xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 9b9c2cd4)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 
20 static DEFINE_MUTEX(vmem_mutex);
21 
22 struct memory_segment {
23 	struct list_head list;
24 	unsigned long start;
25 	unsigned long size;
26 };
27 
28 static LIST_HEAD(mem_segs);
29 
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32 	if (slab_is_available())
33 		return (void *)__get_free_pages(GFP_KERNEL, order);
34 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36 
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39 	pud_t *pud = NULL;
40 
41 	pud = vmem_alloc_pages(2);
42 	if (!pud)
43 		return NULL;
44 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 	return pud;
46 }
47 
48 static inline pmd_t *vmem_pmd_alloc(void)
49 {
50 	pmd_t *pmd = NULL;
51 
52 	pmd = vmem_alloc_pages(2);
53 	if (!pmd)
54 		return NULL;
55 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
56 	return pmd;
57 }
58 
59 static pte_t __ref *vmem_pte_alloc(unsigned long address)
60 {
61 	pte_t *pte;
62 
63 	if (slab_is_available())
64 		pte = (pte_t *) page_table_alloc(&init_mm);
65 	else
66 		pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
67 					  PTRS_PER_PTE * sizeof(pte_t));
68 	if (!pte)
69 		return NULL;
70 	clear_table((unsigned long *) pte, _PAGE_INVALID,
71 		    PTRS_PER_PTE * sizeof(pte_t));
72 	return pte;
73 }
74 
75 /*
76  * Add a physical memory range to the 1:1 mapping.
77  */
78 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
79 {
80 	unsigned long end = start + size;
81 	unsigned long address = start;
82 	pgd_t *pg_dir;
83 	pud_t *pu_dir;
84 	pmd_t *pm_dir;
85 	pte_t *pt_dir;
86 	int ret = -ENOMEM;
87 
88 	while (address < end) {
89 		pg_dir = pgd_offset_k(address);
90 		if (pgd_none(*pg_dir)) {
91 			pu_dir = vmem_pud_alloc();
92 			if (!pu_dir)
93 				goto out;
94 			pgd_populate(&init_mm, pg_dir, pu_dir);
95 		}
96 		pu_dir = pud_offset(pg_dir, address);
97 #ifndef CONFIG_DEBUG_PAGEALLOC
98 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
99 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
100 			pud_val(*pu_dir) = __pa(address) |
101 				_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
102 				(ro ? _REGION_ENTRY_PROTECT : 0);
103 			address += PUD_SIZE;
104 			continue;
105 		}
106 #endif
107 		if (pud_none(*pu_dir)) {
108 			pm_dir = vmem_pmd_alloc();
109 			if (!pm_dir)
110 				goto out;
111 			pud_populate(&init_mm, pu_dir, pm_dir);
112 		}
113 		pm_dir = pmd_offset(pu_dir, address);
114 #ifndef CONFIG_DEBUG_PAGEALLOC
115 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
116 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
117 			pmd_val(*pm_dir) = __pa(address) |
118 				_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
119 				_SEGMENT_ENTRY_YOUNG |
120 				(ro ? _SEGMENT_ENTRY_PROTECT : 0);
121 			address += PMD_SIZE;
122 			continue;
123 		}
124 #endif
125 		if (pmd_none(*pm_dir)) {
126 			pt_dir = vmem_pte_alloc(address);
127 			if (!pt_dir)
128 				goto out;
129 			pmd_populate(&init_mm, pm_dir, pt_dir);
130 		}
131 
132 		pt_dir = pte_offset_kernel(pm_dir, address);
133 		pte_val(*pt_dir) = __pa(address) |
134 			pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
135 		address += PAGE_SIZE;
136 	}
137 	ret = 0;
138 out:
139 	return ret;
140 }
141 
142 /*
143  * Remove a physical memory range from the 1:1 mapping.
144  * Currently only invalidates page table entries.
