xref: /openbmc/linux/arch/s390/mm/vmem.c (revision b6dcefde)
1 /*
2  *  arch/s390/mm/vmem.c
3  *
4  *    Copyright IBM Corp. 2006
5  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6  */
7 
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 
20 static DEFINE_MUTEX(vmem_mutex);
21 
22 struct memory_segment {
23 	struct list_head list;
24 	unsigned long start;
25 	unsigned long size;
26 };
27 
28 static LIST_HEAD(mem_segs);
29 
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32 	if (slab_is_available())
33 		return (void *)__get_free_pages(GFP_KERNEL, order);
34 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36 
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39 	pud_t *pud = NULL;
40 
41 #ifdef CONFIG_64BIT
42 	pud = vmem_alloc_pages(2);
43 	if (!pud)
44 		return NULL;
45 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
46 #endif
47 	return pud;
48 }
49 
50 static inline pmd_t *vmem_pmd_alloc(void)
51 {
52 	pmd_t *pmd = NULL;
53 
54 #ifdef CONFIG_64BIT
55 	pmd = vmem_alloc_pages(2);
56 	if (!pmd)
57 		return NULL;
58 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59 #endif
60 	return pmd;
61 }
62 
63 static pte_t __ref *vmem_pte_alloc(void)
64 {
65 	pte_t *pte;
66 
67 	if (slab_is_available())
68 		pte = (pte_t *) page_table_alloc(&init_mm);
69 	else
70 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
71 	if (!pte)
72 		return NULL;
73 	if (MACHINE_HAS_HPAGE)
74 		clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY | _PAGE_CO,
75 			    PTRS_PER_PTE * sizeof(pte_t));
76 	else
77 		clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
78 			    PTRS_PER_PTE * sizeof(pte_t));
79 	return pte;
80 }
81 
82 /*
83  * Add a physical memory range to the 1:1 mapping.
84  */
85 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
86 {
87 	unsigned long address;
88 	pgd_t *pg_dir;
89 	pud_t *pu_dir;
90 	pmd_t *pm_dir;
91 	pte_t *pt_dir;
92 	pte_t  pte;
93 	int ret = -ENOMEM;
94 
95 	for (address = start; address < start + size; address += PAGE_SIZE) {
96 		pg_dir = pgd_offset_k(address);
97 		if (pgd_none(*pg_dir)) {
98 			pu_dir = vmem_pud_alloc();
99 			if (!pu_dir)
100 				goto out;
101 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
102 		}
103 
104 		pu_dir = pud_offset(pg_dir, address);
105 		if (pud_none(*pu_dir)) {
106 			pm_dir = vmem_pmd_alloc();
107 			if (!pm_dir)
108 				goto out;
109 			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
110 		}
111 
112 		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
113 		pm_dir = pmd_offset(pu_dir, address);
114 
115 #ifdef __s390x__
116 		if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
117 		    (address + HPAGE_SIZE <= start + size) &&
118 		    (address >= HPAGE_SIZE)) {
119 			pte_val(pte) |= _SEGMENT_ENTRY_LARGE |
120 					_SEGMENT_ENTRY_CO;
121 			pmd_val(*pm_dir) = pte_val(pte);
122 			address += HPAGE_SIZE - PAGE_SIZE;
123 			continue;
124 		}
125 #endif
126 		if (pmd_none(*pm_dir)) {
127 			pt_dir = vmem_pte_alloc();
128 			if (!pt_dir)
129 				goto out;
130 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
131 		}
132 
133 		pt_dir = pte_offset_kernel(pm_dir, address);
134 		*pt_dir = pte;
135 	}
136 	ret = 0;
137 out:
138 	flush_tlb_kernel_range(start, start + size);
139 	return ret;
140 }
141 
142 /*
143  * Remove a physical memory range from the 1:1 mapping.
144  * Currently only invalidates page table entries.
