xref: /openbmc/linux/arch/s390/mm/vmem.c (revision d0b73b48)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
18 
19 static DEFINE_MUTEX(vmem_mutex);
20 
21 struct memory_segment {
22 	struct list_head list;
23 	unsigned long start;
24 	unsigned long size;
25 };
26 
27 static LIST_HEAD(mem_segs);
28 
29 static void __ref *vmem_alloc_pages(unsigned int order)
30 {
31 	if (slab_is_available())
32 		return (void *)__get_free_pages(GFP_KERNEL, order);
33 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
34 }
35 
36 static inline pud_t *vmem_pud_alloc(void)
37 {
38 	pud_t *pud = NULL;
39 
40 #ifdef CONFIG_64BIT
41 	pud = vmem_alloc_pages(2);
42 	if (!pud)
43 		return NULL;
44 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46 	return pud;
47 }
48 
49 static inline pmd_t *vmem_pmd_alloc(void)
50 {
51 	pmd_t *pmd = NULL;
52 
53 #ifdef CONFIG_64BIT
54 	pmd = vmem_alloc_pages(2);
55 	if (!pmd)
56 		return NULL;
57 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59 	return pmd;
60 }
61 
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
63 {
64 	pte_t *pte;
65 
66 	if (slab_is_available())
67 		pte = (pte_t *) page_table_alloc(&init_mm, address);
68 	else
69 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70 	if (!pte)
71 		return NULL;
72 	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
73 		    PTRS_PER_PTE * sizeof(pte_t));
74 	return pte;
75 }
76 
77 /*
78  * Add a physical memory range to the 1:1 mapping.
79  */
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
81 {
82 	unsigned long end = start + size;
83 	unsigned long address = start;
84 	pgd_t *pg_dir;
85 	pud_t *pu_dir;
86 	pmd_t *pm_dir;
87 	pte_t *pt_dir;
88 	pte_t  pte;
89 	int ret = -ENOMEM;
90 
91 	while (address < end) {
92 		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
93 		pg_dir = pgd_offset_k(address);
94 		if (pgd_none(*pg_dir)) {
95 			pu_dir = vmem_pud_alloc();
96 			if (!pu_dir)
97 				goto out;
98 			pgd_populate(&init_mm, pg_dir, pu_dir);
99 		}
100 		pu_dir = pud_offset(pg_dir, address);
101 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
102 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
103 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
104 			pte_val(pte) |= _REGION3_ENTRY_LARGE;
105 			pte_val(pte) |= _REGION_ENTRY_TYPE_R3;
106 			pud_val(*pu_dir) = pte_val(pte);
107 			address += PUD_SIZE;
108 			continue;
109 		}
110 #endif
111 		if (pud_none(*pu_dir)) {
112 			pm_dir = vmem_pmd_alloc();
113 			if (!pm_dir)
114 				goto out;
115 			pud_populate(&init_mm, pu_dir, pm_dir);
116 		}
117 		pm_dir = pmd_offset(pu_dir, address);
118 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
119 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
120 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
121 			pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
122 			pmd_val(*pm_dir) = pte_val(pte);
123 			address += PMD_SIZE;
124 			continue;
125 		}
126 #endif
127 		if (pmd_none(*pm_dir)) {
128 			pt_dir = vmem_pte_alloc(address);
129 			if (!pt_dir)
130 				goto out;
131 			pmd_populate(&init_mm, pm_dir, pt_dir);
132 		}
133 
134 		pt_dir = pte_offset_kernel(pm_dir, address);
135 		*pt_dir = pte;
136 		address += PAGE_SIZE;
137 	}
138 	ret = 0;
139 out:
140 	flush_tlb_kernel_range(start, end);
141 	return ret;
142 }
143 
144 /*
145  * Remove a physical memory range from the 1:1 mapping.
146  * Currently only invalidates page table entries.
