of exception table entries */
53 	int labels[1];		/* Labels for local jumps */
54 };
55 
56 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
57 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
58 #define SEEN_FUNC	BIT(2)		/* calls C functions */
59 #define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
60 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
61 
62 /*
63  * s390 registers
64  */
65 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
66 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
67 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
68 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
69 #define REG_0		REG_W0			/* Register 0 */
70 #define REG_1		REG_W1			/* Register 1 */
71 #define REG_2		BPF_REG_1		/* Register 2 */
72 #define REG_14		BPF_REG_0		/* Register 14 */
73 
74 /*
75  * Mapping of BPF registers to s390 registers
76  */
77 static const int reg2hex[] = {
78 	/* Return code */
79 	[BPF_REG_0]	= 14,
80 	/* Function parameters */
81 	[BPF_REG_1]	= 2,
82 	[BPF_REG_2]	= 3,
83 	[BPF_REG_3]	= 4,
84 	[BPF_REG_4]	= 5,
85 	[BPF_REG_5]	= 6,
86 	/* Call saved registers */
87 	[BPF_REG_6]	= 7,
88 	[BPF_REG_7]	= 8,
89 	[BPF_REG_8]	= 9,
90 	[BPF_REG_9]	= 10,
91 	/* BPF stack pointer */
92 	[BPF_REG_FP]	= 13,
93 	/* Register for blinding */
94 	[BPF_REG_AX]	= 12,
95 	/* Work registers for s390x backend */
96 	[REG_W0]	= 0,
97 	[REG_W1]	= 1,
98 	[REG_L]		= 11,
99 	[REG_15]	= 15,
100 };
101 
102 static inline u32 reg(u32 dst_reg, u32 src_reg)
103 {
104 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
105 }
106 
107 static inline u32 reg_high(u32 reg)
108 {
109 	return reg2hex[reg] << 4;
110 }
111 
112 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
113 {
114 	u32 r1 = reg2hex[b1];
115 
116 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 		jit->seen_reg[r1] = 1;
118 }
119 
120 #define REG_SET_SEEN(b1)					\
121 ({								\
122 	reg_set_seen(jit, b1);					\
123 })
124 
125 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
126 
127 /*
128  * EMIT macros for code generation
129  */
130 
131 #define _EMIT2(op)						\
132 ({								\
133 	if (jit->prg_buf)					\
134 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
135 	jit->prg += 2;						\
136 })
137 
138 #define EMIT2(op, b1, b2)					\
139 ({								\
140 	_EMIT2((op) | reg(b1, b2));				\
141 	REG_SET_SEEN(b1);					\
142 	REG_SET_SEEN(b2);					\
143 })
144 
145 #define _EMIT4(op)						\
146 ({								\
147 	if (jit->prg_buf)					\
148 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
149 	jit->prg += 4;						\
150 })
151 
152 #define EMIT4(op, b1, b2)					\
153 ({								\
154 	_EMIT4((op) | reg(b1, b2));				\
155 	REG_SET_SEEN(b1);					\
156 	REG_SET_SEEN(b2);					\
157 })
158 
159 #define EMIT4_RRF(op, b1, b2, b3)				\
160 ({								\
161 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
162 	REG_SET_SEEN(b1);					\
163 	REG_SET_SEEN(b2);					\
164 	REG_SET_SEEN(b3);					\
165 })
166 
167 #define _EMIT4_DISP(op, disp)					\
168 ({								\
169 	unsigned int __disp = (disp) & 0xfff;			\
170 	_EMIT4((op) | __disp);					\
171 })
172 
173 #define EMIT4_DISP(op, b1, b2, disp)				\
174 ({								\
175 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
176 		    reg_high(b2) << 8, (disp));			\
177 	REG_SET_SEEN(b1);					\
178 	REG_SET_SEEN(b2);					\
179 })
180 
181 #define EMIT4_IMM(op, b1, imm)					\
182 ({								\
183 	unsigned int __imm = (imm) & 0xffff;			\
184 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
185 	REG_SET_SEEN(b1);					\
186 })
187 
188 #define EMIT4_PCREL(op, pcrel)					\
189 ({								\
190 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
191 	_EMIT4((op) | __pcrel);					\
192 })
193 
194 #define EMIT4_PCREL_RIC(op, mask, target)			\
195 ({								\
196 	int __rel = ((target) - jit->prg) / 2;			\
197 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
198 })
199 
200 #define _EMIT6(op1, op2)					\
201 ({								\
202 	if (jit->prg_buf) {					\
203 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
204 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
205 	}							\
206 	jit->prg += 6;						\
207 })
208 
209 #define _EMIT6_DISP(op1, op2, disp)				\
210 ({								\
211 	unsigned int __disp = (disp) & 0xfff;			\
212 	_EMIT6((op1) | __disp, op2);				\
213 })
214 
215 #define _EMIT6_DISP_LH(op1, op2, disp)				\
216 ({								\
217 	u32 _disp = (u32) (disp);				\
218 	unsigned int __disp_h = _disp & 0xff000;		\
219 	unsigned int __disp_l = _disp & 0x00fff;		\
220 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
221 })
222 
223 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
224 ({								\
225 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
226 		       reg_high(b3) << 8, op2, disp);		\
227 	REG_SET_SEEN(b1);					\
228 	REG_SET_SEEN(b2);					\
229 	REG_SET_SEEN(b3);					\
230 })
231 
232 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
233 ({								\
234 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
235 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
236 	       (op2) | (mask) << 12);				\
237 	REG_SET_SEEN(b1);					\
238 	REG_SET_SEEN(b2);					\
239 })
240 
241 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
242 ({								\
243 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
244 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
245 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
246 	REG_SET_SEEN(b1);					\
247 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
248 })
249 
250 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
251 ({								\
252 	/* Branch instruction needs 6 bytes */			\
253 	int rel = (addrs[(i) + (off) + 1] - (addrs[(i) + 1] - 6)) / 2;\
254 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
255 	REG_SET_SEEN(b1);					\
256 	REG_SET_SEEN(b2);					\
257 })
258 
259 #define EMIT6_PCREL_RILB(op, b, target)				\
260 ({								\
261 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
262 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
263 	REG_SET_SEEN(b);					\
264 })
265 
266 #define EMIT6_PCREL_RIL(op, target)				\
267 ({								\
268 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
269 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
270 })
271 
272 #define EMIT6_PCREL_RILC(op, mask, target)			\
273 ({								\
274 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
275 })
276 
277 #define _EMIT6_IMM(op, imm)					\
278 ({								\
279 	unsigned int __imm = (imm);				\
280 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
281 })
282 
283 #define EMIT6_IMM(op, b1, imm)					\
284 ({								\
285 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
286 	REG_SET_SEEN(b1);					\
287 })
288 
289 #define _EMIT_CONST_U32(val)					\
290 ({								\
291 	unsigned int ret;					\
292 	ret = jit->lit32;					\
293 	if (jit->prg_buf)					\
294 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
295 	jit->lit32 += 4;					\
296 	ret;							\
297 })
298 
299 #define EMIT_CONST_U32(val)					\
300 ({								\
301 	jit->seen |= SEEN_LITERAL;				\
302 	_EMIT_CONST_U32(val) - jit->base_ip;			\
303 })
304 
305 #define _EMIT_CONST_U64(val)					\
306 ({								\
307 	unsigned int ret;					\
308 	ret = jit->lit64;					\
309 	if (jit->prg_buf)					\
310 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
311 	jit->lit64 += 8;					\
312 	ret;							\
313 })
314 
315 #define EMIT_CONST_U64(val)					\
316 ({								\
317 	jit->seen |= SEEN_LITERAL;				\
318 	_EMIT_CONST_U64(val) - jit->base_ip;			\
319 })
320 
321 #define EMIT_ZERO(b1)						\
322 ({								\
323 	if (!fp->aux->verifier_zext) {				\
324 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
325 		EMIT4(0xb9160000, b1, b1);			\
326 		REG_SET_SEEN(b1);				\
327 	}							\
328 })
329 
330 /*
331  * Return whether this is the first pass. The first pass is special, since we
332  * don't know any sizes yet, and thus must be conservative.
