xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <asm/cacheflush.h>
27 #include <asm/dis.h>
28 #include <asm/facility.h>
29 #include <asm/nospec-branch.h>
30 #include <asm/set_memory.h>
31 #include "bpf_jit.h"
32 
33 struct bpf_jit {
34 	u32 seen;		/* Flags to remember seen eBPF instructions */
35 	u32 seen_reg[16];	/* Array to remember which registers are used */
36 	u32 *addrs;		/* Array with relative instruction addresses */
37 	u8 *prg_buf;		/* Start of program */
38 	int size;		/* Size of program and literal pool */
39 	int size_prg;		/* Size of program */
40 	int prg;		/* Current position in program */
41 	int lit_start;		/* Start of literal pool */
42 	int lit;		/* Current position in literal pool */
43 	int base_ip;		/* Base address for literal pool */
44 	int ret0_ip;		/* Address of return 0 */
45 	int exit_ip;		/* Address of exit */
46 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
47 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
48 	int tail_call_start;	/* Tail call start offset */
49 	int labels[1];		/* Labels for local jumps */
50 };
51 
52 #define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
53 
54 #define SEEN_MEM	(1 << 0)	/* use mem[] for temporary storage */
55 #define SEEN_RET0	(1 << 1)	/* ret0_ip points to a valid return 0 */
56 #define SEEN_LITERAL	(1 << 2)	/* code uses literals */
57 #define SEEN_FUNC	(1 << 3)	/* calls C functions */
58 #define SEEN_TAIL_CALL	(1 << 4)	/* code uses tail calls */
59 #define SEEN_REG_AX	(1 << 5)	/* code uses constant blinding */
60 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
61 
62 /*
63  * s390 registers
64  */
65 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
66 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
67 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
68 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
69 #define REG_0		REG_W0			/* Register 0 */
70 #define REG_1		REG_W1			/* Register 1 */
71 #define REG_2		BPF_REG_1		/* Register 2 */
72 #define REG_14		BPF_REG_0		/* Register 14 */
73 
74 /*
75  * Mapping of BPF registers to s390 registers
76  */
77 static const int reg2hex[] = {
78 	/* Return code */
79 	[BPF_REG_0]	= 14,
80 	/* Function parameters */
81 	[BPF_REG_1]	= 2,
82 	[BPF_REG_2]	= 3,
83 	[BPF_REG_3]	= 4,
84 	[BPF_REG_4]	= 5,
85 	[BPF_REG_5]	= 6,
86 	/* Call saved registers */
87 	[BPF_REG_6]	= 7,
88 	[BPF_REG_7]	= 8,
89 	[BPF_REG_8]	= 9,
90 	[BPF_REG_9]	= 10,
91 	/* BPF stack pointer */
92 	[BPF_REG_FP]	= 13,
93 	/* Register for blinding */
94 	[BPF_REG_AX]	= 12,
95 	/* Work registers for s390x backend */
96 	[REG_W0]	= 0,
97 	[REG_W1]	= 1,
98 	[REG_L]		= 11,
99 	[REG_15]	= 15,
100 };
101 
102 static inline u32 reg(u32 dst_reg, u32 src_reg)
103 {
104 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
105 }
106 
107 static inline u32 reg_high(u32 reg)
108 {
109 	return reg2hex[reg] << 4;
110 }
111 
112 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
113 {
114 	u32 r1 = reg2hex[b1];
115 
116 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 		jit->seen_reg[r1] = 1;
118 }
119 
120 #define REG_SET_SEEN(b1)					\
121 ({								\
122 	reg_set_seen(jit, b1);					\
123 })
124 
125 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
126 
127 /*
128  * EMIT macros for code generation
129  */
130 
131 #define _EMIT2(op)						\
132 ({								\
133 	if (jit->prg_buf)					\
134 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
135 	jit->prg += 2;						\
136 })
137 
138 #define EMIT2(op, b1, b2)					\
139 ({								\
140 	_EMIT2(op | reg(b1, b2));				\
141 	REG_SET_SEEN(b1);					\
142 	REG_SET_SEEN(b2);					\
143 })
144 
145 #define _EMIT4(op)						\
146 ({								\
147 	if (jit->prg_buf)					\
148 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
149 	jit->prg += 4;						\
150 })
151 
152 #define EMIT4(op, b1, b2)					\
153 ({								\
154 	_EMIT4(op | reg(b1, b2));				\
155 	REG_SET_SEEN(b1);					\
156 	REG_SET_SEEN(b2);					\
157 })
158 
159 #define EMIT4_RRF(op, b1, b2, b3)				\
160 ({								\
161 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
162 	REG_SET_SEEN(b1);					\
163 	REG_SET_SEEN(b2);					\
164 	REG_SET_SEEN(b3);					\
165 })
166 
167 #define _EMIT4_DISP(op, disp)					\
168 ({								\
169 	unsigned int __disp = (disp) & 0xfff;			\
170 	_EMIT4(op | __disp);					\
171 })
172 
173 #define EMIT4_DISP(op, b1, b2, disp)				\
174 ({								\
175 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
176 		    reg_high(b2) << 8, disp);			\
177 	REG_SET_SEEN(b1);					\
178 	REG_SET_SEEN(b2);					\
179 })
180 
181 #define EMIT4_IMM(op, b1, imm)					\
182 ({								\
183 	unsigned int __imm = (imm) & 0xffff;			\
184 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
185 	REG_SET_SEEN(b1);					\
186 })
187 
188 #define EMIT4_PCREL(op, pcrel)					\
189 ({								\
190 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
191 	_EMIT4(op | __pcrel);					\
192 })
193 
194 #define _EMIT6(op1, op2)					\
195 ({								\
196 	if (jit->prg_buf) {					\
197 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