147  */
148 static void vmem_remove_range(unsigned long start, unsigned long size)
149 {
150 	unsigned long end = start + size;
151 	unsigned long address = start;
152 	pgd_t *pg_dir;
153 	pud_t *pu_dir;
154 	pmd_t *pm_dir;
155 	pte_t *pt_dir;
156 	pte_t  pte;
157 
158 	pte_val(pte) = _PAGE_TYPE_EMPTY;
159 	while (address < end) {
160 		pg_dir = pgd_offset_k(address);
161 		if (pgd_none(*pg_dir)) {
162 			address += PGDIR_SIZE;
163 			continue;
164 		}
165 		pu_dir = pud_offset(pg_dir, address);
166 		if (pud_none(*pu_dir)) {
167 			address += PUD_SIZE;
168 			continue;
169 		}
170 		if (pud_large(*pu_dir)) {
171 			pud_clear(pu_dir);
172 			address += PUD_SIZE;
173 			continue;
174 		}
175 		pm_dir = pmd_offset(pu_dir, address);
176 		if (pmd_none(*pm_dir)) {
177 			address += PMD_SIZE;
178 			continue;
179 		}
180 		if (pmd_large(*pm_dir)) {
181 			pmd_clear(pm_dir);
182 			address += PMD_SIZE;
183 			continue;
184 		}
185 		pt_dir = pte_offset_kernel(pm_dir, address);
186 		*pt_dir = pte;
187 		address += PAGE_SIZE;
188 	}
189 	flush_tlb_kernel_range(start, end);
190 }
191 
192 /*
193  * Add a backed mem_map array to the virtual mem_map array.
194  */
195 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
196 {
197 	unsigned long address, start_addr, end_addr;
198 	pgd_t *pg_dir;
199 	pud_t *pu_dir;
200 	pmd_t *pm_dir;
201 	pte_t *pt_dir;
202 	pte_t  pte;
203 	int ret = -ENOMEM;
204 
205 	start_addr = (unsigned long) start;
206 	end_addr = (unsigned long) (start + nr);
207 
208 	for (address = start_addr; address < end_addr;) {
209 		pg_dir = pgd_offset_k(address);
210 		if (pgd_none(*pg_dir)) {
211 			pu_dir = vmem_pud_alloc();
212 			if (!pu_dir)
213 				goto out;
214 			pgd_populate(&init_mm, pg_dir, pu_dir);
215 		}
216 
217 		pu_dir = pud_offset(pg_dir, address);
218 		if (pud_none(*pu_dir)) {
219 			pm_dir = vmem_pmd_alloc();
220 			if (!pm_dir)
221 				goto out;
222 			pud_populate(&init_mm, pu_dir, pm_dir);
223 		}
224 
225 		pm_dir = pmd_offset(pu_dir, address);
226 		if (pmd_none(*pm_dir)) {
227 #ifdef CONFIG_64BIT
228 			/* Use 1MB frames for vmemmap if available. We always
229 			 * use large frames even if they are only partially
230 			 * used.
231 			 * Otherwise we would have also page tables since
232 			 * vmemmap_populate gets called for each section
233 			 * separately. */
234 			if (MACHINE_HAS_EDAT1) {
235 				void *new_page;
236 
237 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
238 				if (!new_page)
239 					goto out;
240 				pte = mk_pte_phys(__pa(new_page), PAGE_RW);
241 				pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
242 				pmd_val(*pm_dir) = pte_val(pte);
243 				address = (address + PMD_SIZE) & PMD_MASK;
244 				continue;
245 			}
246 #endif
247 			pt_dir = vmem_pte_alloc(address);
248 			if (!pt_dir)
249 				goto out;
250 			pmd_populate(&init_mm, pm_dir, pt_dir);
251 		} else if (pmd_large(*pm_dir)) {
252 			address = (address + PMD_SIZE) & PMD_MASK;
253 			continue;
254 		}
255 
256 		pt_dir = pte_offset_kernel(pm_dir, address);
257 		if (pte_none(*pt_dir)) {
258 			unsigned long new_page;
259 
260 			new_page =__pa(vmem_alloc_pages(0));
261 			if (!new_page)
262 				goto out;
263 			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
264 			*pt_dir = pte;
265 		}
266 		address += PAGE_SIZE;
267 	}
268 	memset(start, 0, nr * sizeof(struct page));
269 	ret = 0;
270 out:
271 	flush_tlb_kernel_range(start_addr, end_addr);
272 	return ret;
273 }
274 
275 /*
276  * Add memory segment to the segment list if it doesn't overlap with
277  * an already present segment.
278  */
279 static int insert_memory_segment(struct memory_segment *seg)
280 {
281 	struct memory_segment *tmp;
282 
283 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
284 	    seg->start + seg->size < seg->start)
285 		return -ERANGE;
286 
287 	list_for_each_entry(tmp, &mem_segs, list) {
288 		if (seg->start >= tmp->start + tmp->size)
289 			continue;
290 		if (seg->start + seg->size <= tmp->start)
291 			continue;
292 		return -ENOSPC;
293 	}
294 	list_add(&seg->list, &mem_segs);
295 	return 0;
296 }
297 
298 /*
299  * Remove memory segment from the segment list.
