xref: /openbmc/linux/arch/s390/mm/vmem.c (revision d774a589)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/cacheflush.h>
15 #include <asm/pgalloc.h>
16 #include <asm/pgtable.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 
21 static DEFINE_MUTEX(vmem_mutex);
22 
23 struct memory_segment {
24 	struct list_head list;
25 	unsigned long start;
26 	unsigned long size;
27 };
28 
29 static LIST_HEAD(mem_segs);
30 
31 static void __ref *vmem_alloc_pages(unsigned int order)
32 {
33 	unsigned long size = PAGE_SIZE << order;
34 
35 	if (slab_is_available())
36 		return (void *)__get_free_pages(GFP_KERNEL, order);
37 	return (void *) memblock_alloc(size, size);
38 }
39 
40 static inline pud_t *vmem_pud_alloc(void)
41 {
42 	pud_t *pud = NULL;
43 
44 	pud = vmem_alloc_pages(2);
45 	if (!pud)
46 		return NULL;
47 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
48 	return pud;
49 }
50 
51 pmd_t *vmem_pmd_alloc(void)
52 {
53 	pmd_t *pmd = NULL;
54 
55 	pmd = vmem_alloc_pages(2);
56 	if (!pmd)
57 		return NULL;
58 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59 	return pmd;
60 }
61 
62 pte_t __ref *vmem_pte_alloc(void)
63 {
64 	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
65 	pte_t *pte;
66 
67 	if (slab_is_available())
68 		pte = (pte_t *) page_table_alloc(&init_mm);
69 	else
70 		pte = (pte_t *) memblock_alloc(size, size);
71 	if (!pte)
72 		return NULL;
73 	clear_table((unsigned long *) pte, _PAGE_INVALID, size);
74 	return pte;
75 }
76 
77 /*
78  * Add a physical memory range to the 1:1 mapping.
79  */
80 static int vmem_add_mem(unsigned long start, unsigned long size)
81 {
82 	unsigned long pages4k, pages1m, pages2g;
83 	unsigned long end = start + size;
84 	unsigned long address = start;
85 	pgd_t *pg_dir;
86 	pud_t *pu_dir;
87 	pmd_t *pm_dir;
88 	pte_t *pt_dir;
89 	int ret = -ENOMEM;
90 
91 	pages4k = pages1m = pages2g = 0;
92 	while (address < end) {
93 		pg_dir = pgd_offset_k(address);
94 		if (pgd_none(*pg_dir)) {
95 			pu_dir = vmem_pud_alloc();
96 			if (!pu_dir)
97 				goto out;
98 			pgd_populate(&init_mm, pg_dir, pu_dir);
99 		}
100 		pu_dir = pud_offset(pg_dir, address);
101 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
102 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
103 		     !debug_pagealloc_enabled()) {
104 			pud_val(*pu_dir) = address | pgprot_val(REGION3_KERNEL);
105 			address += PUD_SIZE;
106 			pages2g++;
107 			continue;
108 		}
109 		if (pud_none(*pu_dir)) {
110 			pm_dir = vmem_pmd_alloc();
111 			if (!pm_dir)
112 				goto out;
113 			pud_populate(&init_mm, pu_dir, pm_dir);
114 		}
115 		pm_dir = pmd_offset(pu_dir, address);
116 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
117 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
118 		    !debug_pagealloc_enabled()) {
119 			pmd_val(*pm_dir) = address | pgprot_val(SEGMENT_KERNEL);
120 			address += PMD_SIZE;
121 			pages1m++;
122 			continue;
123 		}
124 		if (pmd_none(*pm_dir)) {
125 			pt_dir = vmem_pte_alloc();
126 			if (!pt_dir)
127 				goto out;
128 			pmd_populate(&init_mm, pm_dir, pt_dir);
129 		}
130 
131 		pt_dir = pte_offset_kernel(pm_dir, address);
132 		pte_val(*pt_dir) = address |  pgprot_val(PAGE_KERNEL);
133 		address += PAGE_SIZE;
134 		pages4k++;
135 	}
136 	ret = 0;
137 out:
138 	update_page_count(PG_DIRECT_MAP_4K, pages4k);
139 	update_page_count(PG_DIRECT_MAP_1M, pages1m);
140 	update_page_count(PG_DIRECT_MAP_2G, pages2g);
141 	return ret;
142 }
143 
144 /*
145  * Remove a physical memory range from the 1:1 mapping.