333  */
334 static bool is_first_pass(struct bpf_jit *jit)
335 {
336 	return jit->size == 0;
337 }
338 
339 /*
340  * Return whether this is the code generation pass. The code generation pass is
341  * special, since we should change as little as possible.
342  */
343 static bool is_codegen_pass(struct bpf_jit *jit)
344 {
345 	return jit->prg_buf;
346 }
347 
348 /*
349  * Return whether "rel" can be encoded as a short PC-relative offset
350  */
351 static bool is_valid_rel(int rel)
352 {
353 	return rel >= -65536 && rel <= 65534;
354 }
355 
356 /*
357  * Return whether "off" can be reached using a short PC-relative offset
358  */
359 static bool can_use_rel(struct bpf_jit *jit, int off)
360 {
361 	return is_valid_rel(off - jit->prg);
362 }
363 
364 /*
365  * Return whether given displacement can be encoded using
366  * Long-Displacement Facility
367  */
368 static bool is_valid_ldisp(int disp)
369 {
370 	return disp >= -524288 && disp <= 524287;
371 }
372 
373 /*
374  * Return whether the next 32-bit literal pool entry can be referenced using
375  * Long-Displacement Facility
376  */
377 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
378 {
379 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
380 }
381 
382 /*
383  * Return whether the next 64-bit literal pool entry can be referenced using
384  * Long-Displacement Facility
385  */
386 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
387 {
388 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
389 }
390 
391 /*
392  * Fill whole space with illegal instructions
393  */
394 static void jit_fill_hole(void *area, unsigned int size)
395 {
396 	memset(area, 0, size);
397 }
398 
399 /*
400  * Save registers from "rs" (register start) to "re" (register end) on stack
401  */
402 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
403 {
404 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
405 
406 	if (rs == re)
407 		/* stg %rs,off(%r15) */
408 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
409 	else
410 		/* stmg %rs,%re,off(%r15) */
411 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
412 }
413 
414 /*
415  * Restore registers from "rs" (register start) to "re" (register end) on stack
416  */
417 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
418 {
419 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
420 
421 	if (jit->seen & SEEN_STACK)
422 		off += STK_OFF + stack_depth;
423 
424 	if (rs == re)
425 		/* lg %rs,off(%r15) */
426 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
427 	else
428 		/* lmg %rs,%re,off(%r15) */
429 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
430 }
431 
432 /*
433  * Return first seen register (from start)
434  */
435 static int get_start(struct bpf_jit *jit, int start)
436 {
437 	int i;
438 
439 	for (i = start; i <= 15; i++) {
440 		if (jit->seen_reg[i])
441 			return i;
442 	}
443 	return 0;
444 }
445 
446 /*
447  * Return last seen register (from start) (gap >= 2)
448  */
449 static int get_end(struct bpf_jit *jit, int start)
450 {
451 	int i;
452 
453 	for (i = start; i < 15; i++) {
454 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
455 			return i - 1;
456 	}
457 	return jit->seen_reg[15] ? 15 : 14;
458 }
459 
460 #define REGS_SAVE	1
461 #define REGS_RESTORE	0
462 /*
463  * Save and restore clobbered registers (6-15) on stack.
464  * We save/restore registers in chunks with gap >= 2 registers.
465  */
466 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
467 {
468 	const int last = 15, save_restore_size = 6;
469 	int re = 6, rs;
470 
471 	if (is_first_pass(jit)) {
472 		/*
473 		 * We don't know yet which registers are used. Reserve space
474 		 * conservatively.
475 		 */
476 		jit->prg += (last - re + 1) * save_restore_size;
477 		return;
478 	}
479 
480 	do {
481 		rs = get_start(jit, re);
482 		if (!rs)
483 			break;
484 		re = get_end(jit, rs + 1);
485 		if (op == REGS_SAVE)
486 			save_regs(jit, rs, re);
487 		else
488 			restore_regs(jit, rs, re, stack_depth);
489 		re++;
490 	} while (re <= last);
491 }
492 
493 /*
494  * Emit function prologue
495  *
496  * Save registers and create stack frame if necessary.
497  * See stack frame layout desription in "bpf_jit.h"!