198 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
199 	}							\
200 	jit->prg += 6;						\
201 })
202 
203 #define _EMIT6_DISP(op1, op2, disp)				\
204 ({								\
205 	unsigned int __disp = (disp) & 0xfff;			\
206 	_EMIT6(op1 | __disp, op2);				\
207 })
208 
209 #define _EMIT6_DISP_LH(op1, op2, disp)				\
210 ({								\
211 	u32 _disp = (u32) disp;					\
212 	unsigned int __disp_h = _disp & 0xff000;		\
213 	unsigned int __disp_l = _disp & 0x00fff;		\
214 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
215 })
216 
217 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
218 ({								\
219 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
220 		       reg_high(b3) << 8, op2, disp);		\
221 	REG_SET_SEEN(b1);					\
222 	REG_SET_SEEN(b2);					\
223 	REG_SET_SEEN(b3);					\
224 })
225 
226 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
227 ({								\
228 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
229 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
230 	       op2 | mask << 12);				\
231 	REG_SET_SEEN(b1);					\
232 	REG_SET_SEEN(b2);					\
233 })
234 
235 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
236 ({								\
237 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
238 	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
239 		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
240 	REG_SET_SEEN(b1);					\
241 	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
242 })
243 
244 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
245 ({								\
246 	/* Branch instruction needs 6 bytes */			\
247 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
248 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
249 	REG_SET_SEEN(b1);					\
250 	REG_SET_SEEN(b2);					\
251 })
252 
253 #define EMIT6_PCREL_RILB(op, b, target)				\
254 ({								\
255 	int rel = (target - jit->prg) / 2;			\
256 	_EMIT6(op | reg_high(b) << 16 | rel >> 16, rel & 0xffff);	\
257 	REG_SET_SEEN(b);					\
258 })
259 
260 #define EMIT6_PCREL_RIL(op, target)				\
261 ({								\
262 	int rel = (target - jit->prg) / 2;			\
263 	_EMIT6(op | rel >> 16, rel & 0xffff);			\
264 })
265 
266 #define _EMIT6_IMM(op, imm)					\
267 ({								\
268 	unsigned int __imm = (imm);				\
269 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
270 })
271 
272 #define EMIT6_IMM(op, b1, imm)					\
273 ({								\
274 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
275 	REG_SET_SEEN(b1);					\
276 })
277 
278 #define EMIT_CONST_U32(val)					\
279 ({								\
280 	unsigned int ret;					\
281 	ret = jit->lit - jit->base_ip;				\
282 	jit->seen |= SEEN_LITERAL;				\
283 	if (jit->prg_buf)					\
284 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
285 	jit->lit += 4;						\
286 	ret;							\
287 })
288 
289 #define EMIT_CONST_U64(val)					\
290 ({								\
291 	unsigned int ret;					\
292 	ret = jit->lit - jit->base_ip;				\
293 	jit->seen |= SEEN_LITERAL;				\
294 	if (jit->prg_buf)					\
295 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
296 	jit->lit += 8;						\
297 	ret;							\
298 })
299 
300 #define EMIT_ZERO(b1)						\
301 ({								\
302 	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
303 	EMIT4(0xb9160000, b1, b1);				\
304 	REG_SET_SEEN(b1);					\
305 })
306 
307 /*
308  * Fill whole space with illegal instructions
309  */
310 static void jit_fill_hole(void *area, unsigned int size)
311 {
312 	memset(area, 0, size);
313 }
314 
315 /*
316  * Save registers from "rs" (register start) to "re" (register end) on stack
317  */
318 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
319 {
320 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
321 
322 	if (rs == re)
323 		/* stg %rs,off(%r15) */
324 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
325 	else
326 		/* stmg %rs,%re,off(%r15) */
327 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
328 }
329 
330 /*
331  * Restore registers from "rs" (register start) to "re" (register end) on stack
332  */
333 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
334 {
335 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
336 
337 	if (jit->seen & SEEN_STACK)
338 		off += STK_OFF + stack_depth;
339 
340 	if (rs == re)
341 		/* lg %rs,off(%r15) */
342 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
343 	else
344 		/* lmg %rs,%re,off(%r15) */
345 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
346 }
347 
348 /*
349  * Return first seen register (from start)
350  */
351 static int get_start(struct bpf_jit *jit, int start)
352 {
353 	int i;
354 
355 	for (i = start; i <= 15; i++) {
356 		if (jit->seen_reg[i])
357 			return i;
358 	}
359 	return 0;
360 }
361 
362 /*
363  * Return last seen register (from start) (gap >= 2)
364  */
365 static int get_end(struct bpf_jit *jit, int start)
366 {
367 	int i;
368 
369 	for (i = start; i < 15; i++) {
370 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
371 			return i - 1;
372 	}
373 	return jit->seen_reg[15] ? 15 : 14;
374 }
375 
376 #define REGS_SAVE	1
377 #define REGS_RESTORE	0
378 /*
379  * Save and restore clobbered registers (6-15) on stack.