145  */
146 static void vmem_remove_range(unsigned long start, unsigned long size)
147 {
148 	unsigned long end = start + size;
149 	unsigned long address = start;
150 	pgd_t *pg_dir;
151 	pud_t *pu_dir;
152 	pmd_t *pm_dir;
153 	pte_t *pt_dir;
154 	pte_t  pte;
155 
156 	pte_val(pte) = _PAGE_INVALID;
157 	while (address < end) {
158 		pg_dir = pgd_offset_k(address);
159 		if (pgd_none(*pg_dir)) {
160 			address += PGDIR_SIZE;
161 			continue;
162 		}
163 		pu_dir = pud_offset(pg_dir, address);
164 		if (pud_none(*pu_dir)) {
165 			address += PUD_SIZE;
166 			continue;
167 		}
168 		if (pud_large(*pu_dir)) {
169 			pud_clear(pu_dir);
170 			address += PUD_SIZE;
171 			continue;
172 		}
173 		pm_dir = pmd_offset(pu_dir, address);
174 		if (pmd_none(*pm_dir)) {
175 			address += PMD_SIZE;
176 			continue;
177 		}
178 		if (pmd_large(*pm_dir)) {
179 			pmd_clear(pm_dir);
180 			address += PMD_SIZE;
181 			continue;
182 		}
183 		pt_dir = pte_offset_kernel(pm_dir, address);
184 		*pt_dir = pte;
185 		address += PAGE_SIZE;
186 	}
187 	flush_tlb_kernel_range(start, end);
188 }
189 
190 /*
191  * Add a backed mem_map array to the virtual mem_map array.
192  */
193 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
194 {
195 	unsigned long address = start;
196 	pgd_t *pg_dir;
197 	pud_t *pu_dir;
198 	pmd_t *pm_dir;
199 	pte_t *pt_dir;
200 	int ret = -ENOMEM;
201 
202 	for (address = start; address < end;) {
203 		pg_dir = pgd_offset_k(address);
204 		if (pgd_none(*pg_dir)) {
205 			pu_dir = vmem_pud_alloc();
206 			if (!pu_dir)
207 				goto out;
208 			pgd_populate(&init_mm, pg_dir, pu_dir);
209 		}
210 
211 		pu_dir = pud_offset(pg_dir, address);
212 		if (pud_none(*pu_dir)) {
213 			pm_dir = vmem_pmd_alloc();
214 			if (!pm_dir)
215 				goto out;
216 			pud_populate(&init_mm, pu_dir, pm_dir);
217 		}
218 
219 		pm_dir = pmd_offset(pu_dir, address);
220 		if (pmd_none(*pm_dir)) {
221 			/* Use 1MB frames for vmemmap if available. We always
222 			 * use large frames even if they are only partially
223 			 * used.
224 			 * Otherwise we would have also page tables since
225 			 * vmemmap_populate gets called for each section
226 			 * separately. */
227 			if (MACHINE_HAS_EDAT1) {
228 				void *new_page;
229 
230 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
231 				if (!new_page)
232 					goto out;
233 				pmd_val(*pm_dir) = __pa(new_page) |
234 					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
235 				address = (address + PMD_SIZE) & PMD_MASK;
236 				continue;
237 			}
238 			pt_dir = vmem_pte_alloc(address);
239 			if (!pt_dir)
240 				goto out;
241 			pmd_populate(&init_mm, pm_dir, pt_dir);
242 		} else if (pmd_large(*pm_dir)) {
243 			address = (address + PMD_SIZE) & PMD_MASK;
244 			continue;
245 		}
246 
247 		pt_dir = pte_offset_kernel(pm_dir, address);
248 		if (pte_none(*pt_dir)) {
249 			void *new_page;
250 
251 			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
252 			if (!new_page)
253 				goto out;
254 			pte_val(*pt_dir) =
255 				__pa(new_page) | pgprot_val(PAGE_KERNEL);
256 		}
257 		address += PAGE_SIZE;
258 	}
259 	ret = 0;
260 out:
261 	return ret;
262 }
263 
264 void vmemmap_free(unsigned long start, unsigned long end)
265 {
266 }
267 
268 /*
269  * Add memory segment to the segment list if it doesn't overlap with
270  * an already present segment.