498  */
499 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
500 {
501 	if (jit->seen & SEEN_TAIL_CALL) {
502 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
503 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
504 	} else {
505 		/* j tail_call_start: NOP if no tail calls are used */
506 		EMIT4_PCREL(0xa7f40000, 6);
507 		/* bcr 0,%0 */
508 		EMIT2(0x0700, 0, REG_0);
509 	}
510 	/* Tail calls have to skip above initialization */
511 	jit->tail_call_start = jit->prg;
512 	/* Save registers */
513 	save_restore_regs(jit, REGS_SAVE, stack_depth);
514 	/* Setup literal pool */
515 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
516 		if (!is_first_pass(jit) &&
517 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
518 			/* basr %l,0 */
519 			EMIT2(0x0d00, REG_L, REG_0);
520 			jit->base_ip = jit->prg;
521 		} else {
522 			/* larl %l,lit32_start */
523 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
524 			jit->base_ip = jit->lit32_start;
525 		}
526 	}
527 	/* Setup stack and backchain */
528 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
529 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
530 			/* lgr %w1,%r15 (backchain) */
531 			EMIT4(0xb9040000, REG_W1, REG_15);
532 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
533 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
534 		/* aghi %r15,-STK_OFF */
535 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
536 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
537 			/* stg %w1,152(%r15) (backchain) */
538 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
539 				      REG_15, 152);
540 	}
541 }
542 
543 /*
544  * Function epilogue
545  */
546 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
547 {
548 	jit->exit_ip = jit->prg;
549 	/* Load exit code: lgr %r2,%b0 */
550 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
551 	/* Restore registers */
552 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
553 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
554 		jit->r14_thunk_ip = jit->prg;
555 		/* Generate __s390_indirect_jump_r14 thunk */
556 		if (test_facility(35)) {
557 			/* exrl %r0,.+10 */
558 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
559 		} else {
560 			/* larl %r1,.+14 */
561 			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
562 			/* ex 0,0(%r1) */
563 			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
564 		}
565 		/* j . */
566 		EMIT4_PCREL(0xa7f40000, 0);
567 	}
568 	/* br %r14 */
569 	_EMIT2(0x07fe);
570 
571 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
572 	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
573 		jit->r1_thunk_ip = jit->prg;
574 		/* Generate __s390_indirect_jump_r1 thunk */
575 		if (test_facility(35)) {
576 			/* exrl %r0,.+10 */
577 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
578 			/* j . */
579 			EMIT4_PCREL(0xa7f40000, 0);
580 			/* br %r1 */
581 			_EMIT2(0x07f1);
582 		} else {
583 			/* ex 0,S390_lowcore.br_r1_tampoline */
584 			EMIT4_DISP(0x44000000, REG_0, REG_0,
585 				   offsetof(struct lowcore, br_r1_trampoline));
586 			/* j . */
587 			EMIT4_PCREL(0xa7f40000, 0);
588 		}
589 	}
590 }
591 
592 static int get_probe_mem_regno(const u8 *insn)
593 {
594 	/*
595 	 * insn must point to llgc, llgh, llgf or lg, which have destination
596 	 * register at the same position.
597 	 */
598 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
599 		return -1;
600 	if (insn[5] != 0x90 && /* llgc */
601 	    insn[5] != 0x91 && /* llgh */
602 	    insn[5] != 0x16 && /* llgf */
603 	    insn[5] != 0x04) /* lg */
604 		return -1;
605 	return insn[1] >> 4;
606 }
607 
608 static bool ex_handler_bpf(const struct exception_table_entry *x,
609 			   struct pt_regs *regs)
610 {
611 	int regno;
612 	u8 *insn;
613 
614 	regs->psw.addr = extable_fixup(x);
615 	insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
616 	regno = get_probe_mem_regno(insn);
617 	if (WARN_ON_ONCE(regno < 0))
618 		/* JIT bug - unexpected instruction. */
619 		return false;
620 	regs->gprs[regno] = 0;
621 	return true;
622 }
623 
624 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
625 			     int probe_prg, int nop_prg)
626 {
627 	struct exception_table_entry *ex;
628 	s64 delta;
629 	u8 *insn;
630 	int prg;
631 	int i;
632 
633 	if (!fp->aux->extable)
634 		/* Do nothing during early JIT passes. */
635 		return 0;
636 	insn = jit->prg_buf + probe_prg;
637 	if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
638 		/* JIT bug - unexpected probe instruction. */
639 		return -1;
640 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
641 		/* JIT bug - gap between probe and nop instructions. */
642 		return -1;
643 	for (i = 0; i < 2; i++) {
644 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
645 			/* Verifier bug - not enough entries. */
646 			return -1;
647 		ex = &fp->aux->extable[jit->excnt];
648 		/* Add extable entries for probe and nop instructions. */
649 		prg = i == 0 ? probe_prg : nop_prg;
650 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
651 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
652 			/* JIT bug - code and extable must be close. */
653 			return -1;
654 		ex->insn = delta;
655 		/*
656 		 * Always land on the nop. Note that extable infrastructure
657 		 * ignores fixup field, it is handled by ex_handler_bpf().
658 		 */
659 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
660 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
661 			/* JIT bug - landing pad and extable must be close. */
662 			return -1;
663 		ex->fixup = delta;
664 		ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
665 		jit->excnt++;
666 	}
667 	return 0;
668 }
669 
670 /*
671  * Compile one eBPF instruction into s390x code
672  *
673  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
674  * stack space for the large switch statement.
675  */
676 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
677 				 int i, bool extra_pass, u32 stack_depth)
678 {
679 	struct bpf_insn *insn = &fp->insnsi[i];
680 	u32 dst_reg = insn->dst_reg;
681 	u32 src_reg = insn->src_reg;
682 	int last, insn_count = 1;
683 	u32 *addrs = jit->addrs;
684 	s32 imm = insn->imm;
685 	s16 off = insn->off;
686 	int probe_prg = -1;
687 	unsigned int mask;
688 	int nop_prg;
689 	int err;
690 
691 	if (BPF_CLASS(insn->code) == BPF_LDX &&
692 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
693 		probe_prg = jit->prg;
694 
695 	switch (insn->code) {
696 	/*
697 	 * BPF_MOV
698 	 */
699 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
700 		/* llgfr %dst,%src */
701 		EMIT4(0xb9160000, dst_reg, src_reg);
702 		if (insn_is_zext(&insn[1]))
703 			insn_count = 2;
704 		break;
705 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
706 		/* lgr %dst,%src */
707 		EMIT4(0xb9040000, dst_reg, src_reg);
708 		break;
709 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
710 		/* llilf %dst,imm */
711 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
712 		if (insn_is_zext(&insn[1]))
713 			insn_count = 2;
714 		break;
715 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
716 		/* lgfi %dst,imm */
717 		EMIT6_IMM(0xc0010000, dst_reg, imm);
718 		break;