380  * We save/restore registers in chunks with gap >= 2 registers.
381  */
382 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
383 {
384 
385 	int re = 6, rs;
386 
387 	do {
388 		rs = get_start(jit, re);
389 		if (!rs)
390 			break;
391 		re = get_end(jit, rs + 1);
392 		if (op == REGS_SAVE)
393 			save_regs(jit, rs, re);
394 		else
395 			restore_regs(jit, rs, re, stack_depth);
396 		re++;
397 	} while (re <= 15);
398 }
399 
400 /*
401  * Emit function prologue
402  *
403  * Save registers and create stack frame if necessary.
404  * See stack frame layout desription in "bpf_jit.h"!
405  */
406 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
407 {
408 	if (jit->seen & SEEN_TAIL_CALL) {
409 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
410 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
411 	} else {
412 		/* j tail_call_start: NOP if no tail calls are used */
413 		EMIT4_PCREL(0xa7f40000, 6);
414 		_EMIT2(0);
415 	}
416 	/* Tail calls have to skip above initialization */
417 	jit->tail_call_start = jit->prg;
418 	/* Save registers */
419 	save_restore_regs(jit, REGS_SAVE, stack_depth);
420 	/* Setup literal pool */
421 	if (jit->seen & SEEN_LITERAL) {
422 		/* basr %r13,0 */
423 		EMIT2(0x0d00, REG_L, REG_0);
424 		jit->base_ip = jit->prg;
425 	}
426 	/* Setup stack and backchain */
427 	if (jit->seen & SEEN_STACK) {
428 		if (jit->seen & SEEN_FUNC)
429 			/* lgr %w1,%r15 (backchain) */
430 			EMIT4(0xb9040000, REG_W1, REG_15);
431 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
432 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
433 		/* aghi %r15,-STK_OFF */
434 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
435 		if (jit->seen & SEEN_FUNC)
436 			/* stg %w1,152(%r15) (backchain) */
437 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
438 				      REG_15, 152);
439 	}
440 }
441 
442 /*
443  * Function epilogue
444  */
445 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
446 {
447 	/* Return 0 */
448 	if (jit->seen & SEEN_RET0) {
449 		jit->ret0_ip = jit->prg;
450 		/* lghi %b0,0 */
451 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
452 	}
453 	jit->exit_ip = jit->prg;
454 	/* Load exit code: lgr %r2,%b0 */
455 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
456 	/* Restore registers */
457 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
458 	if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable) {
459 		jit->r14_thunk_ip = jit->prg;
460 		/* Generate __s390_indirect_jump_r14 thunk */
461 		if (test_facility(35)) {
462 			/* exrl %r0,.+10 */
463 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
464 		} else {
465 			/* larl %r1,.+14 */
466 			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
467 			/* ex 0,0(%r1) */
468 			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
469 		}
470 		/* j . */
471 		EMIT4_PCREL(0xa7f40000, 0);
472 	}
473 	/* br %r14 */
474 	_EMIT2(0x07fe);
475 
476 	if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable &&
477 	    (jit->seen & SEEN_FUNC)) {
478 		jit->r1_thunk_ip = jit->prg;
479 		/* Generate __s390_indirect_jump_r1 thunk */
480 		if (test_facility(35)) {
481 			/* exrl %r0,.+10 */
482 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
483 			/* j . */
484 			EMIT4_PCREL(0xa7f40000, 0);
485 			/* br %r1 */
486 			_EMIT2(0x07f1);
487 		} else {
488 			/* ex 0,S390_lowcore.br_r1_tampoline */
489 			EMIT4_DISP(0x44000000, REG_0, REG_0,
490 				   offsetof(struct lowcore, br_r1_trampoline));
491 			/* j . */
492 			EMIT4_PCREL(0xa7f40000, 0);
493 		}
494 	}
495 }
496 
497 /*
498  * Compile one eBPF instruction into s390x code
499  *
500  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
501  * stack space for the large switch statement.