145  */
146 static void vmem_remove_range(unsigned long start, unsigned long size)
147 {
148 	unsigned long address;
149 	pgd_t *pg_dir;
150 	pud_t *pu_dir;
151 	pmd_t *pm_dir;
152 	pte_t *pt_dir;
153 	pte_t  pte;
154 
155 	pte_val(pte) = _PAGE_TYPE_EMPTY;
156 	for (address = start; address < start + size; address += PAGE_SIZE) {
157 		pg_dir = pgd_offset_k(address);
158 		pu_dir = pud_offset(pg_dir, address);
159 		if (pud_none(*pu_dir))
160 			continue;
161 		pm_dir = pmd_offset(pu_dir, address);
162 		if (pmd_none(*pm_dir))
163 			continue;
164 
165 		if (pmd_huge(*pm_dir)) {
166 			pmd_clear_kernel(pm_dir);
167 			address += HPAGE_SIZE - PAGE_SIZE;
168 			continue;
169 		}
170 
171 		pt_dir = pte_offset_kernel(pm_dir, address);
172 		*pt_dir = pte;
173 	}
174 	flush_tlb_kernel_range(start, start + size);
175 }
176 
177 /*
178  * Add a backed mem_map array to the virtual mem_map array.
179  */
180 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
181 {
182 	unsigned long address, start_addr, end_addr;
183 	pgd_t *pg_dir;
184 	pud_t *pu_dir;
185 	pmd_t *pm_dir;
186 	pte_t *pt_dir;
187 	pte_t  pte;
188 	int ret = -ENOMEM;
189 
190 	start_addr = (unsigned long) start;
191 	end_addr = (unsigned long) (start + nr);
192 
193 	for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
194 		pg_dir = pgd_offset_k(address);
195 		if (pgd_none(*pg_dir)) {
196 			pu_dir = vmem_pud_alloc();
197 			if (!pu_dir)
198 				goto out;
199 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
200 		}
201 
202 		pu_dir = pud_offset(pg_dir, address);
203 		if (pud_none(*pu_dir)) {
204 			pm_dir = vmem_pmd_alloc();
205 			if (!pm_dir)
206 				goto out;
207 			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
208 		}
209 
210 		pm_dir = pmd_offset(pu_dir, address);
211 		if (pmd_none(*pm_dir)) {
212 			pt_dir = vmem_pte_alloc();
213 			if (!pt_dir)
214 				goto out;
215 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
216 		}
217 
218 		pt_dir = pte_offset_kernel(pm_dir, address);
219 		if (pte_none(*pt_dir)) {
220 			unsigned long new_page;
221 
222 			new_page =__pa(vmem_alloc_pages(0));
223 			if (!new_page)
224 				goto out;
225 			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
226 			*pt_dir = pte;
227 		}
228 	}
229 	memset(start, 0, nr * sizeof(struct page));
230 	ret = 0;
231 out:
232 	flush_tlb_kernel_range(start_addr, end_addr);
233 	return ret;
234 }
235 
236 /*
237  * Add memory segment to the segment list if it doesn't overlap with
238  * an already present segment.
239  */
240 static int insert_memory_segment(struct memory_segment *seg)
241 {
242 	struct memory_segment *tmp;
243 
244 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
245 	    seg->start + seg->size < seg->start)
246 		return -ERANGE;
247 
248 	list_for_each_entry(tmp, &mem_segs, list) {
249 		if (seg->start >= tmp->start + tmp->size)
250 			continue;
251 		if (seg->start + seg->size <= tmp->start)
252 			continue;
253 		return -ENOSPC;
254 	}
255 	list_add(&seg->list, &mem_segs);
256 	return 0;
257 }
258 
259 /*
260  * Remove memory segment from the segment list.