719 	/*
720 	 * BPF_LD 64
721 	 */
722 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
723 	{
724 		/* 16 byte instruction that uses two 'struct bpf_insn' */
725 		u64 imm64;
726 
727 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
728 		/* lgrl %dst,imm */
729 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
730 		insn_count = 2;
731 		break;
732 	}
733 	/*
734 	 * BPF_ADD
735 	 */
736 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
737 		/* ar %dst,%src */
738 		EMIT2(0x1a00, dst_reg, src_reg);
739 		EMIT_ZERO(dst_reg);
740 		break;
741 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
742 		/* agr %dst,%src */
743 		EMIT4(0xb9080000, dst_reg, src_reg);
744 		break;
745 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
746 		if (!imm)
747 			break;
748 		/* alfi %dst,imm */
749 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
750 		EMIT_ZERO(dst_reg);
751 		break;
752 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
753 		if (!imm)
754 			break;
755 		/* agfi %dst,imm */
756 		EMIT6_IMM(0xc2080000, dst_reg, imm);
757 		break;
758 	/*
759 	 * BPF_SUB
760 	 */
761 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
762 		/* sr %dst,%src */
763 		EMIT2(0x1b00, dst_reg, src_reg);
764 		EMIT_ZERO(dst_reg);
765 		break;
766 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
767 		/* sgr %dst,%src */
768 		EMIT4(0xb9090000, dst_reg, src_reg);
769 		break;
770 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
771 		if (!imm)
772 			break;
773 		/* alfi %dst,-imm */
774 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
775 		EMIT_ZERO(dst_reg);
776 		break;
777 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
778 		if (!imm)
779 			break;
780 		/* agfi %dst,-imm */
781 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
782 		break;
783 	/*
784 	 * BPF_MUL
785 	 */
786 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
787 		/* msr %dst,%src */
788 		EMIT4(0xb2520000, dst_reg, src_reg);
789 		EMIT_ZERO(dst_reg);
790 		break;
791 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
792 		/* msgr %dst,%src */
793 		EMIT4(0xb90c0000, dst_reg, src_reg);
794 		break;
795 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
796 		if (imm == 1)
797 			break;
798 		/* msfi %r5,imm */
799 		EMIT6_IMM(0xc2010000, dst_reg, imm);
800 		EMIT_ZERO(dst_reg);
801 		break;
802 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
803 		if (imm == 1)
804 			break;
805 		/* msgfi %dst,imm */
806 		EMIT6_IMM(0xc2000000, dst_reg, imm);
807 		break;
808 	/*
809 	 * BPF_DIV / BPF_MOD
810 	 */
811 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
812 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
813 	{
814 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
815 
816 		/* lhi %w0,0 */
817 		EMIT4_IMM(0xa7080000, REG_W0, 0);
818 		/* lr %w1,%dst */
819 		EMIT2(0x1800, REG_W1, dst_reg);
820 		/* dlr %w0,%src */
821 		EMIT4(0xb9970000, REG_W0, src_reg);
822 		/* llgfr %dst,%rc */
823 		EMIT4(0xb9160000, dst_reg, rc_reg);
824 		if (insn_is_zext(&insn[1]))
825 			insn_count = 2;
826 		break;
827 	}
828 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
829 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
830 	{
831 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
832 
833 		/* lghi %w0,0 */
834 		EMIT4_IMM(0xa7090000, REG_W0, 0);
835 		/* lgr %w1,%dst */
836 		EMIT4(0xb9040000, REG_W1, dst_reg);
837 		/* dlgr %w0,%dst */
838 		EMIT4(0xb9870000, REG_W0, src_reg);
839 		/* lgr %dst,%rc */
840 		EMIT4(0xb9040000, dst_reg, rc_reg);
841 		break;
842 	}
843 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
844 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
845 	{
846 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
847 
848 		if (imm == 1) {
849 			if (BPF_OP(insn->code) == BPF_MOD)
850 				/* lhgi %dst,0 */
851 				EMIT4_IMM(0xa7090000, dst_reg, 0);
852 			break;
853 		}
854 		/* lhi %w0,0 */
855 		EMIT4_IMM(0xa7080000, REG_W0, 0);
856 		/* lr %w1,%dst */
857 		EMIT2(0x1800, REG_W1, dst_reg);
858 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
859 			/* dl %w0,<d(imm)>(%l) */
860 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
861 				      EMIT_CONST_U32(imm));
862 		} else {
863 			/* lgfrl %dst,imm */
864 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
865 					 _EMIT_CONST_U32(imm));
866 			jit->seen |= SEEN_LITERAL;
867 			/* dlr %w0,%dst */
868 			EMIT4(0xb9970000, REG_W0, dst_reg);
869 		}
870 		/* llgfr %dst,%rc */
871 		EMIT4(0xb9160000, dst_reg, rc_reg);
872 		if (insn_is_zext(&insn[1]))
873 			insn_count = 2;
874 		break;
875 	}
876 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
877 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
878 	{
879 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
880 
881 		if (imm == 1) {
882 			if (BPF_OP(insn->code) == BPF_MOD)
883 				/* lhgi %dst,0 */
884 				EMIT4_IMM(0xa7090000, dst_reg, 0);
885 			break;
886 		}
887 		/* lghi %w0,0 */
888 		EMIT4_IMM(0xa7090000, REG_W0, 0);
889 		/* lgr %w1,%dst */
890 		EMIT4(0xb9040000, REG_W1, dst_reg);
891 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
892 			/* dlg %w0,<d(imm)>(%l) */
893 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
894 				      EMIT_CONST_U64(imm));
895 		} else {
896 			/* lgrl %dst,imm */
897 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
898 					 _EMIT_CONST_U64(imm));
899 			jit->seen |= SEEN_LITERAL;
900 			/* dlgr %w0,%dst */
901 			EMIT4(0xb9870000, REG_W0, dst_reg);
902 		}
903 		/* lgr %dst,%rc */
904 		EMIT4(0xb9040000, dst_reg, rc_reg);
905 		break;
906 	}
907 	/*
908 	 * BPF_AND
909 	 */
910 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
911 		/* nr %dst,%src */
912 		EMIT2(0x1400, dst_reg, src_reg);
913 		EMIT_ZERO(dst_reg);
914 		break;
915 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
916 		/* ngr %dst,%src */
917 		EMIT4(0xb9800000, dst_reg, src_reg);
918 		break;
919 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
920 		/* nilf %dst,imm */
921 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
922 		EMIT_ZERO(dst_reg);
923 		break;
924 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
925 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
926 			/* ng %dst,<d(imm)>(%l) */
927 			EMIT6_DISP_LH(0xe3000000, 0x0080,
928 				      dst_reg, REG_0, REG_L,
929 				      EMIT_CONST_U64(imm));
930 		} else {
931 			/* lgrl %w0,imm */
932 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
933 					 _EMIT_CONST_U64(imm));
934 			jit->seen |= SEEN_LITERAL;
935 			/* ngr %dst,%w0 */
936 			EMIT4(0xb9800000, dst_reg, REG_W0);
937 		}
938 		break;
939 	/*
940 	 * BPF_OR
941 	 */
942 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
943 		/* or %dst,%src */
944 		EMIT2(0x1600, dst_reg, src_reg);
945 		EMIT_ZERO(dst_reg);
946 		break;
947 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
948 		/* ogr %dst,%src */
949 		EMIT4(0xb9810000, dst_reg, src_reg);
950 		break;
951 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
952 		/* oilf %dst,imm */
953 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
954 		EMIT_ZERO(dst_reg);
955 		break;
956 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