502  */
503 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
504 {
505 	struct bpf_insn *insn = &fp->insnsi[i];
506 	int jmp_off, last, insn_count = 1;
507 	u32 dst_reg = insn->dst_reg;
508 	u32 src_reg = insn->src_reg;
509 	u32 *addrs = jit->addrs;
510 	s32 imm = insn->imm;
511 	s16 off = insn->off;
512 	unsigned int mask;
513 
514 	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
515 		jit->seen |= SEEN_REG_AX;
516 	switch (insn->code) {
517 	/*
518 	 * BPF_MOV
519 	 */
520 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
521 		/* llgfr %dst,%src */
522 		EMIT4(0xb9160000, dst_reg, src_reg);
523 		break;
524 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
525 		/* lgr %dst,%src */
526 		EMIT4(0xb9040000, dst_reg, src_reg);
527 		break;
528 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
529 		/* llilf %dst,imm */
530 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
531 		break;
532 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
533 		/* lgfi %dst,imm */
534 		EMIT6_IMM(0xc0010000, dst_reg, imm);
535 		break;
536 	/*
537 	 * BPF_LD 64
538 	 */
539 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
540 	{
541 		/* 16 byte instruction that uses two 'struct bpf_insn' */
542 		u64 imm64;
543 
544 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
545 		/* lg %dst,<d(imm)>(%l) */
546 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
547 			      EMIT_CONST_U64(imm64));
548 		insn_count = 2;
549 		break;
550 	}
551 	/*
552 	 * BPF_ADD
553 	 */
554 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
555 		/* ar %dst,%src */
556 		EMIT2(0x1a00, dst_reg, src_reg);
557 		EMIT_ZERO(dst_reg);
558 		break;
559 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
560 		/* agr %dst,%src */
561 		EMIT4(0xb9080000, dst_reg, src_reg);
562 		break;
563 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
564 		if (!imm)
565 			break;
566 		/* alfi %dst,imm */
567 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
568 		EMIT_ZERO(dst_reg);
569 		break;
570 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
571 		if (!imm)
572 			break;
573 		/* agfi %dst,imm */
574 		EMIT6_IMM(0xc2080000, dst_reg, imm);
575 		break;
576 	/*
577 	 * BPF_SUB
578 	 */
579 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
580 		/* sr %dst,%src */
581 		EMIT2(0x1b00, dst_reg, src_reg);
582 		EMIT_ZERO(dst_reg);
583 		break;
584 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
585 		/* sgr %dst,%src */
586 		EMIT4(0xb9090000, dst_reg, src_reg);
587 		break;
588 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
589 		if (!imm)
590 			break;
591 		/* alfi %dst,-imm */
592 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
593 		EMIT_ZERO(dst_reg);
594 		break;
595 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
596 		if (!imm)
597 			break;
598 		/* agfi %dst,-imm */
599 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
600 		break;
601 	/*
602 	 * BPF_MUL
603 	 */
604 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
605 		/* msr %dst,%src */
606 		EMIT4(0xb2520000, dst_reg, src_reg);
607 		EMIT_ZERO(dst_reg);
608 		break;
609 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
610 		/* msgr %dst,%src */
611 		EMIT4(0xb90c0000, dst_reg, src_reg);
612 		break;
613 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
614 		if (imm == 1)
615 			break;
616 		/* msfi %r5,imm */
617 		EMIT6_IMM(0xc2010000, dst_reg, imm);
618 		EMIT_ZERO(dst_reg);
619 		break;
620 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
621 		if (imm == 1)
622 			break;
623 		/* msgfi %dst,imm */
624 		EMIT6_IMM(0xc2000000, dst_reg, imm);
625 		break;
626 	/*
627 	 * BPF_DIV / BPF_MOD
628 	 */
629 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
630 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
631 	{
632 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
633 
634 		/* lhi %w0,0 */
635 		EMIT4_IMM(0xa7080000, REG_W0, 0);
636 		/* lr %w1,%dst */
637 		EMIT2(0x1800, REG_W1, dst_reg);
638 		/* dlr %w0,%src */
639 		EMIT4(0xb9970000, REG_W0, src_reg);
640 		/* llgfr %dst,%rc */
641 		EMIT4(0xb9160000, dst_reg, rc_reg);
642 		break;
643 	}
644 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
645 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
646 	{
647 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
648 
649 		/* lghi %w0,0 */
650 		EMIT4_IMM(0xa7090000, REG_W0, 0);
651 		/* lgr %w1,%dst */
652 		EMIT4(0xb9040000, REG_W1, dst_reg);
653 		/* dlgr %w0,%dst */
654 		EMIT4(0xb9870000, REG_W0, src_reg);
655 		/* lgr %dst,%rc */
656 		EMIT4(0xb9040000, dst_reg, rc_reg);
657 		break;
658 	}
659 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
660 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
661 	{
662 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
663 
664 		if (imm == 1) {
665 			if (BPF_OP(insn->code) == BPF_MOD)
666 				/* lhgi %dst,0 */
667 				EMIT4_IMM(0xa7090000, dst_reg, 0);
668 			break;
669 		}
670 		/* lhi %w0,0 */
671 		EMIT4_IMM(0xa7080000, REG_W0, 0);
672 		/* lr %w1,%dst */
673 		EMIT2(0x1800, REG_W1, dst_reg);