146  * Currently only invalidates page table entries.
147  */
148 static void vmem_remove_range(unsigned long start, unsigned long size)
149 {
150 	unsigned long pages4k, pages1m, pages2g;
151 	unsigned long end = start + size;
152 	unsigned long address = start;
153 	pgd_t *pg_dir;
154 	pud_t *pu_dir;
155 	pmd_t *pm_dir;
156 	pte_t *pt_dir;
157 
158 	pages4k = pages1m = pages2g = 0;
159 	while (address < end) {
160 		pg_dir = pgd_offset_k(address);
161 		if (pgd_none(*pg_dir)) {
162 			address += PGDIR_SIZE;
163 			continue;
164 		}
165 		pu_dir = pud_offset(pg_dir, address);
166 		if (pud_none(*pu_dir)) {
167 			address += PUD_SIZE;
168 			continue;
169 		}
170 		if (pud_large(*pu_dir)) {
171 			pud_clear(pu_dir);
172 			address += PUD_SIZE;
173 			pages2g++;
174 			continue;
175 		}
176 		pm_dir = pmd_offset(pu_dir, address);
177 		if (pmd_none(*pm_dir)) {
178 			address += PMD_SIZE;
179 			continue;
180 		}
181 		if (pmd_large(*pm_dir)) {
182 			pmd_clear(pm_dir);
183 			address += PMD_SIZE;
184 			pages1m++;
185 			continue;
186 		}
187 		pt_dir = pte_offset_kernel(pm_dir, address);
188 		pte_clear(&init_mm, address, pt_dir);
189 		address += PAGE_SIZE;
190 		pages4k++;
191 	}
192 	flush_tlb_kernel_range(start, end);
193 	update_page_count(PG_DIRECT_MAP_4K, -pages4k);
194 	update_page_count(PG_DIRECT_MAP_1M, -pages1m);
195 	update_page_count(PG_DIRECT_MAP_2G, -pages2g);
196 }
197 
198 /*
199  * Add a backed mem_map array to the virtual mem_map array.
200  */
201 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
202 {
203 	unsigned long address = start;
204 	pgd_t *pg_dir;
205 	pud_t *pu_dir;
206 	pmd_t *pm_dir;
207 	pte_t *pt_dir;
208 	int ret = -ENOMEM;
209 
210 	for (address = start; address < end;) {
211 		pg_dir = pgd_offset_k(address);
212 		if (pgd_none(*pg_dir)) {
213 			pu_dir = vmem_pud_alloc();
214 			if (!pu_dir)
215 				goto out;
216 			pgd_populate(&init_mm, pg_dir, pu_dir);
217 		}
218 
219 		pu_dir = pud_offset(pg_dir, address);
220 		if (pud_none(*pu_dir)) {
221 			pm_dir = vmem_pmd_alloc();
222 			if (!pm_dir)
223 				goto out;
224 			pud_populate(&init_mm, pu_dir, pm_dir);
225 		}
226 
227 		pm_dir = pmd_offset(pu_dir, address);
228 		if (pmd_none(*pm_dir)) {
229 			/* Use 1MB frames for vmemmap if available. We always
230 			 * use large frames even if they are only partially
231 			 * used.
232 			 * Otherwise we would have also page tables since
233 			 * vmemmap_populate gets called for each section
234 			 * separately. */
235 			if (MACHINE_HAS_EDAT1) {
236 				void *new_page;
237 
238 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
239 				if (!new_page)
240 					goto out;
241 				pmd_val(*pm_dir) = __pa(new_page) |
242 					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
243 				address = (address + PMD_SIZE) & PMD_MASK;
244 				continue;
245 			}
246 			pt_dir = vmem_pte_alloc();
247 			if (!pt_dir)
248 				goto out;
249 			pmd_populate(&init_mm, pm_dir, pt_dir);
250 		} else if (pmd_large(*pm_dir)) {
251 			address = (address + PMD_SIZE) & PMD_MASK;
252 			continue;
253 		}
254 
255 		pt_dir = pte_offset_kernel(pm_dir, address);
256 		if (pte_none(*pt_dir)) {
257 			void *new_page;
258 
259 			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
260 			if (!new_page)
261 				goto out;
262 			pte_val(*pt_dir) =
263 				__pa(new_page) | pgprot_val(PAGE_KERNEL);
264 		}
265 		address += PAGE_SIZE;
266 	}
267 	ret = 0;
268 out:
269 	return ret;
270 }
271 
272 void vmemmap_free(unsigned long start, unsigned long end)
273 {
274 }
275 
276 /*
277  * Add memory segment to the segment list if it doesn't overlap with
278  * an already present segment.