957 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
958 			/* og %dst,<d(imm)>(%l) */
959 			EMIT6_DISP_LH(0xe3000000, 0x0081,
960 				      dst_reg, REG_0, REG_L,
961 				      EMIT_CONST_U64(imm));
962 		} else {
963 			/* lgrl %w0,imm */
964 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
965 					 _EMIT_CONST_U64(imm));
966 			jit->seen |= SEEN_LITERAL;
967 			/* ogr %dst,%w0 */
968 			EMIT4(0xb9810000, dst_reg, REG_W0);
969 		}
970 		break;
971 	/*
972 	 * BPF_XOR
973 	 */
974 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
975 		/* xr %dst,%src */
976 		EMIT2(0x1700, dst_reg, src_reg);
977 		EMIT_ZERO(dst_reg);
978 		break;
979 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
980 		/* xgr %dst,%src */
981 		EMIT4(0xb9820000, dst_reg, src_reg);
982 		break;
983 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
984 		if (!imm)
985 			break;
986 		/* xilf %dst,imm */
987 		EMIT6_IMM(0xc0070000, dst_reg, imm);
988 		EMIT_ZERO(dst_reg);
989 		break;
990 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
991 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
992 			/* xg %dst,<d(imm)>(%l) */
993 			EMIT6_DISP_LH(0xe3000000, 0x0082,
994 				      dst_reg, REG_0, REG_L,
995 				      EMIT_CONST_U64(imm));
996 		} else {
997 			/* lgrl %w0,imm */
998 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
999 					 _EMIT_CONST_U64(imm));
1000 			jit->seen |= SEEN_LITERAL;
1001 			/* xgr %dst,%w0 */
1002 			EMIT4(0xb9820000, dst_reg, REG_W0);
1003 		}
1004 		break;
1005 	/*
1006 	 * BPF_LSH
1007 	 */
1008 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1009 		/* sll %dst,0(%src) */
1010 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1011 		EMIT_ZERO(dst_reg);
1012 		break;
1013 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1014 		/* sllg %dst,%dst,0(%src) */
1015 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1016 		break;
1017 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1018 		if (imm == 0)
1019 			break;
1020 		/* sll %dst,imm(%r0) */
1021 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1022 		EMIT_ZERO(dst_reg);
1023 		break;
1024 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1025 		if (imm == 0)
1026 			break;
1027 		/* sllg %dst,%dst,imm(%r0) */
1028 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1029 		break;
1030 	/*
1031 	 * BPF_RSH
1032 	 */
1033 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1034 		/* srl %dst,0(%src) */
1035 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1036 		EMIT_ZERO(dst_reg);
1037 		break;
1038 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1039 		/* srlg %dst,%dst,0(%src) */
1040 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1041 		break;
1042 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1043 		if (imm == 0)
1044 			break;
1045 		/* srl %dst,imm(%r0) */
1046 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1047 		EMIT_ZERO(dst_reg);
1048 		break;
1049 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1050 		if (imm == 0)
1051 			break;
1052 		/* srlg %dst,%dst,imm(%r0) */
1053 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1054 		break;
1055 	/*
1056 	 * BPF_ARSH
1057 	 */
1058 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1059 		/* sra %dst,%dst,0(%src) */
1060 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1061 		EMIT_ZERO(dst_reg);
1062 		break;
1063 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1064 		/* srag %dst,%dst,0(%src) */
1065 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1066 		break;
1067 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1068 		if (imm == 0)
1069 			break;
1070 		/* sra %dst,imm(%r0) */
1071 		EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1072 		EMIT_ZERO(dst_reg);
1073 		break;
1074 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1075 		if (imm == 0)
1076 			break;
1077 		/* srag %dst,%dst,imm(%r0) */
1078 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1079 		break;
1080 	/*
1081 	 * BPF_NEG
1082 	 */
1083 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1084 		/* lcr %dst,%dst */
1085 		EMIT2(0x1300, dst_reg, dst_reg);
1086 		EMIT_ZERO(dst_reg);
1087 		break;
1088 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1089 		/* lcgr %dst,%dst */
1090 		EMIT4(0xb9030000, dst_reg, dst_reg);
1091 		break;
1092 	/*
1093 	 * BPF_FROM_BE/LE
1094 	 */
1095 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1096 		/* s390 is big endian, therefore only clear high order bytes */
1097 		switch (imm) {
1098 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1099 			/* llghr %dst,%dst */
1100 			EMIT4(0xb9850000, dst_reg, dst_reg);
1101 			if (insn_is_zext(&insn[1]))
1102 				insn_count = 2;
1103 			break;
1104 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1105 			if (!fp->aux->verifier_zext)
1106 				/* llgfr %dst,%dst */
1107 				EMIT4(0xb9160000, dst_reg, dst_reg);
1108 			break;
1109 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1110 			break;
1111 		}
1112 		break;
1113 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1114 		switch (imm) {
1115 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1116 			/* lrvr %dst,%dst */
1117 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1118 			/* srl %dst,16(%r0) */
1119 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1120 			/* llghr %dst,%dst */
1121 			EMIT4(0xb9850000, dst_reg, dst_reg);
1122 			if (insn_is_zext(&insn[1]))
1123 				insn_count = 2;
1124 			break;
1125 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1126 			/* lrvr %dst,%dst */
1127 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1128 			if (!fp->aux->verifier_zext)
1129 				/* llgfr %dst,%dst */
1130 				EMIT4(0xb9160000, dst_reg, dst_reg);
1131 			break;
1132 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1133 			/* lrvgr %dst,%dst */
1134 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1135 			break;
1136 		}
1137 		break;
1138 	/*
1139 	 * BPF_ST(X)
1140 	 */
1141 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1142 		/* stcy %src,off(%dst) */
1143 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1144 		jit->seen |= SEEN_MEM;
1145 		break;
1146 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1147 		/* sthy %src,off(%dst) */
1148 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1149 		jit->seen |= SEEN_MEM;
1150 		break;
1151 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1152 		/* sty %src,off(%dst) */
1153 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1154 		jit->seen |= SEEN_MEM;
1155 		break;
1156 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1157 		/* stg %src,off(%dst) */
1158 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1159 		jit->seen |= SEEN_MEM;
1160 		break;
1161 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1162 		/* lhi %w0,imm */
1163 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1164 		/* stcy %w0,off(dst) */
1165 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1166 		jit->seen |= SEEN_MEM;
1167 		break;
1168 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1169 		/* lhi %w0,imm */
1170 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1171 		/* sthy %w0,off(dst) */
