xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 8684014d)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 
20 static DEFINE_MUTEX(vmem_mutex);
21 
22 struct memory_segment {
23 	struct list_head list;
24 	unsigned long start;
25 	unsigned long size;
26 };
27 
28 static LIST_HEAD(mem_segs);
29 
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32 	if (slab_is_available())
33 		return (void *)__get_free_pages(GFP_KERNEL, order);
34 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36 
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39 	pud_t *pud = NULL;
40 
41 #ifdef CONFIG_64BIT
42 	pud = vmem_alloc_pages(2);
43 	if (!pud)
44 		return NULL;
45 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
46 #endif
47 	return pud;
48 }
49 
50 static inline pmd_t *vmem_pmd_alloc(void)
51 {
52 	pmd_t *pmd = NULL;
53 
54 #ifdef CONFIG_64BIT
55 	pmd = vmem_alloc_pages(2);
56 	if (!pmd)
57 		return NULL;
58 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59 #endif
60 	return pmd;
61 }
62 
63 static pte_t __ref *vmem_pte_alloc(unsigned long address)
64 {
65 	pte_t *pte;
66 
67 	if (slab_is_available())
68 		pte = (pte_t *) page_table_alloc(&init_mm);
69 	else
70 		pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
71 					  PTRS_PER_PTE * sizeof(pte_t));
72 	if (!pte)
73 		return NULL;
74 	clear_table((unsigned long *) pte, _PAGE_INVALID,
75 		    PTRS_PER_PTE * sizeof(pte_t));
76 	return pte;
77 }
78 
79 /*
80  * Add a physical memory range to the 1:1 mapping.
81  */
82 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83 {
84 	unsigned long end = start + size;
85 	unsigned long address = start;
86 	pgd_t *pg_dir;
87 	pud_t *pu_dir;
88 	pmd_t *pm_dir;
89 	pte_t *pt_dir;
90 	int ret = -ENOMEM;
91 
92 	while (address < end) {
93 		pg_dir = pgd_offset_k(address);
94 		if (pgd_none(*pg_dir)) {
95 			pu_dir = vmem_pud_alloc();
96 			if (!pu_dir)
97 				goto out;
98 			pgd_populate(&init_mm, pg_dir, pu_dir);
99 		}
100 		pu_dir = pud_offset(pg_dir, address);
101 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
102 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
103 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
104 			pud_val(*pu_dir) = __pa(address) |
105 				_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
106 				(ro ? _REGION_ENTRY_PROTECT : 0);
107 			address += PUD_SIZE;
108 			continue;
109 		}
110 #endif
111 		if (pud_none(*pu_dir)) {
112 			pm_dir = vmem_pmd_alloc();
113 			if (!pm_dir)
114 				goto out;
115 			pud_populate(&init_mm, pu_dir, pm_dir);
116 		}
117 		pm_dir = pmd_offset(pu_dir, address);
118 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
119 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
120 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
121 			pmd_val(*pm_dir) = __pa(address) |
122 				_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
123 				_SEGMENT_ENTRY_YOUNG |
124 				(ro ? _SEGMENT_ENTRY_PROTECT : 0);
125 			address += PMD_SIZE;
126 			continue;
127 		}
128 #endif
129 		if (pmd_none(*pm_dir)) {
130 			pt_dir = vmem_pte_alloc(address);
131 			if (!pt_dir)
132 				goto out;
133 			pmd_populate(&init_mm, pm_dir, pt_dir);
134 		}
135 
136 		pt_dir = pte_offset_kernel(pm_dir, address);
137 		pte_val(*pt_dir) = __pa(address) |
138 			pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
139 		address += PAGE_SIZE;
140 	}
141 	ret = 0;
142 out:
143 	return ret;
144 }
145 
146 /*
147  * Remove a physical memory range from the 1:1 mapping.
148  * Currently only invalidates page table entries.