674 		/* dl %w0,<d(imm)>(%l) */
675 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
676 			      EMIT_CONST_U32(imm));
677 		/* llgfr %dst,%rc */
678 		EMIT4(0xb9160000, dst_reg, rc_reg);
679 		break;
680 	}
681 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
682 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
683 	{
684 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
685 
686 		if (imm == 1) {
687 			if (BPF_OP(insn->code) == BPF_MOD)
688 				/* lhgi %dst,0 */
689 				EMIT4_IMM(0xa7090000, dst_reg, 0);
690 			break;
691 		}
692 		/* lghi %w0,0 */
693 		EMIT4_IMM(0xa7090000, REG_W0, 0);
694 		/* lgr %w1,%dst */
695 		EMIT4(0xb9040000, REG_W1, dst_reg);
696 		/* dlg %w0,<d(imm)>(%l) */
697 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
698 			      EMIT_CONST_U64(imm));
699 		/* lgr %dst,%rc */
700 		EMIT4(0xb9040000, dst_reg, rc_reg);
701 		break;
702 	}
703 	/*
704 	 * BPF_AND
705 	 */
706 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
707 		/* nr %dst,%src */
708 		EMIT2(0x1400, dst_reg, src_reg);
709 		EMIT_ZERO(dst_reg);
710 		break;
711 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
712 		/* ngr %dst,%src */
713 		EMIT4(0xb9800000, dst_reg, src_reg);
714 		break;
715 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
716 		/* nilf %dst,imm */
717 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
718 		EMIT_ZERO(dst_reg);
719 		break;
720 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
721 		/* ng %dst,<d(imm)>(%l) */
722 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
723 			      EMIT_CONST_U64(imm));
724 		break;
725 	/*
726 	 * BPF_OR
727 	 */
728 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
729 		/* or %dst,%src */
730 		EMIT2(0x1600, dst_reg, src_reg);
731 		EMIT_ZERO(dst_reg);
732 		break;
733 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
734 		/* ogr %dst,%src */
735 		EMIT4(0xb9810000, dst_reg, src_reg);
736 		break;
737 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
738 		/* oilf %dst,imm */
739 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
740 		EMIT_ZERO(dst_reg);
741 		break;
742 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
743 		/* og %dst,<d(imm)>(%l) */
744 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
745 			      EMIT_CONST_U64(imm));
746 		break;
747 	/*
748 	 * BPF_XOR
749 	 */
750 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
751 		/* xr %dst,%src */
752 		EMIT2(0x1700, dst_reg, src_reg);
753 		EMIT_ZERO(dst_reg);
754 		break;
755 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
756 		/* xgr %dst,%src */
757 		EMIT4(0xb9820000, dst_reg, src_reg);
758 		break;
759 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
760 		if (!imm)
761 			break;
762 		/* xilf %dst,imm */
763 		EMIT6_IMM(0xc0070000, dst_reg, imm);
764 		EMIT_ZERO(dst_reg);
765 		break;
766 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
767 		/* xg %dst,<d(imm)>(%l) */
768 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
769 			      EMIT_CONST_U64(imm));
770 		break;
771 	/*
772 	 * BPF_LSH
773 	 */
774 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
775 		/* sll %dst,0(%src) */
776 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
777 		EMIT_ZERO(dst_reg);
778 		break;
779 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
780 		/* sllg %dst,%dst,0(%src) */
781 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
782 		break;
783 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
784 		if (imm == 0)
785 			break;
786 		/* sll %dst,imm(%r0) */
787 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
788 		EMIT_ZERO(dst_reg);
789 		break;
790 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
791 		if (imm == 0)
792 			break;
793 		/* sllg %dst,%dst,imm(%r0) */
794 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
795 		break;
796 	/*
797 	 * BPF_RSH
798 	 */
799 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
800 		/* srl %dst,0(%src) */
801 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
802 		EMIT_ZERO(dst_reg);
803 		break;
804 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
805 		/* srlg %dst,%dst,0(%src) */
806 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
807 		break;
808 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
809 		if (imm == 0)
810 			break;
811 		/* srl %dst,imm(%r0) */
812 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
813 		EMIT_ZERO(dst_reg);
814 		break;
815 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
816 		if (imm == 0)
817 			break;
818 		/* srlg %dst,%dst,imm(%r0) */
819 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
820 		break;
821 	/*
822 	 * BPF_ARSH
823 	 */
824 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
825 		/* srag %dst,%dst,0(%src) */
826 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
827 		break;
828 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
829 		if (imm == 0)
830 			break;
831 		/* srag %dst,%dst,imm(%r0) */
832 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
833 		break;
834 	/*
835 	 * BPF_NEG
836 	 */