1172 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1173 		jit->seen |= SEEN_MEM;
1174 		break;
1175 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1176 		/* llilf %w0,imm  */
1177 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1178 		/* sty %w0,off(%dst) */
1179 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1180 		jit->seen |= SEEN_MEM;
1181 		break;
1182 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1183 		/* lgfi %w0,imm */
1184 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1185 		/* stg %w0,off(%dst) */
1186 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1187 		jit->seen |= SEEN_MEM;
1188 		break;
1189 	/*
1190 	 * BPF_STX XADD (atomic_add)
1191 	 */
1192 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
1193 		/* laal %w0,%src,off(%dst) */
1194 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
1195 			      dst_reg, off);
1196 		jit->seen |= SEEN_MEM;
1197 		break;
1198 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
1199 		/* laalg %w0,%src,off(%dst) */
1200 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
1201 			      dst_reg, off);
1202 		jit->seen |= SEEN_MEM;
1203 		break;
1204 	/*
1205 	 * BPF_LDX
1206 	 */
1207 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1208 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1209 		/* llgc %dst,0(off,%src) */
1210 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1211 		jit->seen |= SEEN_MEM;
1212 		if (insn_is_zext(&insn[1]))
1213 			insn_count = 2;
1214 		break;
1215 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1216 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1217 		/* llgh %dst,0(off,%src) */
1218 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1219 		jit->seen |= SEEN_MEM;
1220 		if (insn_is_zext(&insn[1]))
1221 			insn_count = 2;
1222 		break;
1223 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1224 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1225 		/* llgf %dst,off(%src) */
1226 		jit->seen |= SEEN_MEM;
1227 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1228 		if (insn_is_zext(&insn[1]))
1229 			insn_count = 2;
1230 		break;
1231 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1232 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1233 		/* lg %dst,0(off,%src) */
1234 		jit->seen |= SEEN_MEM;
1235 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1236 		break;
1237 	/*
1238 	 * BPF_JMP / CALL
1239 	 */
1240 	case BPF_JMP | BPF_CALL:
1241 	{
1242 		u64 func;
1243 		bool func_addr_fixed;
1244 		int ret;
1245 
1246 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1247 					    &func, &func_addr_fixed);
1248 		if (ret < 0)
1249 			return -1;
1250 
1251 		REG_SET_SEEN(BPF_REG_5);
1252 		jit->seen |= SEEN_FUNC;
1253 		/* lgrl %w1,func */
1254 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1255 		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1256 			/* brasl %r14,__s390_indirect_jump_r1 */
1257 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1258 		} else {
1259 			/* basr %r14,%w1 */
1260 			EMIT2(0x0d00, REG_14, REG_W1);
1261 		}
1262 		/* lgr %b0,%r2: load return value into %b0 */
1263 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1264 		break;
1265 	}
1266 	case BPF_JMP | BPF_TAIL_CALL:
1267 		/*
1268 		 * Implicit input:
1269 		 *  B1: pointer to ctx
1270 		 *  B2: pointer to bpf_array
1271 		 *  B3: index in bpf_array
1272 		 */
1273 		jit->seen |= SEEN_TAIL_CALL;
1274 
1275 		/*
1276 		 * if (index >= array->map.max_entries)
1277 		 *         goto out;
1278 		 */
1279 
1280 		/* llgf %w1,map.max_entries(%b2) */
1281 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1282 			      offsetof(struct bpf_array, map.max_entries));
1283 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1284 		if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1285 			/* clrj %b3,%w1,0xa,label0 */
1286 			EMIT6_PCREL_LABEL(0xec000000, 0x0077, BPF_REG_3,
1287 					  REG_W1, 0, 0xa);
1288 		} else {
1289 			/* clr %b3,%w1 */
1290 			EMIT2(0x1500, BPF_REG_3, REG_W1);
1291 			/* brcl 0xa,label0 */
1292 			EMIT6_PCREL_RILC(0xc0040000, 0xa, jit->labels[0]);
1293 		}
1294 
1295 		/*
1296 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1297 		 *         goto out;
1298 		 */
1299 
1300 		if (jit->seen & SEEN_STACK)
1301 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1302 		else
1303 			off = STK_OFF_TCCNT;
1304 		/* lhi %w0,1 */
1305 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1306 		/* laal %w1,%w0,off(%r15) */
1307 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1308 		if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1309 			/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1310 			EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1311 					      MAX_TAIL_CALL_CNT, 0, 0x2);
1312 		} else {
1313 			/* clfi %w1,MAX_TAIL_CALL_CNT */
1314 			EMIT6_IMM(0xc20f0000, REG_W1, MAX_TAIL_CALL_CNT);
1315 			/* brcl 0x2,label0 */
1316 			EMIT6_PCREL_RILC(0xc0040000, 0x2, jit->labels[0]);
1317 		}
1318 
1319 		/*
1320 		 * prog = array->ptrs[index];
1321 		 * if (prog == NULL)
1322 		 *         goto out;
1323 		 */
1324 
1325 		/* llgfr %r1,%b3: %r1 = (u32) index */
1326 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1327 		/* sllg %r1,%r1,3: %r1 *= 8 */
1328 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1329 		/* ltg %r1,prog(%b2,%r1) */
1330 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1331 			      REG_1, offsetof(struct bpf_array, ptrs));
1332 		if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1333 			/* brc 0x8,label0 */
1334 			EMIT4_PCREL_RIC(0xa7040000, 0x8, jit->labels[0]);
1335 		} else {
1336 			/* brcl 0x8,label0 */
1337 			EMIT6_PCREL_RILC(0xc0040000, 0x8, jit->labels[0]);
1338 		}
1339 
1340 		/*
1341 		 * Restore registers before calling function
1342 		 */
1343 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1344 
1345 		/*
1346 		 * goto *(prog->bpf_func + tail_call_start);
1347 		 */
1348 
1349 		/* lg %r1,bpf_func(%r1) */
1350 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1351 			      offsetof(struct bpf_prog, bpf_func));
1352 		/* bc 0xf,tail_call_start(%r1) */
1353 		_EMIT4(0x47f01000 + jit->tail_call_start);
1354 		/* out: */
1355 		jit->labels[0] = jit->prg;
1356 		break;
1357 	case BPF_JMP | BPF_EXIT: /* return b0 */
1358 		last = (i == fp->len - 1) ? 1 : 0;
1359 		if (last)
1360 			break;
1361 		/* j <exit> */
1362 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1363 		break;
1364 	/*
1365 	 * Branch relative (number of skipped instructions) to offset on
1366 	 * condition.
1367 	 *
1368 	 * Condition code to mask mapping:
1369 	 *
1370 	 * CC | Description	   | Mask
1371 	 * ------------------------------
1372 	 * 0  | Operands equal	   |	8
1373 	 * 1  | First operand low  |	4
1374 	 * 2  | First operand high |	2
1375 	 * 3  | Unused		   |	1
1376 	 *
1377 	 * For s390x relative branches: ip = ip + off_bytes
1378 	 * For BPF relative branches:	insn = insn + off_insns + 1
1379 	 *
1380 	 * For example for s390x with offset 0 we jump to the branch
1381 	 * instruction itself (loop) and for BPF with offset 0 we
1382 	 * branch to the instruction behind the branch.