149  */
150 static void vmem_remove_range(unsigned long start, unsigned long size)
151 {
152 	unsigned long end = start + size;
153 	unsigned long address = start;
154 	pgd_t *pg_dir;
155 	pud_t *pu_dir;
156 	pmd_t *pm_dir;
157 	pte_t *pt_dir;
158 	pte_t  pte;
159 
160 	pte_val(pte) = _PAGE_INVALID;
161 	while (address < end) {
162 		pg_dir = pgd_offset_k(address);
163 		if (pgd_none(*pg_dir)) {
164 			address += PGDIR_SIZE;
165 			continue;
166 		}
167 		pu_dir = pud_offset(pg_dir, address);
168 		if (pud_none(*pu_dir)) {
169 			address += PUD_SIZE;
170 			continue;
171 		}
172 		if (pud_large(*pu_dir)) {
173 			pud_clear(pu_dir);
174 			address += PUD_SIZE;
175 			continue;
176 		}
177 		pm_dir = pmd_offset(pu_dir, address);
178 		if (pmd_none(*pm_dir)) {
179 			address += PMD_SIZE;
180 			continue;
181 		}
182 		if (pmd_large(*pm_dir)) {
183 			pmd_clear(pm_dir);
184 			address += PMD_SIZE;
185 			continue;
186 		}
187 		pt_dir = pte_offset_kernel(pm_dir, address);
188 		*pt_dir = pte;
189 		address += PAGE_SIZE;
190 	}
191 	flush_tlb_kernel_range(start, end);
192 }
193 
194 /*
195  * Add a backed mem_map array to the virtual mem_map array.
196  */
197 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
198 {
199 	unsigned long address = start;
200 	pgd_t *pg_dir;
201 	pud_t *pu_dir;
202 	pmd_t *pm_dir;
203 	pte_t *pt_dir;
204 	int ret = -ENOMEM;
205 
206 	for (address = start; address < end;) {
207 		pg_dir = pgd_offset_k(address);
208 		if (pgd_none(*pg_dir)) {
209 			pu_dir = vmem_pud_alloc();
210 			if (!pu_dir)
211 				goto out;
212 			pgd_populate(&init_mm, pg_dir, pu_dir);
213 		}
214 
215 		pu_dir = pud_offset(pg_dir, address);
216 		if (pud_none(*pu_dir)) {
217 			pm_dir = vmem_pmd_alloc();
218 			if (!pm_dir)
219 				goto out;
220 			pud_populate(&init_mm, pu_dir, pm_dir);
221 		}
222 
223 		pm_dir = pmd_offset(pu_dir, address);
224 		if (pmd_none(*pm_dir)) {
225 #ifdef CONFIG_64BIT
226 			/* Use 1MB frames for vmemmap if available. We always
227 			 * use large frames even if they are only partially
228 			 * used.
229 			 * Otherwise we would have also page tables since
230 			 * vmemmap_populate gets called for each section
231 			 * separately. */
232 			if (MACHINE_HAS_EDAT1) {
233 				void *new_page;
234 
235 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
236 				if (!new_page)
237 					goto out;
238 				pmd_val(*pm_dir) = __pa(new_page) |
239 					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
240 				address = (address + PMD_SIZE) & PMD_MASK;
241 				continue;
242 			}
243 #endif
244 			pt_dir = vmem_pte_alloc(address);
245 			if (!pt_dir)
246 				goto out;
247 			pmd_populate(&init_mm, pm_dir, pt_dir);
248 		} else if (pmd_large(*pm_dir)) {
249 			address = (address + PMD_SIZE) & PMD_MASK;
250 			continue;
251 		}
252 
253 		pt_dir = pte_offset_kernel(pm_dir, address);
254 		if (pte_none(*pt_dir)) {
255 			void *new_page;
256 
257 			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
258 			if (!new_page)
259 				goto out;
260 			pte_val(*pt_dir) =
261 				__pa(new_page) | pgprot_val(PAGE_KERNEL);
262 		}
263 		address += PAGE_SIZE;
264 	}
265 	ret = 0;
266 out:
267 	return ret;
268 }
269 
270 void vmemmap_free(unsigned long start, unsigned long end)
271 {
272 }
273 
274 /*
275  * Add memory segment to the segment list if it doesn't overlap with
276  * an already present segment.