837 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
838 		/* lcr %dst,%dst */
839 		EMIT2(0x1300, dst_reg, dst_reg);
840 		EMIT_ZERO(dst_reg);
841 		break;
842 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
843 		/* lcgr %dst,%dst */
844 		EMIT4(0xb9130000, dst_reg, dst_reg);
845 		break;
846 	/*
847 	 * BPF_FROM_BE/LE
848 	 */
849 	case BPF_ALU | BPF_END | BPF_FROM_BE:
850 		/* s390 is big endian, therefore only clear high order bytes */
851 		switch (imm) {
852 		case 16: /* dst = (u16) cpu_to_be16(dst) */
853 			/* llghr %dst,%dst */
854 			EMIT4(0xb9850000, dst_reg, dst_reg);
855 			break;
856 		case 32: /* dst = (u32) cpu_to_be32(dst) */
857 			/* llgfr %dst,%dst */
858 			EMIT4(0xb9160000, dst_reg, dst_reg);
859 			break;
860 		case 64: /* dst = (u64) cpu_to_be64(dst) */
861 			break;
862 		}
863 		break;
864 	case BPF_ALU | BPF_END | BPF_FROM_LE:
865 		switch (imm) {
866 		case 16: /* dst = (u16) cpu_to_le16(dst) */
867 			/* lrvr %dst,%dst */
868 			EMIT4(0xb91f0000, dst_reg, dst_reg);
869 			/* srl %dst,16(%r0) */
870 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
871 			/* llghr %dst,%dst */
872 			EMIT4(0xb9850000, dst_reg, dst_reg);
873 			break;
874 		case 32: /* dst = (u32) cpu_to_le32(dst) */
875 			/* lrvr %dst,%dst */
876 			EMIT4(0xb91f0000, dst_reg, dst_reg);
877 			/* llgfr %dst,%dst */
878 			EMIT4(0xb9160000, dst_reg, dst_reg);
879 			break;
880 		case 64: /* dst = (u64) cpu_to_le64(dst) */
881 			/* lrvgr %dst,%dst */
882 			EMIT4(0xb90f0000, dst_reg, dst_reg);
883 			break;
884 		}
885 		break;
886 	/*
887 	 * BPF_ST(X)
888 	 */
889 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
890 		/* stcy %src,off(%dst) */
891 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
892 		jit->seen |= SEEN_MEM;
893 		break;
894 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
895 		/* sthy %src,off(%dst) */
896 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
897 		jit->seen |= SEEN_MEM;
898 		break;
899 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
900 		/* sty %src,off(%dst) */
901 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
902 		jit->seen |= SEEN_MEM;
903 		break;
904 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
905 		/* stg %src,off(%dst) */
906 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
907 		jit->seen |= SEEN_MEM;
908 		break;
909 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
910 		/* lhi %w0,imm */
911 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
912 		/* stcy %w0,off(dst) */
913 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
914 		jit->seen |= SEEN_MEM;
915 		break;
916 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
917 		/* lhi %w0,imm */
918 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
919 		/* sthy %w0,off(dst) */
920 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
921 		jit->seen |= SEEN_MEM;
922 		break;
923 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
924 		/* llilf %w0,imm  */
925 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
926 		/* sty %w0,off(%dst) */
927 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
928 		jit->seen |= SEEN_MEM;
929 		break;
930 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
931 		/* lgfi %w0,imm */
932 		EMIT6_IMM(0xc0010000, REG_W0, imm);
933 		/* stg %w0,off(%dst) */
934 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
935 		jit->seen |= SEEN_MEM;
936 		break;
937 	/*
938 	 * BPF_STX XADD (atomic_add)
939 	 */
940 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
941 		/* laal %w0,%src,off(%dst) */
942 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
943 			      dst_reg, off);
944 		jit->seen |= SEEN_MEM;
945 		break;
946 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
947 		/* laalg %w0,%src,off(%dst) */
948 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
949 			      dst_reg, off);
950 		jit->seen |= SEEN_MEM;
951 		break;
952 	/*
953 	 * BPF_LDX
954 	 */
955 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
956 		/* llgc %dst,0(off,%src) */
957 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
958 		jit->seen |= SEEN_MEM;
959 		break;
960 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
961 		/* llgh %dst,0(off,%src) */
962 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
963 		jit->seen |= SEEN_MEM;
964 		break;
965 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
966 		/* llgf %dst,off(%src) */
967 		jit->seen |= SEEN_MEM;
968 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
969 		break;
970 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
971 		/* lg %dst,0(off,%src) */
972 		jit->seen |= SEEN_MEM;
973 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
974 		break;
975 	/*
976 	 * BPF_JMP / CALL
977 	 */
978 	case BPF_JMP | BPF_CALL:
979 	{
980 		/*
981 		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
982 		 */
983 		const u64 func = (u64)__bpf_call_base + imm;
984 
985 		REG_SET_SEEN(BPF_REG_5);
986 		jit->seen |= SEEN_FUNC;
987 		/* lg %w1,<d(imm)>(%l) */
988 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
989 			      EMIT_CONST_U64(func));