1383 	 */
1384 	case BPF_JMP | BPF_JA: /* if (true) */
1385 		mask = 0xf000; /* j */
1386 		goto branch_oc;
1387 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1388 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1389 		mask = 0x2000; /* jh */
1390 		goto branch_ks;
1391 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1392 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1393 		mask = 0x4000; /* jl */
1394 		goto branch_ks;
1395 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1396 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1397 		mask = 0xa000; /* jhe */
1398 		goto branch_ks;
1399 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1400 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1401 		mask = 0xc000; /* jle */
1402 		goto branch_ks;
1403 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1404 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1405 		mask = 0x2000; /* jh */
1406 		goto branch_ku;
1407 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1408 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1409 		mask = 0x4000; /* jl */
1410 		goto branch_ku;
1411 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1412 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1413 		mask = 0xa000; /* jhe */
1414 		goto branch_ku;
1415 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1416 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1417 		mask = 0xc000; /* jle */
1418 		goto branch_ku;
1419 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1420 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1421 		mask = 0x7000; /* jne */
1422 		goto branch_ku;
1423 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1424 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1425 		mask = 0x8000; /* je */
1426 		goto branch_ku;
1427 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1428 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1429 		mask = 0x7000; /* jnz */
1430 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1431 			/* llilf %w1,imm (load zero extend imm) */
1432 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1433 			/* nr %w1,%dst */
1434 			EMIT2(0x1400, REG_W1, dst_reg);
1435 		} else {
1436 			/* lgfi %w1,imm (load sign extend imm) */
1437 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1438 			/* ngr %w1,%dst */
1439 			EMIT4(0xb9800000, REG_W1, dst_reg);
1440 		}
1441 		goto branch_oc;
1442 
1443 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1444 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1445 		mask = 0x2000; /* jh */
1446 		goto branch_xs;
1447 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1448 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1449 		mask = 0x4000; /* jl */
1450 		goto branch_xs;
1451 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1452 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1453 		mask = 0xa000; /* jhe */
1454 		goto branch_xs;
1455 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1456 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1457 		mask = 0xc000; /* jle */
1458 		goto branch_xs;
1459 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1460 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1461 		mask = 0x2000; /* jh */
1462 		goto branch_xu;
1463 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1464 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1465 		mask = 0x4000; /* jl */
1466 		goto branch_xu;
1467 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1468 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1469 		mask = 0xa000; /* jhe */
1470 		goto branch_xu;
1471 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1472 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1473 		mask = 0xc000; /* jle */
1474 		goto branch_xu;
1475 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1476 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1477 		mask = 0x7000; /* jne */
1478 		goto branch_xu;
1479 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1480 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1481 		mask = 0x8000; /* je */
1482 		goto branch_xu;
1483 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1484 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1485 	{
1486 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1487 
1488 		mask = 0x7000; /* jnz */
1489 		/* nrk or ngrk %w1,%dst,%src */
1490 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1491 			  REG_W1, dst_reg, src_reg);
1492 		goto branch_oc;
1493 branch_ks:
1494 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1495 		/* cfi or cgfi %dst,imm */
1496 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1497 			  dst_reg, imm);
1498 		if (!is_first_pass(jit) &&
1499 		    can_use_rel(jit, addrs[i + off + 1])) {
1500 			/* brc mask,off */
1501 			EMIT4_PCREL_RIC(0xa7040000,
1502 					mask >> 12, addrs[i + off + 1]);
1503 		} else {
1504 			/* brcl mask,off */
1505 			EMIT6_PCREL_RILC(0xc0040000,
1506 					 mask >> 12, addrs[i + off + 1]);
1507 		}
1508 		break;
1509 branch_ku:
1510 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1511 		/* clfi or clgfi %dst,imm */
1512 		EMIT6_IMM(is_jmp32 ? 0xc20f0000 : 0xc20e0000,
1513 			  dst_reg, imm);
1514 		if (!is_first_pass(jit) &&
1515 		    can_use_rel(jit, addrs[i + off + 1])) {
1516 			/* brc mask,off */
1517 			EMIT4_PCREL_RIC(0xa7040000,
1518 					mask >> 12, addrs[i + off + 1]);
1519 		} else {
1520 			/* brcl mask,off */
1521 			EMIT6_PCREL_RILC(0xc0040000,
1522 					 mask >> 12, addrs[i + off + 1]);
1523 		}
1524 		break;
1525 branch_xs:
1526 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1527 		if (!is_first_pass(jit) &&
1528 		    can_use_rel(jit, addrs[i + off + 1])) {
1529 			/* crj or cgrj %dst,%src,mask,off */
1530 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1531 				    dst_reg, src_reg, i, off, mask);
1532 		} else {
1533 			/* cr or cgr %dst,%src */
1534 			if (is_jmp32)
1535 				EMIT2(0x1900, dst_reg, src_reg);
1536 			else
1537 				EMIT4(0xb9200000, dst_reg, src_reg);
1538 			/* brcl mask,off */
1539 			EMIT6_PCREL_RILC(0xc0040000,
1540 					 mask >> 12, addrs[i + off + 1]);
1541 		}
1542 		break;
1543 branch_xu:
1544 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1545 		if (!is_first_pass(jit) &&
1546 		    can_use_rel(jit, addrs[i + off + 1])) {
1547 			/* clrj or clgrj %dst,%src,mask,off */
1548 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1549 				    dst_reg, src_reg, i, off, mask);
1550 		} else {
1551 			/* clr or clgr %dst,%src */
1552 			if (is_jmp32)
1553 				EMIT2(0x1500, dst_reg, src_reg);
1554 			else
1555 				EMIT4(0xb9210000, dst_reg, src_reg);
1556 			/* brcl mask,off */
1557 			EMIT6_PCREL_RILC(0xc0040000,
1558 					 mask >> 12, addrs[i + off + 1]);
1559 		}
1560 		break;
1561 branch_oc:
1562 		if (!is_first_pass(jit) &&
1563 		    can_use_rel(jit, addrs[i + off + 1])) {
1564 			/* brc mask,off */
1565 			EMIT4_PCREL_RIC(0xa7040000,
1566 					mask >> 12, addrs[i + off + 1]);
1567 		} else {
1568 			/* brcl mask,off */
1569 			EMIT6_PCREL_RILC(0xc0040000,
1570 					 mask >> 12, addrs[i + off + 1]);
1571 		}
1572 		break;
1573 	}
1574 	default: /* too complex, give up */
1575 		pr_err("Unknown opcode %02x\n", insn->code);
1576 		return -1;
1577 	}
1578 
1579 	if (probe_prg != -1) {
1580 		/*
1581 		 * Handlers of certain exceptions leave psw.addr pointing to
1582 		 * the instruction directly after the failing one. Therefore,
1583 		 * create two exception table entries and also add a nop in
1584 		 * case two probing instructions come directly after each
1585 		 * other.