300  */
301 static void remove_memory_segment(struct memory_segment *seg)
302 {
303 	list_del(&seg->list);
304 }
305 
306 static void __remove_shared_memory(struct memory_segment *seg)
307 {
308 	remove_memory_segment(seg);
309 	vmem_remove_range(seg->start, seg->size);
310 }
311 
312 int vmem_remove_mapping(unsigned long start, unsigned long size)
313 {
314 	struct memory_segment *seg;
315 	int ret;
316 
317 	mutex_lock(&vmem_mutex);
318 
319 	ret = -ENOENT;
320 	list_for_each_entry(seg, &mem_segs, list) {
321 		if (seg->start == start && seg->size == size)
322 			break;
323 	}
324 
325 	if (seg->start != start || seg->size != size)
326 		goto out;
327 
328 	ret = 0;
329 	__remove_shared_memory(seg);
330 	kfree(seg);
331 out:
332 	mutex_unlock(&vmem_mutex);
333 	return ret;
334 }
335 
336 int vmem_add_mapping(unsigned long start, unsigned long size)
337 {
338 	struct memory_segment *seg;
339 	int ret;
340 
341 	mutex_lock(&vmem_mutex);
342 	ret = -ENOMEM;
343 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
344 	if (!seg)
345 		goto out;
346 	seg->start = start;
347 	seg->size = size;
348 
349 	ret = insert_memory_segment(seg);
350 	if (ret)
351 		goto out_free;
352 
353 	ret = vmem_add_mem(start, size, 0);
354 	if (ret)
355 		goto out_remove;
356 	goto out;
357 
358 out_remove:
359 	__remove_shared_memory(seg);
360 out_free:
361 	kfree(seg);
362 out:
363 	mutex_unlock(&vmem_mutex);
364 	return ret;
365 }
366 
367 /*
368  * map whole physical memory to virtual memory (identity mapping)
369  * we reserve enough space in the vmalloc area for vmemmap to hotplug
370  * additional memory segments.
371  */
372 void __init vmem_map_init(void)
373 {
374 	unsigned long ro_start, ro_end;
375 	unsigned long start, end;
376 	int i;
377 
378 	ro_start = PFN_ALIGN((unsigned long)&_stext);
379 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
380 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
381 		if (memory_chunk[i].type == CHUNK_CRASHK ||
382 		    memory_chunk[i].type == CHUNK_OLDMEM)
383 			continue;
384 		start = memory_chunk[i].addr;
385 		end = memory_chunk[i].addr + memory_chunk[i].size;
386 		if (start >= ro_end || end <= ro_start)
387 			vmem_add_mem(start, end - start, 0);
388 		else if (start >= ro_start && end <= ro_end)
389 			vmem_add_mem(start, end - start, 1);
390 		else if (start >= ro_start) {
391 			vmem_add_mem(start, ro_end - start, 1);
392 			vmem_add_mem(ro_end, end - ro_end, 0);
393 		} else if (end < ro_end) {
394 			vmem_add_mem(start, ro_start - start, 0);
395 			vmem_add_mem(ro_start, end - ro_start, 1);
396 		} else {
397 			vmem_add_mem(start, ro_start - start, 0);
398 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
399 			vmem_add_mem(ro_end, end - ro_end, 0);
400 		}
401 	}
402 }
403 
404 /*
405  * Convert memory chunk array to a memory segment list so there is a single
406  * list that contains both r/w memory and shared memory segments.
407  */
408 static int __init vmem_convert_memory_chunk(void)
409 {
410 	struct memory_segment *seg;
411 	int i;
412 
413 	mutex_lock(&vmem_mutex);
414 	for (i = 0; i < MEMORY_CHUNKS; i++) {
415 		if (!memory_chunk[i].size)
416 			continue;
417 		if (memory_chunk[i].type == CHUNK_CRASHK ||
418 		    memory_chunk[i].type == CHUNK_OLDMEM)
419 			continue;
420 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
421 		if (!seg)
422 			panic("Out of memory...\n");
423 		seg->start = memory_chunk[i].addr;
424 		seg->size = memory_chunk[i].size;
425 		insert_memory_segment(seg);
426 	}
427 	mutex_unlock(&vmem_mutex);
428 	return 0;
429 }
430 
431 core_initcall(vmem_convert_memory_chunk);
432