279  */
280 static int insert_memory_segment(struct memory_segment *seg)
281 {
282 	struct memory_segment *tmp;
283 
284 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
285 	    seg->start + seg->size < seg->start)
286 		return -ERANGE;
287 
288 	list_for_each_entry(tmp, &mem_segs, list) {
289 		if (seg->start >= tmp->start + tmp->size)
290 			continue;
291 		if (seg->start + seg->size <= tmp->start)
292 			continue;
293 		return -ENOSPC;
294 	}
295 	list_add(&seg->list, &mem_segs);
296 	return 0;
297 }
298 
299 /*
300  * Remove memory segment from the segment list.
301  */
302 static void remove_memory_segment(struct memory_segment *seg)
303 {
304 	list_del(&seg->list);
305 }
306 
307 static void __remove_shared_memory(struct memory_segment *seg)
308 {
309 	remove_memory_segment(seg);
310 	vmem_remove_range(seg->start, seg->size);
311 }
312 
313 int vmem_remove_mapping(unsigned long start, unsigned long size)
314 {
315 	struct memory_segment *seg;
316 	int ret;
317 
318 	mutex_lock(&vmem_mutex);
319 
320 	ret = -ENOENT;
321 	list_for_each_entry(seg, &mem_segs, list) {
322 		if (seg->start == start && seg->size == size)
323 			break;
324 	}
325 
326 	if (seg->start != start || seg->size != size)
327 		goto out;
328 
329 	ret = 0;
330 	__remove_shared_memory(seg);
331 	kfree(seg);
332 out:
333 	mutex_unlock(&vmem_mutex);
334 	return ret;
335 }
336 
337 int vmem_add_mapping(unsigned long start, unsigned long size)
338 {
339 	struct memory_segment *seg;
340 	int ret;
341 
342 	mutex_lock(&vmem_mutex);
343 	ret = -ENOMEM;
344 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
345 	if (!seg)
346 		goto out;
347 	seg->start = start;
348 	seg->size = size;
349 
350 	ret = insert_memory_segment(seg);
351 	if (ret)
352 		goto out_free;
353 
354 	ret = vmem_add_mem(start, size);
355 	if (ret)
356 		goto out_remove;
357 	goto out;
358 
359 out_remove:
360 	__remove_shared_memory(seg);
361 out_free:
362 	kfree(seg);
363 out:
364 	mutex_unlock(&vmem_mutex);
365 	return ret;
366 }
367 
368 /*
369  * map whole physical memory to virtual memory (identity mapping)
370  * we reserve enough space in the vmalloc area for vmemmap to hotplug
371  * additional memory segments.
372  */
373 void __init vmem_map_init(void)
374 {
375 	unsigned long size = _eshared - _stext;
376 	struct memblock_region *reg;
377 
378 	for_each_memblock(memory, reg)
379 		vmem_add_mem(reg->base, reg->size);
380 	set_memory_ro((unsigned long)_stext, size >> PAGE_SHIFT);
381 	pr_info("Write protected kernel read-only data: %luk\n", size >> 10);
382 }
383 
384 /*
385  * Convert memblock.memory  to a memory segment list so there is a single
386  * list that contains all memory segments.
387  */
388 static int __init vmem_convert_memory_chunk(void)
389 {
390 	struct memblock_region *reg;
391 	struct memory_segment *seg;
392 
393 	mutex_lock(&vmem_mutex);
394 	for_each_memblock(memory, reg) {
395 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
396 		if (!seg)
397 			panic("Out of memory...\n");
398 		seg->start = reg->base;
399 		seg->size = reg->size;
400 		insert_memory_segment(seg);
401 	}
402 	mutex_unlock(&vmem_mutex);
403 	return 0;
404 }
405 
406 core_initcall(vmem_convert_memory_chunk);
407