990 		if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable) {
991 			/* brasl %r14,__s390_indirect_jump_r1 */
992 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
993 		} else {
994 			/* basr %r14,%w1 */
995 			EMIT2(0x0d00, REG_14, REG_W1);
996 		}
997 		/* lgr %b0,%r2: load return value into %b0 */
998 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
999 		break;
1000 	}
1001 	case BPF_JMP | BPF_TAIL_CALL:
1002 		/*
1003 		 * Implicit input:
1004 		 *  B1: pointer to ctx
1005 		 *  B2: pointer to bpf_array
1006 		 *  B3: index in bpf_array
1007 		 */
1008 		jit->seen |= SEEN_TAIL_CALL;
1009 
1010 		/*
1011 		 * if (index >= array->map.max_entries)
1012 		 *         goto out;
1013 		 */
1014 
1015 		/* llgf %w1,map.max_entries(%b2) */
1016 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1017 			      offsetof(struct bpf_array, map.max_entries));
1018 		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1019 		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1020 				  REG_W1, 0, 0xa);
1021 
1022 		/*
1023 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1024 		 *         goto out;
1025 		 */
1026 
1027 		if (jit->seen & SEEN_STACK)
1028 			off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1029 		else
1030 			off = STK_OFF_TCCNT;
1031 		/* lhi %w0,1 */
1032 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1033 		/* laal %w1,%w0,off(%r15) */
1034 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1035 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1036 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1037 				      MAX_TAIL_CALL_CNT, 0, 0x2);
1038 
1039 		/*
1040 		 * prog = array->ptrs[index];
1041 		 * if (prog == NULL)
1042 		 *         goto out;
1043 		 */
1044 
1045 		/* sllg %r1,%b3,3: %r1 = index * 8 */
1046 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1047 		/* lg %r1,prog(%b2,%r1) */
1048 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1049 			      REG_1, offsetof(struct bpf_array, ptrs));
1050 		/* clgij %r1,0,0x8,label0 */
1051 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1052 
1053 		/*
1054 		 * Restore registers before calling function
1055 		 */
1056 		save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1057 
1058 		/*
1059 		 * goto *(prog->bpf_func + tail_call_start);
1060 		 */
1061 
1062 		/* lg %r1,bpf_func(%r1) */
1063 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1064 			      offsetof(struct bpf_prog, bpf_func));
1065 		/* bc 0xf,tail_call_start(%r1) */
1066 		_EMIT4(0x47f01000 + jit->tail_call_start);
1067 		/* out: */
1068 		jit->labels[0] = jit->prg;
1069 		break;
1070 	case BPF_JMP | BPF_EXIT: /* return b0 */
1071 		last = (i == fp->len - 1) ? 1 : 0;
1072 		if (last && !(jit->seen & SEEN_RET0))
1073 			break;
1074 		/* j <exit> */
1075 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1076 		break;
1077 	/*
1078 	 * Branch relative (number of skipped instructions) to offset on
1079 	 * condition.
1080 	 *
1081 	 * Condition code to mask mapping:
1082 	 *
1083 	 * CC | Description	   | Mask
1084 	 * ------------------------------
1085 	 * 0  | Operands equal	   |	8
1086 	 * 1  | First operand low  |	4
1087 	 * 2  | First operand high |	2
1088 	 * 3  | Unused		   |	1
1089 	 *
1090 	 * For s390x relative branches: ip = ip + off_bytes
1091 	 * For BPF relative branches:	insn = insn + off_insns + 1
1092 	 *
1093 	 * For example for s390x with offset 0 we jump to the branch
1094 	 * instruction itself (loop) and for BPF with offset 0 we
1095 	 * branch to the instruction behind the branch.
1096 	 */
1097 	case BPF_JMP | BPF_JA: /* if (true) */
1098 		mask = 0xf000; /* j */
1099 		goto branch_oc;
1100 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1101 		mask = 0x2000; /* jh */
1102 		goto branch_ks;
1103 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1104 		mask = 0x4000; /* jl */
1105 		goto branch_ks;
1106 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1107 		mask = 0xa000; /* jhe */
1108 		goto branch_ks;
1109 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1110 		mask = 0xc000; /* jle */
1111 		goto branch_ks;
1112 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1113 		mask = 0x2000; /* jh */
1114 		goto branch_ku;
1115 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1116 		mask = 0x4000; /* jl */
1117 		goto branch_ku;
1118 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1119 		mask = 0xa000; /* jhe */
1120 		goto branch_ku;
1121 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1122 		mask = 0xc000; /* jle */
1123 		goto branch_ku;
1124 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1125 		mask = 0x7000; /* jne */
1126 		goto branch_ku;
1127 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1128 		mask = 0x8000; /* je */
1129 		goto branch_ku;
1130 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1131 		mask = 0x7000; /* jnz */
1132 		/* lgfi %w1,imm (load sign extend imm) */
1133 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1134 		/* ngr %w1,%dst */
1135 		EMIT4(0xb9800000, REG_W1, dst_reg);
1136 		goto branch_oc;
1137 