261  */
262 static void remove_memory_segment(struct memory_segment *seg)
263 {
264 	list_del(&seg->list);
265 }
266 
267 static void __remove_shared_memory(struct memory_segment *seg)
268 {
269 	remove_memory_segment(seg);
270 	vmem_remove_range(seg->start, seg->size);
271 }
272 
273 int vmem_remove_mapping(unsigned long start, unsigned long size)
274 {
275 	struct memory_segment *seg;
276 	int ret;
277 
278 	mutex_lock(&vmem_mutex);
279 
280 	ret = -ENOENT;
281 	list_for_each_entry(seg, &mem_segs, list) {
282 		if (seg->start == start && seg->size == size)
283 			break;
284 	}
285 
286 	if (seg->start != start || seg->size != size)
287 		goto out;
288 
289 	ret = 0;
290 	__remove_shared_memory(seg);
291 	kfree(seg);
292 out:
293 	mutex_unlock(&vmem_mutex);
294 	return ret;
295 }
296 
297 int vmem_add_mapping(unsigned long start, unsigned long size)
298 {
299 	struct memory_segment *seg;
300 	int ret;
301 
302 	mutex_lock(&vmem_mutex);
303 	ret = -ENOMEM;
304 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
305 	if (!seg)
306 		goto out;
307 	seg->start = start;
308 	seg->size = size;
309 
310 	ret = insert_memory_segment(seg);
311 	if (ret)
312 		goto out_free;
313 
314 	ret = vmem_add_mem(start, size, 0);
315 	if (ret)
316 		goto out_remove;
317 	goto out;
318 
319 out_remove:
320 	__remove_shared_memory(seg);
321 out_free:
322 	kfree(seg);
323 out:
324 	mutex_unlock(&vmem_mutex);
325 	return ret;
326 }
327 
328 /*
329  * map whole physical memory to virtual memory (identity mapping)
330  * we reserve enough space in the vmalloc area for vmemmap to hotplug
331  * additional memory segments.
332  */
333 void __init vmem_map_init(void)
334 {
335 	unsigned long ro_start, ro_end;
336 	unsigned long start, end;
337 	int i;
338 
339 	spin_lock_init(&init_mm.context.list_lock);
340 	INIT_LIST_HEAD(&init_mm.context.crst_list);
341 	INIT_LIST_HEAD(&init_mm.context.pgtable_list);
342 	init_mm.context.noexec = 0;
343 	ro_start = ((unsigned long)&_stext) & PAGE_MASK;
344 	ro_end = PFN_ALIGN((unsigned long)&_eshared);
345 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
346 		start = memory_chunk[i].addr;
347 		end = memory_chunk[i].addr + memory_chunk[i].size;
348 		if (start >= ro_end || end <= ro_start)
349 			vmem_add_mem(start, end - start, 0);
350 		else if (start >= ro_start && end <= ro_end)
351 			vmem_add_mem(start, end - start, 1);
352 		else if (start >= ro_start) {
353 			vmem_add_mem(start, ro_end - start, 1);
354 			vmem_add_mem(ro_end, end - ro_end, 0);
355 		} else if (end < ro_end) {
356 			vmem_add_mem(start, ro_start - start, 0);
357 			vmem_add_mem(ro_start, end - ro_start, 1);
358 		} else {
359 			vmem_add_mem(start, ro_start - start, 0);
360 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
361 			vmem_add_mem(ro_end, end - ro_end, 0);
362 		}
363 	}
364 }
365 
366 /*
367  * Convert memory chunk array to a memory segment list so there is a single
368  * list that contains both r/w memory and shared memory segments.
369  */
370 static int __init vmem_convert_memory_chunk(void)
371 {
372 	struct memory_segment *seg;
373 	int i;
374 
375 	mutex_lock(&vmem_mutex);
376 	for (i = 0; i < MEMORY_CHUNKS; i++) {
377 		if (!memory_chunk[i].size)
378 			continue;
379 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
380 		if (!seg)
381 			panic("Out of memory...\n");
382 		seg->start = memory_chunk[i].addr;
383 		seg->size = memory_chunk[i].size;
384 		insert_memory_segment(seg);
385 	}
386 	mutex_unlock(&vmem_mutex);
387 	return 0;
388 }
389 
390 core_initcall(vmem_convert_memory_chunk);
391