1586 		 */
1587 		nop_prg = jit->prg;
1588 		/* bcr 0,%0 */
1589 		_EMIT2(0x0700);
1590 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1591 		if (err < 0)
1592 			return err;
1593 	}
1594 
1595 	return insn_count;
1596 }
1597 
1598 /*
1599  * Return whether new i-th instruction address does not violate any invariant
1600  */
1601 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1602 {
1603 	/* On the first pass anything goes */
1604 	if (is_first_pass(jit))
1605 		return true;
1606 
1607 	/* The codegen pass must not change anything */
1608 	if (is_codegen_pass(jit))
1609 		return jit->addrs[i] == jit->prg;
1610 
1611 	/* Passes in between must not increase code size */
1612 	return jit->addrs[i] >= jit->prg;
1613 }
1614 
1615 /*
1616  * Update the address of i-th instruction
1617  */
1618 static int bpf_set_addr(struct bpf_jit *jit, int i)
1619 {
1620 	if (!bpf_is_new_addr_sane(jit, i))
1621 		return -1;
1622 	jit->addrs[i] = jit->prg;
1623 	return 0;
1624 }
1625 
1626 /*
1627  * Compile eBPF program into s390x code
1628  */
1629 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1630 			bool extra_pass, u32 stack_depth)
1631 {
1632 	int i, insn_count, lit32_size, lit64_size;
1633 
1634 	jit->lit32 = jit->lit32_start;
1635 	jit->lit64 = jit->lit64_start;
1636 	jit->prg = 0;
1637 	jit->excnt = 0;
1638 
1639 	bpf_jit_prologue(jit, stack_depth);
1640 	if (bpf_set_addr(jit, 0) < 0)
1641 		return -1;
1642 	for (i = 0; i < fp->len; i += insn_count) {
1643 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1644 		if (insn_count < 0)
1645 			return -1;
1646 		/* Next instruction address */
1647 		if (bpf_set_addr(jit, i + insn_count) < 0)
1648 			return -1;
1649 	}
1650 	bpf_jit_epilogue(jit, stack_depth);
1651 
1652 	lit32_size = jit->lit32 - jit->lit32_start;
1653 	lit64_size = jit->lit64 - jit->lit64_start;
1654 	jit->lit32_start = jit->prg;
1655 	if (lit32_size)
1656 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1657 	jit->lit64_start = jit->lit32_start + lit32_size;
1658 	if (lit64_size)
1659 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1660 	jit->size = jit->lit64_start + lit64_size;
1661 	jit->size_prg = jit->prg;
1662 
1663 	if (WARN_ON_ONCE(fp->aux->extable &&
1664 			 jit->excnt != fp->aux->num_exentries))
1665 		/* Verifier bug - too many entries. */
1666 		return -1;
1667 
1668 	return 0;
1669 }
1670 
1671 bool bpf_jit_needs_zext(void)
1672 {
1673 	return true;
1674 }
1675 
1676 struct s390_jit_data {
1677 	struct bpf_binary_header *header;
1678 	struct bpf_jit ctx;
1679 	int pass;
1680 };
1681 
1682 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1683 					       struct bpf_prog *fp)
1684 {
1685 	struct bpf_binary_header *header;
1686 	u32 extable_size;
1687 	u32 code_size;
1688 
1689 	/* We need two entries per insn. */
1690 	fp->aux->num_exentries *= 2;
1691 
1692 	code_size = roundup(jit->size,
1693 			    __alignof__(struct exception_table_entry));
1694 	extable_size = fp->aux->num_exentries *
1695 		sizeof(struct exception_table_entry);
1696 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1697 				      8, jit_fill_hole);
1698 	if (!header)
1699 		return NULL;
1700 	fp->aux->extable = (struct exception_table_entry *)
1701 		(jit->prg_buf + code_size);
1702 	return header;
1703 }
1704 
1705 /*
1706  * Compile eBPF program "fp"
1707  */
1708 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1709 {
1710 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1711 	struct bpf_prog *tmp, *orig_fp = fp;
1712 	struct bpf_binary_header *header;
1713 	struct s390_jit_data *jit_data;
1714 	bool tmp_blinded = false;
1715 	bool extra_pass = false;
1716 	struct bpf_jit jit;
1717 	int pass;
1718 
1719 	if (!fp->jit_requested)
1720 		return orig_fp;
1721 
1722 	tmp = bpf_jit_blind_constants(fp);
1723 	/*
1724 	 * If blinding was requested and we failed during blinding,
1725 	 * we must fall back to the interpreter.
1726 	 */
1727 	if (IS_ERR(tmp))
1728 		return orig_fp;
1729 	if (tmp != fp) {
1730 		tmp_blinded = true;
1731 		fp = tmp;
1732 	}
1733 
1734 	jit_data = fp->aux->jit_data;
1735 	if (!jit_data) {
1736 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1737 		if (!jit_data) {
1738 			fp = orig_fp;
1739 			goto out;
1740 		}
1741 		fp->aux->jit_data = jit_data;
1742 	}
1743 	if (jit_data->ctx.addrs) {
1744 		jit = jit_data->ctx;
1745 		header = jit_data->header;
1746 		extra_pass = true;
1747 		pass = jit_data->pass + 1;
1748 		goto skip_init_ctx;
1749 	}
1750 
1751 	memset(&jit, 0, sizeof(jit));
1752 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1753 	if (jit.addrs == NULL) {
1754 		fp = orig_fp;
1755 		goto out;
1756 	}
1757 	/*
1758 	 * Three initial passes:
1759 	 *   - 1/2: Determine clobbered registers
1760 	 *   - 3:   Calculate program size and addrs arrray
1761 	 */
1762 	for (pass = 1; pass <= 3; pass++) {
1763 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1764 			fp = orig_fp;
1765 			goto free_addrs;
1766 		}
1767 	}
1768 	/*
1769 	 * Final pass: Allocate and generate program
1770 	 */
1771 	header = bpf_jit_alloc(&jit, fp);
1772 	if (!header) {
1773 		fp = orig_fp;
1774 		goto free_addrs;
1775 	}
1776 skip_init_ctx:
1777 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1778 		bpf_jit_binary_free(header);
1779 		fp = orig_fp;
1780 		goto free_addrs;
1781 	}
1782 	if (bpf_jit_enable > 1) {
1783 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1784 		print_fn_code(jit.prg_buf, jit.size_prg);
1785 	}
1786 	if (!fp->is_func || extra_pass) {
1787 		bpf_jit_binary_lock_ro(header);
1788 	} else {
1789 		jit_data->header = header;
1790 		jit_data->ctx = jit;
1791 		jit_data->pass = pass;
1792 	}
1793 	fp->bpf_func = (void *) jit.prg_buf;
1794 	fp->jited = 1;
1795 	fp->jited_len = jit.size;
1796 
1797 	if (!fp->is_func || extra_pass) {
1798 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1799 free_addrs:
1800 		kvfree(jit.addrs);
1801 		kfree(jit_data);
1802 		fp->aux->jit_data = NULL;
1803 	}
1804 out:
1805 	if (tmp_blinded)
1806 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1807 					   tmp : orig_fp);
1808 	return fp;
1809 }
1810