1138 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1139 		mask = 0x2000; /* jh */
1140 		goto branch_xs;
1141 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1142 		mask = 0x4000; /* jl */
1143 		goto branch_xs;
1144 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1145 		mask = 0xa000; /* jhe */
1146 		goto branch_xs;
1147 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1148 		mask = 0xc000; /* jle */
1149 		goto branch_xs;
1150 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1151 		mask = 0x2000; /* jh */
1152 		goto branch_xu;
1153 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1154 		mask = 0x4000; /* jl */
1155 		goto branch_xu;
1156 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1157 		mask = 0xa000; /* jhe */
1158 		goto branch_xu;
1159 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1160 		mask = 0xc000; /* jle */
1161 		goto branch_xu;
1162 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1163 		mask = 0x7000; /* jne */
1164 		goto branch_xu;
1165 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1166 		mask = 0x8000; /* je */
1167 		goto branch_xu;
1168 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1169 		mask = 0x7000; /* jnz */
1170 		/* ngrk %w1,%dst,%src */
1171 		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1172 		goto branch_oc;
1173 branch_ks:
1174 		/* lgfi %w1,imm (load sign extend imm) */
1175 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1176 		/* cgrj %dst,%w1,mask,off */
1177 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1178 		break;
1179 branch_ku:
1180 		/* lgfi %w1,imm (load sign extend imm) */
1181 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1182 		/* clgrj %dst,%w1,mask,off */
1183 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1184 		break;
1185 branch_xs:
1186 		/* cgrj %dst,%src,mask,off */
1187 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1188 		break;
1189 branch_xu:
1190 		/* clgrj %dst,%src,mask,off */
1191 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1192 		break;
1193 branch_oc:
1194 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1195 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1196 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1197 		break;
1198 	default: /* too complex, give up */
1199 		pr_err("Unknown opcode %02x\n", insn->code);
1200 		return -1;
1201 	}
1202 	return insn_count;
1203 }
1204 
1205 /*
1206  * Compile eBPF program into s390x code
1207  */
1208 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1209 {
1210 	int i, insn_count;
1211 
1212 	jit->lit = jit->lit_start;
1213 	jit->prg = 0;
1214 
1215 	bpf_jit_prologue(jit, fp->aux->stack_depth);
1216 	for (i = 0; i < fp->len; i += insn_count) {
1217 		insn_count = bpf_jit_insn(jit, fp, i);
1218 		if (insn_count < 0)
1219 			return -1;
1220 		/* Next instruction address */
1221 		jit->addrs[i + insn_count] = jit->prg;
1222 	}
1223 	bpf_jit_epilogue(jit, fp->aux->stack_depth);
1224 
1225 	jit->lit_start = jit->prg;
1226 	jit->size = jit->lit;
1227 	jit->size_prg = jit->prg;
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Compile eBPF program "fp"
1233  */
1234 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1235 {
1236 	struct bpf_prog *tmp, *orig_fp = fp;
1237 	struct bpf_binary_header *header;
1238 	bool tmp_blinded = false;
1239 	struct bpf_jit jit;
1240 	int pass;
1241 
1242 	if (!fp->jit_requested)
1243 		return orig_fp;
1244 
1245 	tmp = bpf_jit_blind_constants(fp);
1246 	/*
1247 	 * If blinding was requested and we failed during blinding,
1248 	 * we must fall back to the interpreter.
1249 	 */
1250 	if (IS_ERR(tmp))
1251 		return orig_fp;
1252 	if (tmp != fp) {
1253 		tmp_blinded = true;
1254 		fp = tmp;
1255 	}
1256 
1257 	memset(&jit, 0, sizeof(jit));
1258 	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1259 	if (jit.addrs == NULL) {
1260 		fp = orig_fp;
1261 		goto out;
1262 	}
1263 	/*
1264 	 * Three initial passes:
1265 	 *   - 1/2: Determine clobbered registers
1266 	 *   - 3:   Calculate program size and addrs arrray
1267 	 */
1268 	for (pass = 1; pass <= 3; pass++) {
1269 		if (bpf_jit_prog(&jit, fp)) {
1270 			fp = orig_fp;
1271 			goto free_addrs;
1272 		}
1273 	}
1274 	/*
1275 	 * Final pass: Allocate and generate program
1276 	 */
1277 	if (jit.size >= BPF_SIZE_MAX) {
1278 		fp = orig_fp;
1279 		goto free_addrs;
1280 	}
1281 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1282 	if (!header) {
1283 		fp = orig_fp;
1284 		goto free_addrs;
1285 	}
1286 	if (bpf_jit_prog(&jit, fp)) {
1287 		bpf_jit_binary_free(header);
1288 		fp = orig_fp;
1289 		goto free_addrs;
1290 	}
1291 	if (bpf_jit_enable > 1) {
1292 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1293 		print_fn_code(jit.prg_buf, jit.size_prg);
1294 	}
1295 	bpf_jit_binary_lock_ro(header);
1296 	fp->bpf_func = (void *) jit.prg_buf;
1297 	fp->jited = 1;
1298 	fp->jited_len = jit.size;
1299 free_addrs:
1300 	kfree(jit.addrs);
1301 out:
1302 	if (tmp_blinded)
1303 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1304 					   tmp : orig_fp);
1305 	return fp;
1306 }
1307