277  */
278 static int insert_memory_segment(struct memory_segment *seg)
279 {
280 	struct memory_segment *tmp;
281 
282 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
283 	    seg->start + seg->size < seg->start)
284 		return -ERANGE;
285 
286 	list_for_each_entry(tmp, &mem_segs, list) {
287 		if (seg->start >= tmp->start + tmp->size)
288 			continue;
289 		if (seg->start + seg->size <= tmp->start)
290 			continue;
291 		return -ENOSPC;
292 	}
293 	list_add(&seg->list, &mem_segs);
294 	return 0;
295 }
296 
297 /*
298  * Remove memory segment from the segment list.
299  */
300 static void remove_memory_segment(struct memory_segment *seg)
301 {
302 	list_del(&seg->list);
303 }
304 
305 static void __remove_shared_memory(struct memory_segment *seg)
306 {
307 	remove_memory_segment(seg);
308 	vmem_remove_range(seg->start, seg->size);
309 }
310 
311 int vmem_remove_mapping(unsigned long start, unsigned long size)
312 {
313 	struct memory_segment *seg;
314 	int ret;
315 
316 	mutex_lock(&vmem_mutex);
317 
318 	ret = -ENOENT;
319 	list_for_each_entry(seg, &mem_segs, list) {
320 		if (seg->start == start && seg->size == size)
321 			break;
322 	}
323 
324 	if (seg->start != start || seg->size != size)
325 		goto out;
326 
327 	ret = 0;
328 	__remove_shared_memory(seg);
329 	kfree(seg);
330 out:
331 	mutex_unlock(&vmem_mutex);
332 	return ret;
333 }
334 
335 int vmem_add_mapping(unsigned long start, unsigned long size)
336 {
337 	struct memory_segment *seg;
338 	int ret;
339 
340 	mutex_lock(&vmem_mutex);
341 	ret = -ENOMEM;
342 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
343 	if (!seg)
344 		goto out;
345 	seg->start = start;
346 	seg->size = size;
347 
348 	ret = insert_memory_segment(seg);
349 	if (ret)
350 		goto out_free;
351 
352 	ret = vmem_add_mem(start, size, 0);
353 	if (ret)
354 		goto out_remove;
355 	goto out;
356 
357 out_remove:
358 	__remove_shared_memory(seg);
359 out_free:
360 	kfree(seg);
361 out:
362 	mutex_unlock(&vmem_mutex);
363 	return ret;
364 }
365 
366 /*
367  * map whole physical memory to virtual memory (identity mapping)
368  * we reserve enough space in the vmalloc area for vmemmap to hotplug
369  * additional memory segments.
370  */
371 void __init vmem_map_init(void)
372 {
373 	unsigned long ro_start, ro_end;
374 	struct memblock_region *reg;
375 	phys_addr_t start, end;
376 
377 	ro_start = PFN_ALIGN((unsigned long)&_stext);
378 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
379 	for_each_memblock(memory, reg) {
380 		start = reg->base;
381 		end = reg->base + reg->size - 1;
382 		if (start >= ro_end || end <= ro_start)
383 			vmem_add_mem(start, end - start, 0);
384 		else if (start >= ro_start && end <= ro_end)
385 			vmem_add_mem(start, end - start, 1);
386 		else if (start >= ro_start) {
387 			vmem_add_mem(start, ro_end - start, 1);
388 			vmem_add_mem(ro_end, end - ro_end, 0);
389 		} else if (end < ro_end) {
390 			vmem_add_mem(start, ro_start - start, 0);
391 			vmem_add_mem(ro_start, end - ro_start, 1);
392 		} else {
393 			vmem_add_mem(start, ro_start - start, 0);
394 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
395 			vmem_add_mem(ro_end, end - ro_end, 0);
396 		}
397 	}
398 }
399 
400 /*
401  * Convert memblock.memory  to a memory segment list so there is a single
402  * list that contains all memory segments.
403  */
404 static int __init vmem_convert_memory_chunk(void)
405 {
406 	struct memblock_region *reg;
407 	struct memory_segment *seg;
408 
409 	mutex_lock(&vmem_mutex);
410 	for_each_memblock(memory, reg) {
411 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
412 		if (!seg)
413 			panic("Out of memory...\n");
414 		seg->start = reg->base;
415 		seg->size = reg->size;
416 		insert_memory_segment(seg);
417 	}
418 	mutex_unlock(&vmem_mutex);
419 	return 0;
420 }
421 
422 core_initcall(vmem_convert_memory_chunk);
423