271  */
272 static int insert_memory_segment(struct memory_segment *seg)
273 {
274 	struct memory_segment *tmp;
275 
276 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
277 	    seg->start + seg->size < seg->start)
278 		return -ERANGE;
279 
280 	list_for_each_entry(tmp, &mem_segs, list) {
281 		if (seg->start >= tmp->start + tmp->size)
282 			continue;
283 		if (seg->start + seg->size <= tmp->start)
284 			continue;
285 		return -ENOSPC;
286 	}
287 	list_add(&seg->list, &mem_segs);
288 	return 0;
289 }
290 
291 /*
292  * Remove memory segment from the segment list.
293  */
294 static void remove_memory_segment(struct memory_segment *seg)
295 {
296 	list_del(&seg->list);
297 }
298 
299 static void __remove_shared_memory(struct memory_segment *seg)
300 {
301 	remove_memory_segment(seg);
302 	vmem_remove_range(seg->start, seg->size);
303 }
304 
305 int vmem_remove_mapping(unsigned long start, unsigned long size)
306 {
307 	struct memory_segment *seg;
308 	int ret;
309 
310 	mutex_lock(&vmem_mutex);
311 
312 	ret = -ENOENT;
313 	list_for_each_entry(seg, &mem_segs, list) {
314 		if (seg->start == start && seg->size == size)
315 			break;
316 	}
317 
318 	if (seg->start != start || seg->size != size)
319 		goto out;
320 
321 	ret = 0;
322 	__remove_shared_memory(seg);
323 	kfree(seg);
324 out:
325 	mutex_unlock(&vmem_mutex);
326 	return ret;
327 }
328 
329 int vmem_add_mapping(unsigned long start, unsigned long size)
330 {
331 	struct memory_segment *seg;
332 	int ret;
333 
334 	mutex_lock(&vmem_mutex);
335 	ret = -ENOMEM;
336 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
337 	if (!seg)
338 		goto out;
339 	seg->start = start;
340 	seg->size = size;
341 
342 	ret = insert_memory_segment(seg);
343 	if (ret)
344 		goto out_free;
345 
346 	ret = vmem_add_mem(start, size, 0);
347 	if (ret)
348 		goto out_remove;
349 	goto out;
350 
351 out_remove:
352 	__remove_shared_memory(seg);
353 out_free:
354 	kfree(seg);
355 out:
356 	mutex_unlock(&vmem_mutex);
357 	return ret;
358 }
359 
360 /*
361  * map whole physical memory to virtual memory (identity mapping)
362  * we reserve enough space in the vmalloc area for vmemmap to hotplug
363  * additional memory segments.
364  */
365 void __init vmem_map_init(void)
366 {
367 	unsigned long ro_start, ro_end;
368 	struct memblock_region *reg;
369 	phys_addr_t start, end;
370 
371 	ro_start = PFN_ALIGN((unsigned long)&_stext);
372 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
373 	for_each_memblock(memory, reg) {
374 		start = reg->base;
375 		end = reg->base + reg->size - 1;
376 		if (start >= ro_end || end <= ro_start)
377 			vmem_add_mem(start, end - start, 0);
378 		else if (start >= ro_start && end <= ro_end)
379 			vmem_add_mem(start, end - start, 1);
380 		else if (start >= ro_start) {
381 			vmem_add_mem(start, ro_end - start, 1);
382 			vmem_add_mem(ro_end, end - ro_end, 0);
383 		} else if (end < ro_end) {
384 			vmem_add_mem(start, ro_start - start, 0);
385 			vmem_add_mem(ro_start, end - ro_start, 1);
386 		} else {
387 			vmem_add_mem(start, ro_start - start, 0);
388 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
389 			vmem_add_mem(ro_end, end - ro_end, 0);
390 		}
391 	}
392 }
393 
394 /*
395  * Convert memblock.memory  to a memory segment list so there is a single
396  * list that contains all memory segments.
397  */
398 static int __init vmem_convert_memory_chunk(void)
399 {
400 	struct memblock_region *reg;
401 	struct memory_segment *seg;
402 
403 	mutex_lock(&vmem_mutex);
404 	for_each_memblock(memory, reg) {
405 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
406 		if (!seg)
407 			panic("Out of memory...\n");
408 		seg->start = reg->base;
409 		seg->size = reg->size;
410 		insert_memory_segment(seg);
411 	}
412 	mutex_unlock(&vmem_mutex);
413 	return 0;
414 }
415 
416 core_initcall(vmem_convert_memory_chunk);
417